6 datasets found
  1. U.S. quarterly battery electric vehicle sales 2020-2024

    • statista.com
    Updated Jun 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). U.S. quarterly battery electric vehicle sales 2020-2024 [Dataset]. https://www.statista.com/statistics/1231872/battery-electric-vehicle-sales-in-the-united-states/
    Explore at:
    Dataset updated
    Jun 24, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In the fourth quarter of 2024, over ******* battery-electric vehicles were sold in the United States. This was a year-over-year increase of around **** percent compared to the sales recorded in the fourth quarter of 2023. The fourth quarter of 2024 also recorded a hike in sales compared to the third quarter of that same year, making it the best quarter for BEV sales in the country across the past two years. Global EV Race - Where does the U.S. stand? Over the last few years, consumers have perceived Electric Vehicles (EVs) as a far more appealing option due to their increased range, battery life, variety of models, and affordability. Therefore, the EV market has grown fast in recent years and is forecast to expand to *** trillion U.S. dollars in 2029. Though the global demand for electric cars has been escalating, American sales lag behind Europe and the Asia-Pacific regions. In 2023, Chinese customers bought around *** million plug-in EVs, considerably more than American customers' purchases,around *** million that year. China is the leader of the global EV race, with a substantial ** percent growth in sales year-on-year in 2023. However, given the market share of electric vehicles in the global automotive industry, this still can be anyone's race. Outlook of the U.S. market There is still a lack of interest in electric vehicles among American buyers compared to European and Asian consumers. In the first quarter of 2021, the share of the battery electric vehicle was **** percentage points more in Norway than in the U.S.. One of the main reasons is that American consumers still anticipate that EVs are more expensive than gasoline vehicles and diesel internal combustion engine cars (ICE). This perception is partially true in the U.S. since the battery production market is highly concentrated in Asia, where the companies have logistical advantages, leading automotive makers to offer better prices. On the other hand, high licensing fees for electric vehicles are another factor affecting the consumption behaviors of automobile purchasers. In many states, the licensing fees for electric cars are considerably higher than their ICE counterparts. EV licensing fees were around *** U.S. dollars compared to ** U.S. dollars for standard vehicles in Georgia in 2021. Together, these factors significantly impact the individual perception of electric cars in the United States.

  2. National Greenhouse Gas Emission Inventory (EV-GHG)

    • catalog.data.gov
    • data.amerigeoss.org
    • +1more
    Updated Dec 4, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. EPA Office of Air and Radiation (OAR) - Office of Atmospheric Programs (OAP) (2020). National Greenhouse Gas Emission Inventory (EV-GHG) [Dataset]. https://catalog.data.gov/dataset/national-greenhouse-gas-emission-inventory-ev-ghg
    Explore at:
    Dataset updated
    Dec 4, 2020
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Description

    The EV-GHG Mobile Source Data asset contains measured mobile source GHG emissions summary compliance information on light-duty vehicles, by model, for certification as required by the 1990 Amendments to the Clean Air Act, and as driven by the 2010 Presidential Memorandum Regarding Fuel Efficiency and the 2005 Supreme Court ruling in Massachusetts v. EPA that supported the regulation of CO2 as a pollutant. Manufacturers submit data on an annual basis, or as needed to document vehicle model changes. This asset will be expanded to include medium and heavy duty vehicles in the future.The EPA performs targeted GHG emissions tests on approximately 15% of vehicles submitted for certification. Confirmatory data on vehicles is associated with its corresponding submission data to verify the accuracy of manufacturer submissions beyond standard business rules.Submitted data comes in XML format or as documents, with the majority of submissions sent in XML, and includes descriptive information on the vehicle itself, emissions information, and the manufacturer's testing approach. This data may contain proprietary information (CBI) such as information on estimated sales or other data elements indicated by the submitter as confidential. CBI data is not publically available; however, CBI data can accessed within EPA under the restrictions of the Office of Transportation and Air Quality (OTAQ) CBI policy [RCS Link]. Pollutants data includes CO2, CH4, N2O. Datasets are divided by vehicle/engine model and/or year with corresponding emission, test, and certification data. Data assets are stored in EPA's Verify system.Coverage began in 2011, with summary light duty data available to the public on request. Raw data is only available to select EPA employees.EV-GHG Mobile Source Data submission documents with metadata, certificate and summary decision information is stored in Verify after it has been quality assured. Where summary data appears inaccurate, OTAQ returns the entries for review to their originator.

  3. G

    Statistics on the Incentives for Zero-Emission Vehicles (iZEV) Program

    • open.canada.ca
    • beta.data.urbandatacentre.ca
    • +1more
    csv, pdf, rtf, xlsx
    Updated Jun 20, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Transport Canada (2025). Statistics on the Incentives for Zero-Emission Vehicles (iZEV) Program [Dataset]. https://open.canada.ca/data/en/dataset/42986a95-be23-436e-af15-7c6bf292a2e1
    Explore at:
    pdf, rtf, xlsx, csvAvailable download formats
    Dataset updated
    Jun 20, 2025
    Dataset provided by
    Transport Canada
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Time period covered
    May 1, 2019 - Apr 30, 2022
    Description

    Since the launch of the iZEV Program on May 1, 2019, Transport Canada has been producing statistics on consumer uptake under the program for the following variables: - Province/territory or all of Canada - Province/territory and postal code of the dealership each vehicle was purchased/leased from - Make and/or model (including model year) - Engine type (i.e., 100% battery electric versus plug-in hybrids - both over and under 50 km of electric range.) - Recipient type (i.e., individual or organization and purchase or lease) - A time period, including: * A specific month * Ranges of months (e.g., June 2020 to January 2021) * Calendar year (January 1 to December 31) * The Government of Canada’s fiscal year (April 1 to March 31) The current data provides iZEV monthly statistics. Revisions of archived data will be updated quarterly, these revisions are generally minor and are mainly due to approval of incentive requests that were incomplete when first submitted to Transport Canada. Most revisions are typically from the most recent three-month period. If you have any questions, please contact us at iZEV-iVZE@tc.gc.ca

  4. EV-GHG Mobile Source

    • datasets.ai
    • catalog.data.gov
    • +1more
    Updated Sep 11, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Environmental Protection Agency (2024). EV-GHG Mobile Source [Dataset]. https://datasets.ai/datasets/ev-ghg-mobile-source
    Explore at:
    Dataset updated
    Sep 11, 2024
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Authors
    U.S. Environmental Protection Agency
    Description

    The EV-GHG Mobile Source Data asset contains measured mobile source GHG emissions summary compliance information on light-duty vehicles, by model, for certification as required by the 1990 Amendments to the Clean Air Act, and as driven by the 2010 Presidential Memorandum Regarding Fuel Efficiency and the 2005 Supreme Court ruling in Massachusetts v. EPA that supported the regulation of CO2 as a pollutant. Manufacturers submit data on an annual basis, or as needed to document vehicle model changes. This asset will be expanded to include medium and heavy duty vehicles in the future.The EPA performs targeted GHG emissions tests on approximately 15% of vehicles submitted for certification. Confirmatory data on vehicles is associated with its corresponding submission data to verify the accuracy of manufacturer submissions beyond standard business rules.Submitted data comes in XML format or as documents, with the majority of submissions sent in XML, and includes descriptive information on the vehicle itself, emissions information, and the manufacturer's testing approach. This data may contain proprietary information (CBI) such as information on estimated sales or other data elements indicated by the submitter as confidential. CBI data is not publically available; however, CBI data can accessed within EPA under the restrictions of the Office of Transportation and Air Quality (OTAQ) CBI policy [RCS Link]. Pollutants data includes CO2, CH4, N2O. Datasets are divided by vehicle/engine model and/or year with corresponding emission, test, and certification data. Data assets are stored in EPA's Verify system.Coverage began in 2011, with summary light duty data available to the public on request. Raw data is only available to select EPA employees.EV-GHG Mobile Source Data submission documents with metadata, certificate and summary decision information is stored in Verify after it has been quality assured. Where summary data appears inaccurate, OTAQ returns the entries for review to their originator.

  5. O

    Demand-Side Grid (dsgrid) TEMPO Light-Duty Vehicle Charging Profiles v2022

    • data.openei.org
    • osti.gov
    • +1more
    code, data +2
    Updated Aug 29, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Arthur Yip; Christopher Hoehne; Paige Jadun; Catherine Ledna; Elaine Hale; Matteo Muratori; Daniel Thom; Meghan Mooney; Lixi Liu; Arthur Yip; Christopher Hoehne; Paige Jadun; Catherine Ledna; Elaine Hale; Matteo Muratori; Daniel Thom; Meghan Mooney; Lixi Liu (2023). Demand-Side Grid (dsgrid) TEMPO Light-Duty Vehicle Charging Profiles v2022 [Dataset]. http://doi.org/10.25984/2373091
    Explore at:
    website, data, image_document, codeAvailable download formats
    Dataset updated
    Aug 29, 2023
    Dataset provided by
    USDOE Office of Energy Efficiency and Renewable Energy (EERE), Multiple Programs (EE)
    Open Energy Data Initiative (OEDI)
    National Renewable Energy Laboratory
    Authors
    Arthur Yip; Christopher Hoehne; Paige Jadun; Catherine Ledna; Elaine Hale; Matteo Muratori; Daniel Thom; Meghan Mooney; Lixi Liu; Arthur Yip; Christopher Hoehne; Paige Jadun; Catherine Ledna; Elaine Hale; Matteo Muratori; Daniel Thom; Meghan Mooney; Lixi Liu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Simulated hourly electric vehicle charging profiles for light-duty household passenger vehicles in the contiguous United States, 2018-2050. Profiles are differentiated by scenario, county, household and vehicle types, and charging type. Data was produced in 2022 using the Transportation Energy & Mobility Pathway Options (TEMPO) model and published in demand-side grid (dsgrid) toolkit format.

    Data are available for three adoption scenarios: "AEO Reference Case", which is aligned with the U.S. EIA Annual Energy Outlook 2018 (linked below), "EFS High Electrification", which is aligned with the High Electrification scenario of the Electrification Futures Study (linked below), and "All EV Sales by 2035", which assumes that average passenger light-duty EV sales reach 50% in 2030 and 100% in 2035.

    The charging shapes are derived from two key assumptions of which data users should be aware: "ubiquitous charger access", meaning that drivers of vehicles are assumed to have access to a charger whenever a trip is not in progress, and "immediate charging", meaning that immediately after trip completion, vehicles are plugged in and charge until they are either fully recharged or taken on another trip.

    These assumptions result in a bounding case in which vehicles' state of charge is maximized at all times. This bounding case would minimize range anxiety, but is unrealistic from the point of view of both electric vehicle service equipment (EVSE) (i.e., charger) access, and plug-in behavior as it can result in dozens of charging sessions per week for battery electric vehicles (BEVs) that in reality are often only plugged in a few times per week.

  6. T

    Tesla Fire

    • tesla-fire.com
    • search.dataone.org
    • +2more
    csv
    Updated Feb 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    I Capulet (2024). Tesla Fire [Dataset]. http://doi.org/10.5281/zenodo.5520568
    Explore at:
    csvAvailable download formats
    Dataset updated
    Feb 19, 2024
    Dataset provided by
    TSLAQ
    Authors
    I Capulet
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Time period covered
    Apr 2, 2013 - Present
    Variables measured
    fires
    Description

    A digital record of all Tesla fires - including cars and other products, e.g. Tesla MegaPacks - that are corroborated by news articles or confirmed primary sources. Latest version hosted at https://www.tesla-fire.com.

  7. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). U.S. quarterly battery electric vehicle sales 2020-2024 [Dataset]. https://www.statista.com/statistics/1231872/battery-electric-vehicle-sales-in-the-united-states/
Organization logo

U.S. quarterly battery electric vehicle sales 2020-2024

Explore at:
Dataset updated
Jun 24, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
United States
Description

In the fourth quarter of 2024, over ******* battery-electric vehicles were sold in the United States. This was a year-over-year increase of around **** percent compared to the sales recorded in the fourth quarter of 2023. The fourth quarter of 2024 also recorded a hike in sales compared to the third quarter of that same year, making it the best quarter for BEV sales in the country across the past two years. Global EV Race - Where does the U.S. stand? Over the last few years, consumers have perceived Electric Vehicles (EVs) as a far more appealing option due to their increased range, battery life, variety of models, and affordability. Therefore, the EV market has grown fast in recent years and is forecast to expand to *** trillion U.S. dollars in 2029. Though the global demand for electric cars has been escalating, American sales lag behind Europe and the Asia-Pacific regions. In 2023, Chinese customers bought around *** million plug-in EVs, considerably more than American customers' purchases,around *** million that year. China is the leader of the global EV race, with a substantial ** percent growth in sales year-on-year in 2023. However, given the market share of electric vehicles in the global automotive industry, this still can be anyone's race. Outlook of the U.S. market There is still a lack of interest in electric vehicles among American buyers compared to European and Asian consumers. In the first quarter of 2021, the share of the battery electric vehicle was **** percentage points more in Norway than in the U.S.. One of the main reasons is that American consumers still anticipate that EVs are more expensive than gasoline vehicles and diesel internal combustion engine cars (ICE). This perception is partially true in the U.S. since the battery production market is highly concentrated in Asia, where the companies have logistical advantages, leading automotive makers to offer better prices. On the other hand, high licensing fees for electric vehicles are another factor affecting the consumption behaviors of automobile purchasers. In many states, the licensing fees for electric cars are considerably higher than their ICE counterparts. EV licensing fees were around *** U.S. dollars compared to ** U.S. dollars for standard vehicles in Georgia in 2021. Together, these factors significantly impact the individual perception of electric cars in the United States.

Search
Clear search
Close search
Google apps
Main menu