17 datasets found
  1. o

    Amazon Products

    • opendatabay.com
    .undefined
    Updated Jun 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bright Data (2025). Amazon Products [Dataset]. https://www.opendatabay.com/data/premium/2f7668e7-009e-4c7d-9822-78955a22a20a
    Explore at:
    .undefinedAvailable download formats
    Dataset updated
    Jun 19, 2025
    Dataset authored and provided by
    Bright Data
    Area covered
    Retail & Consumer Behavior
    Description

    Amazon Products dataset to explore detailed product listings, pricing, reviews, and sales data. Popular use cases include competitive analysis, market trend forecasting, and e-commerce strategy optimization.

    Use our Amazon Products dataset to explore detailed information on products across various categories, including pricing, reviews, ratings, and sales data. This dataset is ideal for e-commerce professionals, market analysts, and product managers looking to analyze market trends, optimize product listings, and refine competitive strategies.

    Leverage this dataset to track pricing trends, assess customer feedback, and uncover popular product categories. Whether you're conducting competitive analysis, performing market research, or optimizing product strategies, the Amazon Products dataset provides key insights to stay ahead in the e-commerce landscape.

    Dataset Features

    • Title: The name or title of the product.
    • seller_name: The name of the seller offering the product.
    • Brand: The brand associated with the product.
    • Description: A detailed description of the product, including key features.
    • initial_price: The original price of the product before any discounts.
    • final_price: The current price of the product after discounts.
    • Currency: The currency in which the product is priced (e.g., GBP, USD).
    • Availability: The stock status (e.g., in stock, out of stock).
    • reviews_count: The total number of customer reviews.
    • Categories: The specific category the product belongs to.
    • asin: Amazon Standard Identification Number.
    • buybox_seller: The seller currently winning the Amazon Buy Box.
    • number_of_sellers: The number of sellers offering this product.
    • root_bs_rank: The overall ranking of the product in the Amazon best-sellers list.
    • answered_questions: The number of questions answered in the product Q&A section.
    • domain: The website domain where the product is being sold.
    • images_count: The number of images available for the product.
    • URL: The link to the product page on Amazon.
    • video_count: The number of videos available for the product.
    • image_url: The URL of the primary image associated with the product.
    • item_weight: The weight of the product.
    • Rating: The average rating of the product based on customer reviews.
    • product_dimensions: The dimensions of the product (e.g., length, width, height) and weight.
    • seller_id: The unique identifier for the seller.
    • date_first_available: The date when the product was first made available on Amazon.
    • discount: Any discount applied to the product.
    • model_number: The model number of the product.
    • manufacturer: The company that manufactures the product.
    • department: The department under which the product is categorized (e.g., Health & Household).
    • plus_content: A flag indicating if the product has Amazon’s “Plus Content” (additional marketing content).
    • upc: The Universal Product Code (UPC) associated with the product.
    • video: URL(s) of any video content associated with the product.
    • top_review: A summary or excerpt from the top customer review.
    • variations: Different product variations (e.g., different sizes or flavors).
    • delivery: Information on the delivery options (e.g., free delivery or Prime delivery).
    • features: Key features or highlights of the product.
    • format: The format of the product (e.g., powder, liquid).
    • buybox_prices: Pricing details for the product, including the base and tiered prices.
    • parent_asin: The ASIN of the parent product (if the product is part of a larger group of similar products).
    • input_asin: The ASIN of the product as input for Amazon searches.
    • ingredients: List of ingredients in the product (if applicable).
    • origin_url: The source URL for product-related information or ingredients.
    • bought_past_month: A flag indicating if the product was bought in the past month.
    • is_available: Availability status of the product (True/False).
    • root_bs_category: The broad product category (e.g., Health & Household).
    • bs_category: The specific subcategory the product belongs to.
    • bs_rank: The rank of the product in its specific subcategory.
    • badge: Any badge or label the product has earned (e.g., Amazon's Choice).
    • subcategory_rank: The rank of the product within its subcategory.
    • amazon_choice: A flag indicating if the product has been selected as Amazon’s Choice.
    • images: A list of URLs for additional product images.
    • product_details: Detailed product specifications and features.
    • prices_breakdown: A breakdown of the price, including any discounts or promotions.
    • country_of_origin: The country where the product is made.
    • from_the_brand: Information from the brand or manufact
  2. Amazon revenue 2004-2024

    • statista.com
    Updated Jun 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Amazon revenue 2004-2024 [Dataset]. https://www.statista.com/statistics/266282/annual-net-revenue-of-amazoncom/
    Explore at:
    Dataset updated
    Jun 25, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide, United States
    Description

    From 2004 to 2024, the net revenue of Amazon e-commerce and service sales has increased tremendously. In the fiscal year ending December 31, the multinational e-commerce company's net revenue was almost *** billion U.S. dollars, up from *** billion U.S. dollars in 2023.Amazon.com, a U.S. e-commerce company originally founded in 1994, is the world’s largest online retailer of books, clothing, electronics, music, and many more goods. As of 2024, the company generates the majority of it's net revenues through online retail product sales, followed by third-party retail seller services, cloud computing services, and retail subscription services including Amazon Prime. From seller to digital environment Through Amazon, consumers are able to purchase goods at a rather discounted price from both small and large companies as well as from other users. Both new and used goods are sold on the website. Due to the wide variety of goods available at prices which often undercut local brick-and-mortar retail offerings, Amazon has dominated the retailer market. As of 2024, Amazon’s brand worth amounts to over *** billion U.S. dollars, topping the likes of companies such as Walmart, Ikea, as well as digital competitors Alibaba and eBay. One of Amazon's first forays into the world of hardware was its e-reader Kindle, one of the most popular e-book readers worldwide. More recently, Amazon has also released several series of own-branded products and a voice-controlled virtual assistant, Alexa. Headquartered in North America Due to its location, Amazon offers more services in North America than worldwide. As a result, the majority of the company’s net revenue in 2023 was actually earned in the United States, Canada, and Mexico. In 2023, approximately *** billion U.S. dollars was earned in North America compared to only roughly *** billion U.S. dollars internationally.

  3. Global net revenue of Amazon 2014-2024, by product group

    • statista.com
    • ai-chatbox.pro
    Updated Feb 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Global net revenue of Amazon 2014-2024, by product group [Dataset]. https://www.statista.com/statistics/672747/amazons-consolidated-net-revenue-by-segment/
    Explore at:
    Dataset updated
    Feb 24, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    In 2024, Amazon's net revenue from subscription services segment amounted to 44.37 billion U.S. dollars. Subscription services include Amazon Prime, for which Amazon reported 200 million paying members worldwide at the end of 2020. The AWS category generated 107.56 billion U.S. dollars in annual sales. During the most recently reported fiscal year, the company’s net revenue amounted to 638 billion U.S. dollars. Amazon revenue segments Amazon is one of the biggest online companies worldwide. In 2019, the company’s revenue increased by 21 percent, compared to Google’s revenue growth during the same fiscal period, which was just 18 percent. The majority of Amazon’s net sales are generated through its North American business segment, which accounted for 236.3 billion U.S. dollars in 2020. The United States are the company’s leading market, followed by Germany and the United Kingdom. Business segment: Amazon Web Services Amazon Web Services, commonly referred to as AWS, is one of the strongest-growing business segments of Amazon. AWS is a cloud computing service that provides individuals, companies and governments with a wide range of computing, networking, storage, database, analytics and application services, among many others. As of the third quarter of 2020, AWS accounted for approximately 32 percent of the global cloud infrastructure services vendor market.

  4. Amazon Product Reviews

    • kaggle.com
    Updated Nov 26, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). Amazon Product Reviews [Dataset]. https://www.kaggle.com/datasets/thedevastator/amazon-product-reviews/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 26, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    The Devastator
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Amazon Product Reviews

    18 Years of Customer Ratings and Experiences

    By Huggingface Hub [source]

    About this dataset

    The Amazon Reviews Polarity Dataset discloses eighteen years of customers' ratings and reviews from Amazon.com, offering an unparalleled trove of insight and knowledge. Drawing from the immense pool of over 35 million customer reviews, this dataset presents a broad spectrum of customer opinions on products they have bought or used. This invaluable data is a gold mine for improving products and services as it contains comprehensive information regarding customers' experiences with a product including ratings, titles, and plaintext content. At the same time, this dataset contains both customer-specific data along with product information which encourages deep analytics that could lead to great advances in providing tailored solutions for customers. Has your product been favored by the majority? Are there any aspects that need extra care? Use Amazon Reviews Polarity to gain deeper insights into what your customers want - explore now!

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    • Analyze customer ratings to identify trends: Take a look at how many customers have rated the same product or service with the same score (e.g., 4 stars). You can use this information to identify what customers like or don’t like about it by examining common sentiment throughout the reviews. Identifying these patterns can help you make decisions on which features of your products or services to emphasize in order to boost sales and satisfaction rates.

    2 Review content analysis: Analyzing review content is one of the best ways to gauge customer sentiment toward specific features or aspects of a product/service. Using natural language processing tools such as Word2Vec, Latent Dirichlet Allocation (LDA), or even simple keyword search algorithms can quickly reveal general topics that are discussed in relation to your product/service across multiple reviews - allowing you quickly pinpoint areas that may need improvement for particular items within your lines of business.

    3 Track associated scores over time: By tracking customer ratings overtime, you may be able to better understand when there has been an issue with something specific related to your product/service - such as negative response toward a feature that was introduced but didn’t seem popular among customers and was removed shortly after introduction.. This can save time and money by identifying issues before they become widespread concerns with larger sets of consumers who invest their money in using your company's item(s).

    4 Visualize sentiment data over time graphs : Utilizing visualizations such as bar graphs can help identify trends across different categories quicker than raw numbers alone; combining both numeric values along with color differences associated between different scores allows you spot anomalies easier - allowing faster resolution times when trying figure out why certain spikes occurred where other stayed stable (or vice-versa) when comparing similar data points through time-series based visualization models

    Research Ideas

    • Developing a customer sentiment analysis system that can be used to quickly analyze the sentiment of reviews and identify any potential areas of improvement.
    • Building a product recommendation service that takes into account the ratings and reviews of customers when recommending similar products they may be interested in purchasing.
    • Training a machine learning model to accurately predict customers’ ratings on new products they have not yet tried and leverage this for further product development optimization initiatives

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    License: CC0 1.0 Universal (CC0 1.0) - Public Domain Dedication No Copyright - You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission. See Other Information.

    Columns

    File: train.csv | Column name | Description | |:--------------|:-------------------------------------------------------------------| | label | The sentiment of the review, either positive or negative. (String) | | title | The title of the review. (String) ...

  5. d

    Amazon Seller Directory 2025 | Amazon Seller Database USA, FR, Germany, ESP,...

    • datarade.ai
    .csv, .xls
    Updated Feb 21, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lead for Business (2022). Amazon Seller Directory 2025 | Amazon Seller Database USA, FR, Germany, ESP, UK, Italy, CA | List of Amazon Sellers | 200K+ Amazon Seller Leads| [Dataset]. https://datarade.ai/data-products/amazon-seller-directory-amazon-fba-seller-database-with-sto-lead-for-business
    Explore at:
    .csv, .xlsAvailable download formats
    Dataset updated
    Feb 21, 2022
    Dataset authored and provided by
    Lead for Business
    Area covered
    United Kingdom, United States, Italy
    Description

    • 500K+ Active Amazon Stores • 200K+ Seller Leads • Platforms USA, Germany, UK, Italy, France, Spain, CA • C-Suite/Marketing/Sales Contacts • FBA/Non-FBA Sellers • 15+ data points available for each prospect • Filter your leads by store size, niche, location, and many more • 100% manually researched and verified.

    For over a decade, we have been manually collecting Amazon seller data from various data sources such as Amazon, Linkedin, Google, and others. We are specialized to get valid, and potential data so you may conduct ads and begin selling without hesitation.

    We designed our data packages for all types of organizations, thus they are reasonably priced. We are always trying to reduce our prices to better suit all of your requirements.

    So, if you’re looking to reach out to your targeted Amazon sellers, now is the greatest time to do so and offer your goods, services, and promotions. You can get your targeted Amazon Sellers List with seller contact information.

    Alternatively, if you provide Amazon Seller Names or IDs, we will conduct Custom Research and deliver the customized list to you.

    Data Points Available:

    Full Name Linkedin URL Direct Email Generic Phone Number Business Name and Address Company Website Seller IDs and URLs Revenue Seller Review Count Niche FBA/Non-FBA Country and More

  6. Datasets for Sentiment Analysis

    • zenodo.org
    csv
    Updated Dec 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Julie R. Repository creator - Campos Arias; Julie R. Repository creator - Campos Arias (2023). Datasets for Sentiment Analysis [Dataset]. http://doi.org/10.5281/zenodo.10157504
    Explore at:
    csvAvailable download formats
    Dataset updated
    Dec 10, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Julie R. Repository creator - Campos Arias; Julie R. Repository creator - Campos Arias
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This repository was created for my Master's thesis in Computational Intelligence and Internet of Things at the University of Córdoba, Spain. The purpose of this repository is to store the datasets found that were used in some of the studies that served as research material for this Master's thesis. Also, the datasets used in the experimental part of this work are included.

    Below are the datasets specified, along with the details of their references, authors, and download sources.

    ----------- STS-Gold Dataset ----------------

    The dataset consists of 2026 tweets. The file consists of 3 columns: id, polarity, and tweet. The three columns denote the unique id, polarity index of the text and the tweet text respectively.

    Reference: Saif, H., Fernandez, M., He, Y., & Alani, H. (2013). Evaluation datasets for Twitter sentiment analysis: a survey and a new dataset, the STS-Gold.

    File name: sts_gold_tweet.csv

    ----------- Amazon Sales Dataset ----------------

    This dataset is having the data of 1K+ Amazon Product's Ratings and Reviews as per their details listed on the official website of Amazon. The data was scraped in the month of January 2023 from the Official Website of Amazon.

    Owner: Karkavelraja J., Postgraduate student at Puducherry Technological University (Puducherry, Puducherry, India)

    Features:

    • product_id - Product ID
    • product_name - Name of the Product
    • category - Category of the Product
    • discounted_price - Discounted Price of the Product
    • actual_price - Actual Price of the Product
    • discount_percentage - Percentage of Discount for the Product
    • rating - Rating of the Product
    • rating_count - Number of people who voted for the Amazon rating
    • about_product - Description about the Product
    • user_id - ID of the user who wrote review for the Product
    • user_name - Name of the user who wrote review for the Product
    • review_id - ID of the user review
    • review_title - Short review
    • review_content - Long review
    • img_link - Image Link of the Product
    • product_link - Official Website Link of the Product

    License: CC BY-NC-SA 4.0

    File name: amazon.csv

    ----------- Rotten Tomatoes Reviews Dataset ----------------

    This rating inference dataset is a sentiment classification dataset, containing 5,331 positive and 5,331 negative processed sentences from Rotten Tomatoes movie reviews. On average, these reviews consist of 21 words. The first 5331 rows contains only negative samples and the last 5331 rows contain only positive samples, thus the data should be shuffled before usage.

    This data is collected from https://www.cs.cornell.edu/people/pabo/movie-review-data/ as a txt file and converted into a csv file. The file consists of 2 columns: reviews and labels (1 for fresh (good) and 0 for rotten (bad)).

    Reference: Bo Pang and Lillian Lee. Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales. In Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL'05), pages 115–124, Ann Arbor, Michigan, June 2005. Association for Computational Linguistics

    File name: data_rt.csv

    ----------- Preprocessed Dataset Sentiment Analysis ----------------

    Preprocessed amazon product review data of Gen3EcoDot (Alexa) scrapped entirely from amazon.in
    Stemmed and lemmatized using nltk.
    Sentiment labels are generated using TextBlob polarity scores.

    The file consists of 4 columns: index, review (stemmed and lemmatized review using nltk), polarity (score) and division (categorical label generated using polarity score).

    DOI: 10.34740/kaggle/dsv/3877817

    Citation: @misc{pradeesh arumadi_2022, title={Preprocessed Dataset Sentiment Analysis}, url={https://www.kaggle.com/dsv/3877817}, DOI={10.34740/KAGGLE/DSV/3877817}, publisher={Kaggle}, author={Pradeesh Arumadi}, year={2022} }

    This dataset was used in the experimental phase of my research.

    File name: EcoPreprocessed.csv

    ----------- Amazon Earphones Reviews ----------------

    This dataset consists of a 9930 Amazon reviews, star ratings, for 10 latest (as of mid-2019) bluetooth earphone devices for learning how to train Machine for sentiment analysis.

    This dataset was employed in the experimental phase of my research. To align it with the objectives of my study, certain reviews were excluded from the original dataset, and an additional column was incorporated into this dataset.

    The file consists of 5 columns: ReviewTitle, ReviewBody, ReviewStar, Product and division (manually added - categorical label generated using ReviewStar score)

    License: U.S. Government Works

    Source: www.amazon.in

    File name (original): AllProductReviews.csv (contains 14337 reviews)

    File name (edited - used for my research) : AllProductReviews2.csv (contains 9930 reviews)

    ----------- Amazon Musical Instruments Reviews ----------------

    This dataset contains 7137 comments/reviews of different musical instruments coming from Amazon.

    This dataset was employed in the experimental phase of my research. To align it with the objectives of my study, certain reviews were excluded from the original dataset, and an additional column was incorporated into this dataset.

    The file consists of 10 columns: reviewerID, asin (ID of the product), reviewerName, helpful (helpfulness rating of the review), reviewText, overall (rating of the product), summary (summary of the review), unixReviewTime (time of the review - unix time), reviewTime (time of the review (raw) and division (manually added - categorical label generated using overall score).

    Source: http://jmcauley.ucsd.edu/data/amazon/

    File name (original): Musical_instruments_reviews.csv (contains 10261 reviews)

    File name (edited - used for my research) : Musical_instruments_reviews2.csv (contains 7137 reviews)

  7. b

    Amazon reviews Dataset

    • brightdata.com
    .json, .csv, .xlsx
    Updated Mar 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bright Data (2023). Amazon reviews Dataset [Dataset]. https://brightdata.com/products/datasets/amazon/reviews
    Explore at:
    .json, .csv, .xlsxAvailable download formats
    Dataset updated
    Mar 21, 2023
    Dataset authored and provided by
    Bright Data
    License

    https://brightdata.com/licensehttps://brightdata.com/license

    Area covered
    Worldwide
    Description

    Utilize our Amazon reviews dataset for diverse applications to enrich business strategies and market insights. Analyzing this dataset can aid in understanding customer behavior, product performance, and market trends, empowering organizations to refine their product and marketing strategies. Access the entire dataset or tailor a subset to fit your requirements. Popular use cases include: Product Performance Analysis: Analyze Amazon reviews to assess product performance, uncovering customer satisfaction levels, common issues, and highly praised features to inform product improvements and marketing messages. Customer Behavior Insights: Gain insights into customer behavior, purchasing patterns, and preferences, enabling more personalized marketing and product recommendations. Demand Forecasting: Leverage Amazon reviews to predict future product demand by analyzing historical review data and identifying trends, helping to optimize inventory management and sales strategies. Accessing and analyzing the Amazon reviews dataset supports market strategy optimization by leveraging insights to analyze key market trends and customer preferences, enhancing overall business decision-making.

  8. P

    E-commerce Product Image Classification Dataset Dataset

    • paperswithcode.com
    Updated Mar 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). E-commerce Product Image Classification Dataset Dataset [Dataset]. https://paperswithcode.com/dataset/e-commerce-product-image-classification
    Explore at:
    Dataset updated
    Mar 23, 2025
    Description

    Description:

    👉 Download the dataset here

    This dataset is specifically designed for the classification of e-commerce products based on their images, forming a critical part of an experimental study aimed at improving product categorization using computer vision techniques. Accurate categorization is essential for e-commerce platforms as it directly influences customer satisfaction, enhances user experience, and optimizes sales by ensuring that products are presented in the correct categories.

    Data Collection and Sources

    The dataset comprises a comprehensive collection of e-commerce product images gathered from a diverse range of sources, including prominent online marketplaces such as Amazon, Walmart, and Google, as well as additional resources obtained through web scraping. Additionally, the Amazon Berkeley Objects (ABO) project has been utilized to enhance the dataset in certain categories, though its contribution is limited to specific classes.

    Download Dataset

    Dataset Composition and Structure

    The dataset is organized into 9 distinct classes, primarily reflecting major product categories prevalent on Amazon. These categories were chosen based on a balance between representation and practicality, ensuring sufficient diversity and relevance for training and testing computer vision models. The dataset's structure includes:

    18,175 images: Resized to 224x224 pixels, suitable for use in various pretrained CNN architectures.

    9 Classes: Representing major e-commerce product categories, offering a broad spectrum of items typically found on online retail platforms.

    Train-Val-Check Sets: The dataset is split into training, validation, and check sets. The training and validation sets are designated for model training and hyperparameter tuning, while a smaller check set is reserved for model deployment, providing a visual evaluation of the model's performance in a real-world scenario.

    Application and Relevance

    E-commerce platforms face significant challenges in product categorization due to the vast number of categories, the variety of products, and the need for precise classification. This dataset addresses these challenges by offering a well-balanced collection of images across multiple categories, allowing for robust model training and evaluation.

    This dataset is sourced from kaggle.

  9. U.S. Amazon retail sales 2017-2021

    • statista.com
    Updated Mar 11, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2020). U.S. Amazon retail sales 2017-2021 [Dataset]. https://www.statista.com/statistics/1104897/usa-amazon-retail-sales/
    Explore at:
    Dataset updated
    Mar 11, 2020
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In 2019, Amazon's retail e-commerce sales in the United States amounted to ***** billion U.S. dollars and are projected to surpass *** billion U.S. dollars in 2021. The platform is the biggest e-retailer in the United States, ahead of brick-and-mortar-based competitors Walmart and Target.

  10. Data Science Books Extracted from Amazon

    • kaggle.com
    Updated Apr 14, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Valeria F22 (2023). Data Science Books Extracted from Amazon [Dataset]. http://doi.org/10.34740/kaggle/dsv/5402374
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 14, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Valeria F22
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Description:

    This dataset contains information about data science books that were extracted from Amazon. The dataset includes the book title, author, price, ratings, and number of reviews. This information can be useful for anyone who is interested in data science and wants to explore popular books in the field.

    The dataset can be used for various purposes such as analyzing trends in data science book sales, comparing authors and publishers, and identifying highly rated books with a large number of reviews. Additionally, the dataset can be used for training machine learning models to predict book popularity or pricing.

    The dataset contains a total of 328 books, with each book having information on its title, author, price, ratings, and number of reviews. The data was scraped from Amazon using web scraping techniques.

    Data Dictionary:

    • Title: The title of the book
    • Author: The author(s) of the book
    • Price: The price of the book in US dollars
    • Ratings: The average rating of the book on Amazon, on a scale of 1-5 stars
    • Number of Reviews: The number of reviews the book has received on Amazon

    I hope that this dataset will be useful for researchers, data scientists, and anyone interested in exploring data science books. Please let us know if you have any questions or feedback.

  11. Amazon, Alibaba and eBay: 2013-2024 Revenue.

    • kaggle.com
    Updated Jun 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Patrick L Ford (2024). Amazon, Alibaba and eBay: 2013-2024 Revenue. [Dataset]. http://doi.org/10.34740/kaggle/dsv/8616281
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 6, 2024
    Dataset provided by
    Kaggle
    Authors
    Patrick L Ford
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Introduction

    Amazon, Alibaba, and eBay: The Giants of E-commerce

    Three companies have revolutionised how we shop online: Amazon, Alibaba, and eBay. Their origins, growth, and impact on global commerce are remarkable: - Amazon: Founded by Jeff Bezos in 1994, Amazon began as an online bookstore. It rapidly expanded its product range, invested heavily in technology and logistics, and introduced groundbreaking services like Amazon Prime and Amazon Web Services (AWS). Today, Amazon is a leader in e-commerce, cloud computing, and innovation. - Alibaba: Founded by Jack Ma in 1999, Alibaba aimed to connect Chinese manufacturers with international buyers. Through platforms like Alibaba.com, Taobao, and Tmall, it transformed e-commerce in China and became a global player in digital payments and financial services through Ant Group. - eBay: Started by Pierre Omidyar in 1995 as an online auction site, eBay quickly became a popular platform for buying and selling a wide variety of goods. It pioneered consumer-to-consumer (C2C) commerce, fostered a vibrant online community, and expanded globally.

    These companies have distinct strengths and growth trajectories: - Amazon leads in technological innovation and customer-centric services. - Alibaba dominates the Chinese market and is influential in digital payments. - eBay pioneered C2C commerce and maintains a strong global presence.

    Together, Amazon, Alibaba, and eBay have shaped the modern e-commerce landscape, democratised commerce, and continue to influence how we buy and sell goods around the world.

    Amazon, Alibaba, and eBay, their origins, sales, growth, and impact:

    Amazon

    Founding and Early Days

    • Founded: July 5, 1994
    • Founder: Jeff Bezos
    • Headquarters: Seattle, Washington, USA

    Amazon began as an online bookstore. Jeff Bezos, who was then a Wall Street hedge fund executive, decided to capitalise on the growth of the internet in the 1990s. He left his job, moved to Seattle, and started Amazon in his garage.

    Growth and Expansion

    • Initial Growth: The company's initial business model allowed it to offer more books than traditional bookstores. The first book sold was "Fluid Concepts and Creative Analogies" by Douglas Hofstadter.
    • Diversification: By the late 1990s, Amazon expanded its product line to include electronics, toys, and household goods. This diversification helped Amazon grow rapidly.
    • Technology and Logistics: Amazon invested heavily in technology and logistics to improve its supply chain efficiency. It built extensive warehousing and delivery infrastructure, which became critical to its success.

    Key Milestones

    • Amazon Prime: Launched in 2005, this subscription service offers free two-day shipping, streaming services, and other benefits. It became a significant driver of customer loyalty.
    • AWS (Amazon Web Services): Started in 2006, AWS provides cloud computing services and has become a major revenue source for Amazon, establishing it as a leader in the tech industry.
    • Acquisitions: Amazon acquired several companies to bolster its offerings, including Zappos, Whole Foods Market, and Ring.

    Impact

    • E-commerce Leader: Amazon revolutionised online shopping with its vast selection, customer reviews, and recommendation algorithms.
    • Economic Influence: The company's practices have influenced labour, retail, and technology sectors globally.
    • Innovation: Amazon has pioneered in areas like AI with Alexa, cashier-less stores with Amazon Go, and drone delivery with Prime Air.

    Visualisation

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F13231939%2Fdeff29b30a7e890d46ecfd32b8e468cc%2FScreenshot%202024-06-05%2020.26.14.png?generation=1717615837865701&alt=media" alt="">

    A Markdown document with R code for the above chart, with a full chart explanation. link

    Amazon Chart

    • Significant Growth: Steady increase in quarterly sales revenue over the years.
    • Seasonal Influence: Strong seasonal fluctuations, with Q4 consistently being the highest-performing quarter due to the holiday season.
    • Revenue Variability: Expanding range of quarterly sales, reflecting business growth.
    • Quarterly Performance: Consistent relative performance of each quarter, with Q4 standing out.

    Alibaba

    Founding and Early Days

    • Founded: April 4, 1999
    • Founder: Jack Ma and a team of 17 others
    • Headquarters: Hangzhou, Zhejiang, China

    Jack Ma, a former English teacher, founded Alibaba to connect Chinese manufacturers with international buyers. He aimed to support small and medium-sized enterprises (SMEs) in China by leveraging the internet.

    Growth and Expansion

    • Early Strategy: Alibaba started with Alibaba.com, a B2B marketplace that connected Chinese bu...
  12. Amazon Web Services: year-on-year growth 2014-2025

    • statista.com
    Updated May 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Amazon Web Services: year-on-year growth 2014-2025 [Dataset]. https://www.statista.com/statistics/422273/yoy-quarterly-growth-aws-revenues/
    Explore at:
    Dataset updated
    May 13, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    In the first quarter of 2025, revenues of Amazon Web Services (AWS) rose to 17 percent, a decrease from the previous three quarters. AWS is one of Amazon’s strongest revenue segments, generating over 115 billion U.S. dollars in 2024 net sales, up from 105 billion U.S. dollars in 2023. Amazon Web Services Amazon Web Services (AWS) provides on-demand cloud platforms and APIs through a pay-as-you-go-model to customers. AWS launched in 2002 providing general services and tools and produced its first cloud products in 2006. Today, more than 175 different cloud services for a variety of technologies and industries are released already. AWS ranks as one of the most popular public cloud infrastructure and platform services running applications worldwide in 2020, ahead of Microsoft Azure and Google cloud services. Cloud computing Cloud computing is essentially the delivery of online computing services to customers. As enterprises continually migrate their applications and data to the cloud instead of storing it on local machines, it becomes possible to access resources from different locations. Some of the key services of the AWS ecosystem for cloud applications include storage, database, security tools, and management tools. AWS is among the most popular cloud providers Some of the largest globally operating enterprises use AWS for their cloud services, including Netflix, BBC, and Baidu. Accordingly, AWS is one of the leading cloud providers in the global cloud market. Due to its continuously expanding portfolio of services and deepening of expertise, the company continues to be not only an important cloud service provider but also a business partner.

  13. D

    Category characteristics for IRI Marketing Science Dataset used in: How well...

    • test.dataverse.nl
    • dataverse.nl
    Updated May 2, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hannes Datta; Kusum Ailawadi; Harald J. Van Heerde; Hannes Datta; Kusum Ailawadi; Harald J. Van Heerde (2018). Category characteristics for IRI Marketing Science Dataset used in: How well does consumer-based brand equity align with sales-based brand equity and marketing-mix response?, Journal of Marketing (2017) [Dataset]. http://doi.org/10.34894/ELVF0J
    Explore at:
    csv(4506), application/x-spss-sav(492243), csv(1729310), txt(4581), docx(27176), type/x-r-syntax(5269), pdf(101571)Available download formats
    Dataset updated
    May 2, 2018
    Dataset provided by
    DataverseNL (test)
    Authors
    Hannes Datta; Kusum Ailawadi; Harald J. Van Heerde; Hannes Datta; Kusum Ailawadi; Harald J. Van Heerde
    License

    https://tdvnl.dans.knaw.nl/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.34894/ELVF0Jhttps://tdvnl.dans.knaw.nl/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.34894/ELVF0J

    Description

    Category characteristics survey for the IRI Marketing Science dataset (Bronnenberg, Kruger, and Mela 2008), collected by Datta, Ailawadi, and Van Heerde (2017) on Amazon Mechanical Turk (May 2016) to measure the following category characteristics: (1) Hedonic nature of category, (2) Functional / performance risk of category, (3) Social value / social demonstrance of category, (4) Category involvement, (5) Utilitarian nature of category. For details on data collection and constructs, see codebook (PDF/docx).

  14. d

    More than 1,070,574 Verified Contacts of companies that use Amazon AWS

    • datarade.ai
    Updated Aug 20, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DataCaptive (2021). More than 1,070,574 Verified Contacts of companies that use Amazon AWS [Dataset]. https://datarade.ai/data-providers/datacaptive/data-products/more-than-1-070-574-verified-contacts-of-companies-that-use-a-datacaptive
    Explore at:
    .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset updated
    Aug 20, 2021
    Dataset authored and provided by
    DataCaptive
    Area covered
    Rwanda, Virgin Islands (British), Niger, Singapore, British Indian Ocean Territory, Saint Helena, Iceland, Tonga, Tunisia, Kyrgyzstan
    Description

    Amazon AWS - Cloud Platforms & Services

    Companies using Amazon AWS

    We have data on 1,070,574 companies that use Amazon AWS. The companies using Amazon AWS are most often found in United States and in the Computer Software industry. Amazon AWS is most often used by companies with 10-50 employees and 1M-10M dollars in revenue. Our data for Amazon AWS usage goes back as far as 2 years and 1 months.

    What is Amazon AWS?

    Amazon Web Services (AWS) is a collection of remote computing services, also called web services that make up a cloud computing platform offered by Amazon.com.

    Top Industries that use Amazon AWS

    Looking at Amazon AWS customers by industry, we find that Computer Software (6%) is the largest segment.

    Distribution of companies using Amazon AWS by Industry

     Computer software - 67, 537 companies  Hospitals & Healthcare - 54, 293 companies  Retail - 39, 543 companies  Information Technology and Services - 35, 382 companies  Real Estate - 31, 676 companies  Restaurants - 30, 302 companies  Construction - 29, 207 companies  Automotive - 28, 469 companies  Financial Services - 23, 680 companies  Education Management - 21, 548 companies

    Top Countries that use Amazon AWS

    49% of Amazon AWS customers are in United States and 7% are in United Kingdom.

    Distribution of companies using Amazon AWS by country

     United Sates – 616 2275 companies  United Kingdom – 68 219 companies  Australia – 44 601 companies  Canada – 42 770 companies  Germany – 31 541 companies  India – 30 949 companies  Netherlands – 19 543 companies  Brazil – 17 165 companies  Italy – 14 876 companies  Spain – 14 675 companies

    Contact Information of Fields Include:-

    • Company Name • Business contact number • Title
    • Name • Email Address • Country, State, City, Zip Code • Phone, Mobile and Fax • Website • Industry • SIC & NAICS Code • Employees Size
    • Revenue Size
    • And more…

    Why Buy AWS Users List from DataCaptive?

    • More than 1,070,574 companies
    • Responsive database • Customizable as per your requirements • Email and Tele-verified list • Team of 100+ market researchers • Authentic data sources

    What’s in for you?

    Over choosing us, here are a few advantages we authenticate-

    • Locate, target, and prospect leads from 170+ countries • Design and execute ABM and multi-channel campaigns • Seamless and smooth pre-and post-sale customer service • Connect with old leads and build a fruitful customer relationship • Analyze the market for product development and sales campaigns • Boost sales and ROI with increased customer acquisition and retention

    Our security compliance

    We use of globally recognized data laws like –

    GDPR, CCPA, ACMA, EDPS, CAN-SPAM and ANTI CAN-SPAM to ensure the privacy and security of our database. We engage certified auditors to validate our security and privacy by providing us with certificates to represent our security compliance.

    Our USPs- what makes us your ideal choice?

    At DataCaptive™, we strive consistently to improve our services and cater to the needs of businesses around the world while keeping up with industry trends.

    • Elaborate data mining from credible sources • 7-tier verification, including manual quality check • Strict adherence to global and local data policies • Guaranteed 95% accuracy or cash-back • Free sample database available on request

    Guaranteed benefits of our Amazon AWS users email database!

    85% email deliverability and 95% accuracy on other data fields

    We understand the importance of data accuracy and employ every avenue to keep our database fresh and updated. We execute a multi-step QC process backed by our Patented AI and Machine learning tools to prevent anomalies in consistency and data precision. This cycle repeats every 45 days. Although maintaining 100% accuracy is quite impractical, since data such as email, physical addresses, and phone numbers are subjected to change, we guarantee 85% email deliverability and 95% accuracy on other data points.

    100% replacement in case of hard bounces

    Every data point is meticulously verified and then re-verified to ensure you get the best. Data Accuracy is paramount in successfully penetrating a new market or working within a familiar one. We are committed to precision. However, in an unlikely event where hard bounces or inaccuracies exceed the guaranteed percentage, we offer replacement with immediate effect. If need be, we even offer credits and/or refunds for inaccurate contacts.

    Other promised benefits

    • Contacts are for the perpetual usage • The database comprises consent-based opt-in contacts only • The list is free of duplicate contacts and generic emails • Round-the-clock customer service assistance • 360-degree database solutions

  15. Global retail e-commerce sales 2022-2028

    • statista.com
    • aconto.anazko.com
    Updated Jun 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Global retail e-commerce sales 2022-2028 [Dataset]. https://www.statista.com/statistics/379046/worldwide-retail-e-commerce-sales/
    Explore at:
    Dataset updated
    Jun 24, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Feb 2025
    Area covered
    Worldwide
    Description

    In 2024, global retail e-commerce sales reached an estimated ************ U.S. dollars. Projections indicate a ** percent growth in this figure over the coming years, with expectations to come close to ************** dollars by 2028. World players Among the key players on the world stage, the American marketplace giant Amazon holds the title of the largest e-commerce player globally, with a gross merchandise value of nearly *********** U.S. dollars in 2024. Amazon was also the most valuable retail brand globally, followed by mostly American competitors such as Walmart and the Home Depot. Leading e-tailing regions E-commerce is a dormant channel globally, but nowhere has it been as successful as in Asia. In 2024, the e-commerce revenue in that continent alone was measured at nearly ************ U.S. dollars, outperforming the Americas and Europe. That year, the up-and-coming e-commerce markets also centered around Asia. The Philippines and India stood out as the swiftest-growing e-commerce markets based on online sales, anticipating a growth rate surpassing ** percent.

  16. WHAT IS A COURTESY ADJUSTMENT ON AMAZON? (Forecast)

    • kappasignal.com
    Updated Jun 9, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). WHAT IS A COURTESY ADJUSTMENT ON AMAZON? (Forecast) [Dataset]. https://www.kappasignal.com/2023/06/what-is-courtesy-adjustment-on-amazon.html
    Explore at:
    Dataset updated
    Jun 9, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    WHAT IS A COURTESY ADJUSTMENT ON AMAZON?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  17. Amazon's Future: Bright, But the Stock May Be Overvalued (Forecast)

    • kappasignal.com
    Updated Jun 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). Amazon's Future: Bright, But the Stock May Be Overvalued (Forecast) [Dataset]. https://www.kappasignal.com/2023/06/amazons-future-bright-but-stock-may-be.html
    Explore at:
    Dataset updated
    Jun 4, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Amazon's Future: Bright, But the Stock May Be Overvalued

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  18. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Bright Data (2025). Amazon Products [Dataset]. https://www.opendatabay.com/data/premium/2f7668e7-009e-4c7d-9822-78955a22a20a

Amazon Products

Explore at:
.undefinedAvailable download formats
Dataset updated
Jun 19, 2025
Dataset authored and provided by
Bright Data
Area covered
Retail & Consumer Behavior
Description

Amazon Products dataset to explore detailed product listings, pricing, reviews, and sales data. Popular use cases include competitive analysis, market trend forecasting, and e-commerce strategy optimization.

Use our Amazon Products dataset to explore detailed information on products across various categories, including pricing, reviews, ratings, and sales data. This dataset is ideal for e-commerce professionals, market analysts, and product managers looking to analyze market trends, optimize product listings, and refine competitive strategies.

Leverage this dataset to track pricing trends, assess customer feedback, and uncover popular product categories. Whether you're conducting competitive analysis, performing market research, or optimizing product strategies, the Amazon Products dataset provides key insights to stay ahead in the e-commerce landscape.

Dataset Features

  • Title: The name or title of the product.
  • seller_name: The name of the seller offering the product.
  • Brand: The brand associated with the product.
  • Description: A detailed description of the product, including key features.
  • initial_price: The original price of the product before any discounts.
  • final_price: The current price of the product after discounts.
  • Currency: The currency in which the product is priced (e.g., GBP, USD).
  • Availability: The stock status (e.g., in stock, out of stock).
  • reviews_count: The total number of customer reviews.
  • Categories: The specific category the product belongs to.
  • asin: Amazon Standard Identification Number.
  • buybox_seller: The seller currently winning the Amazon Buy Box.
  • number_of_sellers: The number of sellers offering this product.
  • root_bs_rank: The overall ranking of the product in the Amazon best-sellers list.
  • answered_questions: The number of questions answered in the product Q&A section.
  • domain: The website domain where the product is being sold.
  • images_count: The number of images available for the product.
  • URL: The link to the product page on Amazon.
  • video_count: The number of videos available for the product.
  • image_url: The URL of the primary image associated with the product.
  • item_weight: The weight of the product.
  • Rating: The average rating of the product based on customer reviews.
  • product_dimensions: The dimensions of the product (e.g., length, width, height) and weight.
  • seller_id: The unique identifier for the seller.
  • date_first_available: The date when the product was first made available on Amazon.
  • discount: Any discount applied to the product.
  • model_number: The model number of the product.
  • manufacturer: The company that manufactures the product.
  • department: The department under which the product is categorized (e.g., Health & Household).
  • plus_content: A flag indicating if the product has Amazon’s “Plus Content” (additional marketing content).
  • upc: The Universal Product Code (UPC) associated with the product.
  • video: URL(s) of any video content associated with the product.
  • top_review: A summary or excerpt from the top customer review.
  • variations: Different product variations (e.g., different sizes or flavors).
  • delivery: Information on the delivery options (e.g., free delivery or Prime delivery).
  • features: Key features or highlights of the product.
  • format: The format of the product (e.g., powder, liquid).
  • buybox_prices: Pricing details for the product, including the base and tiered prices.
  • parent_asin: The ASIN of the parent product (if the product is part of a larger group of similar products).
  • input_asin: The ASIN of the product as input for Amazon searches.
  • ingredients: List of ingredients in the product (if applicable).
  • origin_url: The source URL for product-related information or ingredients.
  • bought_past_month: A flag indicating if the product was bought in the past month.
  • is_available: Availability status of the product (True/False).
  • root_bs_category: The broad product category (e.g., Health & Household).
  • bs_category: The specific subcategory the product belongs to.
  • bs_rank: The rank of the product in its specific subcategory.
  • badge: Any badge or label the product has earned (e.g., Amazon's Choice).
  • subcategory_rank: The rank of the product within its subcategory.
  • amazon_choice: A flag indicating if the product has been selected as Amazon’s Choice.
  • images: A list of URLs for additional product images.
  • product_details: Detailed product specifications and features.
  • prices_breakdown: A breakdown of the price, including any discounts or promotions.
  • country_of_origin: The country where the product is made.
  • from_the_brand: Information from the brand or manufact
Search
Clear search
Close search
Google apps
Main menu