8 datasets found
  1. Rural Health Clinic Enrollments

    • datasets.ai
    • data.virginia.gov
    • +3more
    21, 8
    Updated Aug 27, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Health & Human Services (2024). Rural Health Clinic Enrollments [Dataset]. https://datasets.ai/datasets/rural-health-clinic-enrollments
    Explore at:
    21, 8Available download formats
    Dataset updated
    Aug 27, 2024
    Dataset provided by
    United States Department of Health and Human Serviceshttp://www.hhs.gov/
    Authors
    U.S. Department of Health & Human Services
    Description

    The Rural Health Clinic (RHC) Enrollments dataset provides enrollment information on all RHCs currently enrolled in Medicare. This data includes information on the RHC's legal business name, doing business as name, organization type and address.

  2. Veterans Health Administration 2008 Hospital Report Card - Rural vs Urban

    • catalog.data.gov
    • data.va.gov
    • +1more
    Updated Nov 23, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Veterans Affairs (2021). Veterans Health Administration 2008 Hospital Report Card - Rural vs Urban [Dataset]. https://catalog.data.gov/dataset/veterans-health-administration-2008-hospital-report-card-rural-vs-urban
    Explore at:
    Dataset updated
    Nov 23, 2021
    Dataset provided by
    United States Department of Veterans Affairshttp://va.gov/
    Description

    Report to the Appropriations Committee of the United States House of Representatives in Response to Conference Committee Report to PL 110-186. In an effort to provide a snapshot of the quality of care provided at VA health care facilities, this report includes information about waiting times, staffing level, infection rates, surgical volumes, quality measures, patient satisfaction, service availability and complexity, accreditation status, and patient safety. The data in this report have been drawn from multiple sources across VHA. This dataset defines the quality of care at a national level between rural vs urban populations.

  3. Medical Service Study Areas

    • healthdata.gov
    • data.ca.gov
    • +3more
    application/rdfxml +5
    Updated Apr 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    chhs.data.ca.gov (2025). Medical Service Study Areas [Dataset]. https://healthdata.gov/State/Medical-Service-Study-Areas/nvx2-hzzm
    Explore at:
    csv, application/rdfxml, application/rssxml, xml, json, tsvAvailable download formats
    Dataset updated
    Apr 8, 2025
    Dataset provided by
    chhs.data.ca.gov
    Description
    This is the current Medical Service Study Area. California Medical Service Study Areas are created by the California Department of Health Care Access and Information (HCAI).

    Check the Data Dictionary for field descriptions.


    Checkout the California Healthcare Atlas for more Medical Service Study Area information.

    This is an update to the MSSA geometries and demographics to reflect the new 2020 Census tract data. The Medical Service Study Area (MSSA) polygon layer represents the best fit mapping of all new 2020 California census tract boundaries to the original 2010 census tract boundaries used in the construction of the original 2010 MSSA file. Each of the state's new 9,129 census tracts was assigned to one of the previously established medical service study areas (excluding tracts with no land area), as identified in this data layer. The MSSA Census tract data is aggregated by HCAI, to create this MSSA data layer. This represents the final re-mapping of 2020 Census tracts to the original 2010 MSSA geometries. The 2010 MSSA were based on U.S. Census 2010 data and public meetings held throughout California.


    <a href="https://hcai.ca.gov/">https://hcai.ca.gov/</a>

    Source of update: American Community Survey 5-year 2006-2010 data for poverty. For source tables refer to InfoUSA update procedural documentation. The 2010 MSSA Detail layer was developed to update fields affected by population change. The American Community Survey 5-year 2006-2010 population data pertaining to total, in households, race, ethnicity, age, and poverty was used in the update. The 2010 MSSA Census Tract Detail map layer was developed to support geographic information systems (GIS) applications, representing 2010 census tract geography that is the foundation of 2010 medical service study area (MSSA) boundaries. ***This version is the finalized MSSA reconfiguration boundaries based on the US Census Bureau 2010 Census. In 1976 Garamendi Rural Health Services Act, required the development of a geographic framework for determining which parts of the state were rural and which were urban, and for determining which parts of counties and cities had adequate health care resources and which were "medically underserved". Thus, sub-city and sub-county geographic units called "medical service study areas [MSSAs]" were developed, using combinations of census-defined geographic units, established following General Rules promulgated by a statutory commission. After each subsequent census the MSSAs were revised. In the scheduled revisions that followed the 1990 census, community meetings of stakeholders (including county officials, and representatives of hospitals and community health centers) were held in larger metropolitan areas. The meetings were designed to develop consensus as how to draw the sub-city units so as to best display health care disparities. The importance of involving stakeholders was heightened in 1992 when the United States Department of Health and Human Services' Health and Resources Administration entered a formal agreement to recognize the state-determined MSSAs as "rational service areas" for federal recognition of "health professional shortage areas" and "medically underserved areas". After the 2000 census, two innovations transformed the process, and set the stage for GIS to emerge as a major factor in health care resource planning in California. First, the Office of Statewide Health Planning and Development [OSHPD], which organizes the community stakeholder meetings and provides the staff to administer the MSSAs, entered into an Enterprise GIS contract. Second, OSHPD authorized at least one community meeting to be held in each of the 58 counties, a significant number of which were wholly rural or frontier counties. For populous Los Angeles County, 11 community meetings were held. As a result, health resource data in California are collected and organized by 541 geographic units. The boundaries of these units were established by community healthcare experts, with the objective of maximizing their usefulness for needs assessment purposes. The most dramatic consequence was introducing a data simultaneously displayed in a GIS format. A two-person team, incorporating healthcare policy and GIS expertise, conducted the series of meetings, and supervised the development of the 2000-census configuration of the MSSAs.

    MSSA Configuration Guidelines (General Rules):- Each MSSA is composed of one or more complete census tracts.- As a general rule, MSSAs are deemed to be "rational service areas [RSAs]" for purposes of designating health professional shortage areas [HPSAs], medically underserved areas [MUAs] or medically underserved populations [MUPs].- MSSAs will not cross county lines.- To the extent practicable, all census-defined places within the MSSA are within 30 minutes travel time to the largest population center within the MSSA, except in those circumstances where meeting this criterion would require splitting a census tract.- To the extent practicable, areas that, standing alone, would meet both the definition of an MSSA and a Rural MSSA, should not be a part of an Urban MSSA.- Any Urban MSSA whose population exceeds 200,000 shall be divided into two or more Urban MSSA Subdivisions.- Urban MSSA Subdivisions should be within a population range of 75,000 to 125,000, but may not be smaller than five square miles in area. If removing any census tract on the perimeter of the Urban MSSA Subdivision would cause the area to fall below five square miles in area, then the population of the Urban MSSA may exceed 125,000. - To the extent practicable, Urban MSSA Subdivisions should reflect recognized community and neighborhood boundaries and take into account such demographic information as income level and ethnicity. Rural Definitions: A rural MSSA is an MSSA adopted by the Commission, which has a population density of less than 250 persons per square mile, and which has no census defined place within the area with a population in excess of 50,000. Only the population that is located within the MSSA is counted in determining the population of the census defined place. A frontier MSSA is a rural MSSA adopted by the Commission which has a population density of less than 11 persons per square mile. Any MSSA which is not a rural or frontier MSSA is an urban MSSA. Last updated December 6th 2024.
  4. d

    Johns Hopkins COVID-19 Case Tracker

    • data.world
    csv, zip
    Updated Aug 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Associated Press (2025). Johns Hopkins COVID-19 Case Tracker [Dataset]. https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Aug 2, 2025
    Authors
    The Associated Press
    Description

    Updates

    • Notice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.

    • April 9, 2020

      • The population estimate data for New York County, NY has been updated to include all five New York City counties (Kings County, Queens County, Bronx County, Richmond County and New York County). This has been done to match the Johns Hopkins COVID-19 data, which aggregates counts for the five New York City counties to New York County.
    • April 20, 2020

      • Johns Hopkins death totals in the US now include confirmed and probable deaths in accordance with CDC guidelines as of April 14. One significant result of this change was an increase of more than 3,700 deaths in the New York City count. This change will likely result in increases for death counts elsewhere as well. The AP does not alter the Johns Hopkins source data, so probable deaths are included in this dataset as well.
    • April 29, 2020

      • The AP is now providing timeseries data for counts of COVID-19 cases and deaths. The raw counts are provided here unaltered, along with a population column with Census ACS-5 estimates and calculated daily case and death rates per 100,000 people. Please read the updated caveats section for more information.
    • September 1st, 2020

      • Johns Hopkins is now providing counts for the five New York City counties individually.
    • February 12, 2021

      • The Ohio Department of Health recently announced that as many as 4,000 COVID-19 deaths may have been underreported through the state’s reporting system, and that the "daily reported death counts will be high for a two to three-day period."
      • Because deaths data will be anomalous for consecutive days, we have chosen to freeze Ohio's rolling average for daily deaths at the last valid measure until Johns Hopkins is able to back-distribute the data. The raw daily death counts, as reported by Johns Hopkins and including the backlogged death data, will still be present in the new_deaths column.
    • February 16, 2021

      - Johns Hopkins has reconciled Ohio's historical deaths data with the state.

      Overview

    The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.

    The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.

    This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.

    The AP is updating this dataset hourly at 45 minutes past the hour.

    To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.

    Queries

    Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic

    Interactive

    The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.

    @(https://datawrapper.dwcdn.net/nRyaf/15/)

    Interactive Embed Code

    <iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>
    

    Caveats

    • This data represents the number of cases and deaths reported by each state and has been collected by Johns Hopkins from a number of sources cited on their website.
    • In some cases, deaths or cases of people who've crossed state lines -- either to receive treatment or because they became sick and couldn't return home while traveling -- are reported in a state they aren't currently in, because of state reporting rules.
    • In some states, there are a number of cases not assigned to a specific county -- for those cases, the county name is "unassigned to a single county"
    • This data should be credited to Johns Hopkins University's COVID-19 tracking project. The AP is simply making it available here for ease of use for reporters and members.
    • Caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
    • Population estimates at the county level are drawn from 2014-18 5-year estimates from the American Community Survey.
    • The Urban/Rural classification scheme is from the Center for Disease Control and Preventions's National Center for Health Statistics. It puts each county into one of six categories -- from Large Central Metro to Non-Core -- according to population and other characteristics. More details about the classifications can be found here.

    Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here

    Attribution

    This data should be credited to Johns Hopkins University COVID-19 tracking project

  5. A

    ‘COVID-19 high risk individuals per ICU bed’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Jan 28, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2022). ‘COVID-19 high risk individuals per ICU bed’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-covid-19-high-risk-individuals-per-icu-bed-7ef1/57ae5c46/?iid=001-078&v=presentation
    Explore at:
    Dataset updated
    Jan 28, 2022
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘COVID-19 high risk individuals per ICU bed’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/yamqwe/covid-19-high-risk-individuals-per-icu-bede on 28 January 2022.

    --- Dataset description provided by original source is as follows ---

    About this dataset

    This dataset contains the data behind the story How One High-Risk Community In Rural South Carolina Is Bracing For COVID-19.

    mmsa-icu-beds.csv combines data from the Centers for Disease Control and Prevention’s Behavioral Risk Factor Surveillance System (BRFSS), a collection of health-related surveys conducted each year of more than 400,000 Americans, and the Kaiser Family Foundation to show the number of people who are at high risk of becoming seriously ill from COVID-19 per ICU bed in each metropolitan area, micropolitan area or metropolitan division for which we have data.

    Being high risk is defined by a number of health conditions and behaviors. Based on the CDC’s list of the relevant underlying conditions that put people at higher risk of serious illness from COVID-19, plus the advice of experts from the Cleveland Clinic, the American Lung Association and the American Heart Association, we counted people as at risk if they’re 65 or older; if they have ever been told they have hypertension, coronary heart disease, a myocardial infarction, angina, a stroke, chronic kidney disease, chronic obstructive pulmonary disease, emphysema, chronic bronchitis or diabetes; if they currently have asthma or a BMI over 40; if they smoke cigarettes every day or some days or use e-cigarettes or vaping products every day or some days; or if they’re currently pregnant. We included every individual who meets at least one of these conditions but counted them only once each, so anyone with multiple conditions doesn’t get counted multiple times. We were not able to include a number of conditions for which we did not have location-based data from the BRFSS, such as liver disease, having smoked, vaped or dabbed marijuana in the last 30 days, and getting cancer treatment or being on immunosuppression medications.

    See the data dictionary for column descriptions.

    If you find this information useful, please let us know.

    License: Creative Commons Attribution 4.0 International License
    Source: https://github.com/fivethirtyeight/data/tree/master/covid-geography

    This dataset was created by data.world's Admin and contains around 100 samples along with High Risk Per Icu Bed, Icu Beds, technical information and other features such as: - Hospitals - High Risk Per Hospital - and more.

    How to use this dataset

    • Analyze Total Percent At Risk in relation to High Risk Per Icu Bed
    • Study the influence of Icu Beds on Hospitals
    • More datasets

    Acknowledgements

    If you use this dataset in your research, please credit data.world's Admin

    Start A New Notebook!

    --- Original source retains full ownership of the source dataset ---

  6. H

    Determinants of Adverse pregnancy outcome in a Rural American Hospital.

    • dataverse.harvard.edu
    • search.dataone.org
    Updated Jul 29, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    OLUWASEGUN AKINYEMI (2020). Determinants of Adverse pregnancy outcome in a Rural American Hospital. [Dataset]. http://doi.org/10.7910/DVN/WKCTRE
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 29, 2020
    Dataset provided by
    Harvard Dataverse
    Authors
    OLUWASEGUN AKINYEMI
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Data on Determinants of Adverse Pregnancy Outcome in a Rural American Hospital.

  7. f

    Sample characteristicsa.

    • figshare.com
    • plos.figshare.com
    xls
    Updated Jun 15, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Akua Nuako; Jingxia Liu; Giang Pham; Nina Smock; Aimee James; Timothy Baker; Laura Bierut; Graham Colditz; Li-Shiun Chen (2023). Sample characteristicsa. [Dataset]. http://doi.org/10.1371/journal.pone.0263718.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 15, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Akua Nuako; Jingxia Liu; Giang Pham; Nina Smock; Aimee James; Timothy Baker; Laura Bierut; Graham Colditz; Li-Shiun Chen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Sample characteristicsa.

  8. S1 File - Household Catastrophic Healthcare Expenditure and Impoverishment...

    • plos.figshare.com
    docx
    Updated Jun 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tharani Loganathan; Way-Seah Lee; Kok-Foo Lee; Mark Jit; Chiu-Wan Ng (2023). S1 File - Household Catastrophic Healthcare Expenditure and Impoverishment Due to Rotavirus Gastroenteritis Requiring Hospitalization in Malaysia [Dataset]. http://doi.org/10.1371/journal.pone.0125878.s001
    Explore at:
    docxAvailable download formats
    Dataset updated
    Jun 3, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Tharani Loganathan; Way-Seah Lee; Kok-Foo Lee; Mark Jit; Chiu-Wan Ng
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Malaysia
    Description

    Text A. Handling of Missing Values. Table A. Missing Values for Total Household Income at UMMC, Kuala Lumpur and HSNZ, Kuala Terengganu. UMMC, University of Malaya Medical Centre; HSNZ, Hospital Sultanah Nur Zahirah. Table B. Poverty Impact of hospitalization for acute gastroenteritis at UMMC, Kuala Lumpur and HSNZ, Kuala Terengganu. Note: The imputed dataset uses pooled imputed values for Total Household Income. In the complete case analysis, cases with missing values for Total Household Income are deleted. All values are reported in 2009 United States Dollar (US$), as mean (± standard deviation, SD). During the study period, 1 USD was equivalent to 3.36 Malaysian Ringgit (RM). Poverty line income in 2009 for urban regions, Kuala Lumpur US$ 219.03 and rural regions, Kuala Terengganu US$ 211.08 [15]. UMMC, University of Malaya Medical Centre; HSNZ, Hospital Sultanah Nur Zahirah. (DOCX)

  9. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
U.S. Department of Health & Human Services (2024). Rural Health Clinic Enrollments [Dataset]. https://datasets.ai/datasets/rural-health-clinic-enrollments
Organization logo

Rural Health Clinic Enrollments

Explore at:
21, 8Available download formats
Dataset updated
Aug 27, 2024
Dataset provided by
United States Department of Health and Human Serviceshttp://www.hhs.gov/
Authors
U.S. Department of Health & Human Services
Description

The Rural Health Clinic (RHC) Enrollments dataset provides enrollment information on all RHCs currently enrolled in Medicare. This data includes information on the RHC's legal business name, doing business as name, organization type and address.

Search
Clear search
Close search
Google apps
Main menu