Facebook
Twitterhttps://choosealicense.com/licenses/cc0-1.0/https://choosealicense.com/licenses/cc0-1.0/
Dataset Card for 100 Richest People In World
Dataset Summary
This dataset contains the list of Top 100 Richest People in the World Column Information:-
Name - Person Name NetWorth - His/Her Networth Age - Person Age Country - The country person belongs to Source - Information Source Industry - Expertise Domain
Join our Community
Supported Tasks and Leaderboards
[More Information Needed]
Languages
[More Information Needed]… See the full description on the dataset page: https://huggingface.co/datasets/nateraw/100-richest-people-in-world.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This dataset provides a synthetic overview of the 1,000 wealthiest individuals in the world, offering insights into the distribution of wealth across industries and regions. It is designed to help analysts, researchers, and data enthusiasts explore global wealth trends, industry dominance, and regional wealth concentration.
Whether you're conducting market research, financial analysis, or data modeling, this dataset serves as a valuable resource for understanding the characteristics of the world's top billionaires.
📊 Key Features: Name 👤: The name of the billionaire. Country 🌍: Country of residence or primary business operation. Industry 🏭: Industry in which the individual has built their wealth. Net Worth (in billions) 💵: Estimated net worth in billions of USD. Company 🏢: The primary company or business associated with the billionaire. ⚠️ Important Note: This dataset is 100% synthetic and does not contain real financial or personal data. It is artificially generated for educational, analytical, and research purposes.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset contains the top 100 richest people in the world based on their net worth. The dataset includes their rank, name, net worth, birthday, age, and nationality.
This dataset was collected using web scraping (Beautiful Soup) on this website and this "https://en.wikipedia.org/wiki/List_of_countries_by_number_of_billionaires">wikipedia
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Cleaned dataset from the Billionaires Statistic Dataset (2023) that can be found here.
The code I used to clean and re-structure the data is also here.
First things first: a big shout-out to Nidula Elgiriyewithana for providing the original data.
As with it, this dataset contains various information about the world's wealthiest persons in different columns that can be grouped into three different types:
If you want a challenge, you can create a dashboard using tools such as Plotly to dynamically visualize the data using one or different attributes (such as industry, age or country). I did it, leave the link below in case you want to investigate:
If you find this dataset informative or inspirational, a vote is appreciated for others to easily discover value in it 💎💰
Facebook
TwitterAs of March 2025, Elon Musk had a net worth valued at 328.5 billion U.S. dollars, making him the richest man in the world. Amazon founder Jeff Bezos followed in second, with Marc Zuckerberg, the founder of Facebook, in third. The list is dominated by Americans, and Alice Walton and Francoise Bettencourt Meyers are the only women among the 20 richest people worldwide.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This comprehensive dataset encapsulates a detailed snapshot of the wealthiest individuals globally, as listed by Forbes in 2024. Compiled through meticulous web scraping and data aggregation, the dataset includes a wide range of attributes for each billionaire. Fields encompass basic personal information such as name, age, and gender, alongside financial details including net worth and sources of wealth. The dataset further delves into aspects like industry involvement, organizational affiliations, philanthropic endeavors, and educational backgrounds.
Key attributes in this dataset include:
Name: Full legal name of the billionaire. Age: Age of the individual. 2024 Net Worth: Estimated net worth in USD for the year 2024. Industry: Primary industry or sector of operation. Source of Wealth: Origin of the billionaire’s wealth. Title: Professional title or position. Organization: Name of the associated organization. Self-Made: Indicator if the wealth is self-made. Self-Made Score: A quantitative score assessing how self-made their wealth is. Philanthropy Score: A score reflecting the extent of their philanthropic activities. Residence: Main residence of the individual. Citizenship: Legal citizenship. Gender: Gender identity. Marital Status: Current marital status. Children: Number of children. Education: Highest level of education attained.
This dataset is ideal for analysis, offering insights into the distribution of wealth, the influence of education on wealth accumulation, and trends across different industries. It also provides a foundation for exploring the impact of socioeconomic factors on personal wealth. The data were collected and formatted with careful consideration to ensure accuracy, making it a valuable resource for researchers, economists, and anyone interested in the dynamics of wealth and success.
Please note that some data is missing in this dataset, primarily due to the unavailability of information from Forbes. This issue becomes more prevalent beyond the top 400 entries. Many individuals lack a self-made score, a philanthropy score, or specific details regarding their title or organization as per Forbes' listings. I am currently working to update the dataset with this missing information. However, this update process is quite tedious and time-consuming since it is mostly manual. I appreciate your patience and understanding as I work through these details.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the median household income across different racial categories in Rich Square. It portrays the median household income of the head of household across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to gain insights into economic disparities and trends and explore the variations in median houshold income for diverse racial categories.
Key observations
Based on our analysis of the distribution of Rich Square population by race & ethnicity, the population is predominantly Black or African American. This particular racial category constitutes the majority, accounting for 63.98% of the total residents in Rich Square. Notably, the median household income for Black or African American households is $34,031. Interestingly, Black or African American is both the largest group and the one with the highest median household income, which stands at $34,031.
https://i.neilsberg.com/ch/rich-square-nc-median-household-income-by-race.jpeg" alt="Rich Square median household income diversity across racial categories">
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Rich Square median household income by race. You can refer the same here
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Certainly! Here's a description of each column:
Rank: The numerical ranking of a person or entity in a list or category.
finalWorth: The final worth or net worth of a person or entity, typically in terms of monetary value.
category: The category or classification of a person or entity, such as "entrepreneur", "investor", "celebrity", etc.
personName: The name of a person.
age: The age of a person.
country: The country of residence or origin of a person or entity.
city: The city of residence or origin of a person or entity.
source: The source or origin of wealth or fame for a person or entity.
industries: The industries or sectors in which a person or entity operates or is associated with.
countryOfCitizenship: The country of citizenship of a person.
organization: The organization or company with which a person is associated.
selfMade: Indicates whether a person is self-made or inherited wealth/fame.
**status: **The status or position of a person or entity, such as "CEO", "founder", "chairman", etc.
gender: The gender of a person.
**birthDate: **The date of birth of a person.
lastName: The last name or surname of a person.
**firstName: **The first name of a person.
title: The title or honorific used for a person, such as "Mr.", "Mrs.", "Dr.", etc.
date: The date associated with a particular event or data entry.
**state: **The state or region of residence or origin of a person or entity.
residenceStateRegion: The state or region of residence of a person or entity.
birthYear: The year of birth of a person.
birthMonth: The month of birth of a person.
**birthDay: **The day of birth of a person.
**cpi_country: **Consumer Price Index (CPI) for a specific country.
cpi_change_country: Change in Consumer Price Index (CPI) for a specific country.
**gdp_country: **Gross Domestic Product (GDP) for a specific country.
**gross_tertiary_education_enrollment: **Gross tertiary education enrollment rate for a specific country.
gross_primary_education_enrollment_country: Gross primary education enrollment rate for a specific country.
**life_expectancy_country: **Life expectancy for a specific country.
tax_revenue_country_country: Tax revenue for a specific country.
**total_tax_rate_country: **Total tax rate for a specific country.
population_country: Population of a specific country.
**latitude_country: **Latitude coordinates of a specific country.
**longitude_country: **Longitude coordinates of a specific country.
These columns appear to contain various attributes and metrics related to individuals, countries, and economic indicators.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the detailed breakdown of the count of individuals within distinct income brackets, categorizing them by gender (men and women) and employment type - full-time (FT) and part-time (PT), offering valuable insights into the diverse income landscapes within Rich Square. The dataset can be utilized to gain insights into gender-based income distribution within the Rich Square population, aiding in data analysis and decision-making..
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Income brackets:
Variables / Data Columns
Employment type classifications include:
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Rich Square median household income by race. You can refer the same here
Facebook
TwitterThis GLA Intelligence Update takes a brief look at evidence around the wealth gap in London and examines how this has changed in recent years. Key Findings There is a significant gap between the rich and poor in London, both in terms of their wealth and their income. A higher proportion of the wealthiest households are in the South East of England than in London. Pension wealth accounts for more than half the wealth of the richest ten per cent of the population. In London, the tenth of the population with the highest income have weekly income after housing costs of over £1,000 while people in the lowest tenth have under £94 per week. The gap between rich and poor is growing, with the difference between the average income for the second highest tenth and second lowest tenth growing around 14 per cent more than inflation since 2003.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Rich Hill household income by gender. The dataset can be utilized to understand the gender-based income distribution of Rich Hill income.
The dataset will have the following datasets when applicable
Please note: The 2020 1-Year ACS estimates data was not reported by the Census Bureau due to the impact on survey collection and analysis caused by COVID-19. Consequently, median household income data for 2020 is unavailable for large cities (population 65,000 and above).
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
Explore our comprehensive data analysis and visual representations for a deeper understanding of Rich Hill income distribution by gender. You can refer the same here
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the detailed breakdown of the count of individuals within distinct income brackets, categorizing them by gender (men and women) and employment type - full-time (FT) and part-time (PT), offering valuable insights into the diverse income landscapes within Rich Creek. The dataset can be utilized to gain insights into gender-based income distribution within the Rich Creek population, aiding in data analysis and decision-making..
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Income brackets:
Variables / Data Columns
Employment type classifications include:
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Rich Creek median household income by race. You can refer the same here
Facebook
TwitterThe Survey of Consumer Finances (SCF) is normally a triennial cross-sectional survey of U.S. families. The survey data include information on families' balance sheets, pensions, income, and demographic characteristics.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This table contains statistics regarding income and capital of self-employed persons in the Netherlands. A distinction is made between, on the one hand, persons for whom self-employment provides for the main source of income, and on the other hand all persons with income from self-employed work. The figures in this table are broken down by type of self-employed person, sector, gender, age, migration background, position in the household, and by income and wealth decile groups.
All statistics in this table are at the individual level, this includes capital; (corporate) assets are summed per household and then assigned to all household members, thus serving as a measure of personal prosperity. The sample date for both population and capital is the first of January of the reporting year. For the older years 2007 up to and including 2010, capital is sampled on the first of January of the year following the reporting year.
The General Business Register (ABR) is used to determine the sector (SBI) of self-employed persons. The ABR has been subject to various trend breaks in the period 2007-2011. This leads to a sharp decrease in the number of self-employed persons in the financial services (sector K) in 2010. Therefore caution is advised when consulting sector trends or comparing numbers across sectors.
Data available from: 2007.
Status of the figures: The figures for 2006 to 2022 are final. The figures for 2023 are preliminary.
Changes as of November 1 2024: Figures for 2022 have been finalized. Figures for 2023 have been added.
Changes as of March 2022: Figures on the wealth of the self-employed in 2010 were incorrect, and have been removed. For this year the wealth of 2011 applies, as 2011 marks a shift in sample date from December 31 to January 1. Missing wealth figures for 2013 have been supplemented.
Changes as of July 2021: Revised data for 2006 to 2019 have been added. Due to the availability of new sources and improvements in the methodology, wealth figures have changed. Additionally everyone with personnel is now classified as self-employed with employee (formerly this distinction was based solely on the enterprise constituting the main source of income).
When will new figures be published? New figures for 2024 will be published in December 2025.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Dominican Republic number dataset helps in many ways to gain huge amounts from business. Besides, this Dominican Republic number dataset is a very valuable directory that you can buy from us at a minimal cost. In addition, it creates many business chances because this country is rich in multiple sectors. Additionally, this directory makes all businesses more famous, competitive, and useful. For instance, this Dominican Republic number dataset builds new opportunities to do business in your selected places. Yet, the vendors can give sales promotions and make huge money from this lead. This time, they can join with the selected group of clients quickly. Overall, it provides the long-term success of your company or business. Dominican Republic phone data is a powerful way to connect many clients. Our Dominican Republic phone data can assist in getting speedy feedback from the public. In other words, our expert unit supplies this cautiously according to your needs. However, the List To Data website is the perfect source to get upgraded sales leads. Thus, check out the packages to find the one that works best for you and watch your business succeed. Moreover, the Dominican Republic phone data is perfect for sending text messages or making phone calls to potential new clients to make deals. By getting this people easily can reach out to people in this area and get positive results from the marketing. Likewise, this library retains millions of phone numbers from different businesses and people. Dominican Republic phone number list transforms your business into a profitable venture. Finding real contacts is very important because the Dominican Republic phone number list helps you reach a genuine audience, saving you time. Even, this List To Data helps you attach with many people quickly and boosts your marketing efforts. In addition, the Dominican Republic phone number list is a great source of earning from B2B and B2C platforms. The Dominican Republic’s economy is strong and diverse, with important sectors like technology, finance, and tourism. Besides, the country’s economy is persisting to grow. In the end, everyone should buy our contact data to earn a massive amount of profit from your targeted locations.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The values of any financial assets held including both formal investments, such as bank or building society current or saving accounts, investment vehicles such as Individual Savings Accounts, endowments, stocks and shares, and informal savings.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
A longitudinal survey that collects information about the economic well being of households and individuals including their assets and debts, pension provision, how wealth is distributed and factors that may affect financial planning. Source agency: Office for National Statistics Designation: Experimental Official Statistics Language: English Alternative title: WAS
Facebook
TwitterThe Wealth and Assets Survey (WAS) is a longitudinal survey, which aims to address gaps identified in data about the economic well-being of households by gathering information on level of assets, savings and debt; saving for retirement; how wealth is distributed among households or individuals; and factors that affect financial planning. Private households in Great Britain were sampled for the survey (meaning that people in residential institutions, such as retirement homes, nursing homes, prisons, barracks or university halls of residence, and also homeless people were not included).
The WAS commenced in July 2006, with a first wave of interviews carried out over two years, to June 2008. Interviews were achieved with 30,595 households at Wave 1. Those households were approached again for a Wave 2 interview between July 2008 and June 2010, and 20,170 households took part. Wave 3 covered July 2010 - June 2012, Wave 4 covered July 2012 - June 2014 and Wave 5 covered July 2014 - June 2016. Revisions to previous waves' data mean that small differences may occur between originally published estimates and estimates from the datasets held by the UK Data Service. These revisions are due to improvements in the imputation methodology.
Note from the WAS team - November 2023:
"The Office for National Statistics has identified a very small number of outlier cases present in the seventh round of the Wealth and Assets Survey covering the period April 2018 to March 2020. Our current approach is to treat cases where we have reasonable evidence to suggest the values provided for specific variables are outliers. This approach did not occur for two individuals for several variables involved in the estimation of their pension wealth. While we estimate any impacts are very small overall and median pension wealth and median total wealth estimates are unaffected, this will affect the accuracy of the breakdowns of the pension wealth within the wealthiest decile, and data derived from them. We are urging caution in the interpretation of more detailed estimates."
Survey Periodicity - "Waves" to "Rounds"
Due to the survey periodicity moving from "Waves" (July, ending
in June two years later) to “Rounds” (April, ending in March two years
later), interviews using the ‘Wave 6’ questionnaire started in July 2016
and were conducted for 21 months, finishing in March 2018. Data for
round 6 covers the period April 2016 to March 2018. This comprises of
the last three months of Wave 5 (April to June 2016) and 21 months of
Wave 6 (July 2016 to March 2018). Round 5 and Round 6 datasets are based
on a mixture of original wave-based datasets. Each wave of the survey
has a unique questionnaire and therefore each of these round-based
datasets are based on two questionnaires. While there may be some
changes in the questionnaires, the derived variables for the key wealth
estimates have not changed over this period. The aim is to collect the
same data, though in some cases the exact questions asked may differ slightly. Detailed information on Moving the Wealth and Assets Survey onto a financial years’ basis was published on the ONS website in July 2019.
Further information and documentation may be found on the ONS Wealth and Assets Survey webpage. Users are advised to the check the page for updates before commencing analysis.
Users should note that issues with linking have been reported and the WAS team are currently investigating.
Secure Access WAS data
The Secure Access version of the WAS includes additional, detailed geographical variables not included in the End User Licence (EUL) version (SN 7215). These include:
Facebook
Twitterhttps://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy
The Celebrity Net Worth Dataset offers an in-depth look at the estimated financial assets and wealth of global celebrities, extracted from CelebrityNetWorth.com by Crawl Feeds. This dataset provides the latest available financial data as of January 31, 2022, making it a valuable resource for analyzing the earnings, investments, and overall wealth of prominent figures in various industries such as entertainment, sports, music, and more.
For access to more updated celebrity net worth datasets, reach out to the Crawl Feeds team for further assistance.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Rich Square. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.
Key observations: Insights from 2023
Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Rich Square, the median income for all workers aged 15 years and older, regardless of work hours, was $24,265 for males and $17,431 for females.
These income figures indicate a substantial gender-based pay disparity, showcasing a gap of approximately 28% between the median incomes of males and females in Rich Square. With women, regardless of work hours, earning 72 cents to each dollar earned by men, this income disparity reveals a concerning trend toward wage inequality that demands attention in thetown of Rich Square.
- Full-time workers, aged 15 years and older: In Rich Square, among full-time, year-round workers aged 15 years and older, males earned a median income of $45,893, while females earned $36,089, leading to a 21% gender pay gap among full-time workers. This illustrates that women earn 79 cents for each dollar earned by men in full-time roles. This analysis indicates a widening gender pay gap, showing a substantial income disparity where women, despite working full-time, face a more significant wage discrepancy compared to men in the same roles.Remarkably, across all roles, including non-full-time employment, women displayed a similar gender pay gap percentage. This indicates a consistent gender pay gap scenario across various employment types in Rich Square, showcasing a consistent income pattern irrespective of employment status.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.
Gender classifications include:
Employment type classifications include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Rich Square median household income by race. You can refer the same here
Facebook
Twitterhttps://choosealicense.com/licenses/cc0-1.0/https://choosealicense.com/licenses/cc0-1.0/
Dataset Card for 100 Richest People In World
Dataset Summary
This dataset contains the list of Top 100 Richest People in the World Column Information:-
Name - Person Name NetWorth - His/Her Networth Age - Person Age Country - The country person belongs to Source - Information Source Industry - Expertise Domain
Join our Community
Supported Tasks and Leaderboards
[More Information Needed]
Languages
[More Information Needed]… See the full description on the dataset page: https://huggingface.co/datasets/nateraw/100-richest-people-in-world.