62 datasets found
  1. 🌍 World Education Dataset 📚

    • kaggle.com
    Updated Nov 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bushra Qurban (2024). 🌍 World Education Dataset 📚 [Dataset]. https://www.kaggle.com/datasets/bushraqurban/world-education-dataset/versions/5
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 22, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Bushra Qurban
    License

    https://www.worldbank.org/en/about/legal/terms-of-use-for-datasetshttps://www.worldbank.org/en/about/legal/terms-of-use-for-datasets

    Area covered
    World
    Description

    Dataset Overview 📝

    The dataset includes the following key indicators, collected for over 200 countries:

    • Government Expenditure on Education (% of GDP): Shows the percentage of a country’s GDP allocated to education.
    • Literacy Rate (Adult Total): Represents the percentage of the population aged 15 and above who can read and write.
    • Primary Completion Rate: The percentage of children who complete their primary education within the official age group.
    • Pupil-Teacher Ratio (Primary and Secondary Education): Indicates the average number of students per teacher at the primary and secondary levels.
    • School Enrollment Rates (Primary, Secondary, Tertiary): Reflects the percentage of the relevant age group enrolled in schools across different education levels.

    Data Source 🌐

    World Bank: This dataset is compiled from the World Bank's educational database, providing reliable, updated statistics on educational progress worldwide.

    Potential Use Cases 🔍 This dataset is ideal for anyone interested in:

    Educational Research: Understanding how education spending and policies impact literacy, enrollment, and overall educational outcomes. Predictive Modeling: Building models to predict educational success factors, such as completion rates and literacy. Global Education Analysis: Analyzing trends in global education systems and how different countries allocate resources to education. Policy Development: Helping governments and organizations make data-driven decisions regarding educational reforms and funding.

    Key Questions You Can Explore 🤔

    How does government expenditure on education correlate with literacy rates and school enrollment across different regions? What are the trends in pupil-teacher ratios over time, and how do they affect educational outcomes? How do education indicators differ between low-income and high-income countries? Can we predict which countries will achieve universal primary education based on current trends?

    Important Notes ⚠️ - Missing Data: Some values may be missing for certain years or countries. Consider using techniques like forward filling or interpolation when working with time series models. - Data Limitations: This dataset provides global averages and may not capture regional disparities within countries.

  2. BIE Schools

    • s.cnmilf.com
    • res1catalogd-o-tdatad-o-tgov.vcapture.xyz
    • +2more
    Updated Feb 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bureau of Indian Affairs (2025). BIE Schools [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/bie-schools
    Explore at:
    Dataset updated
    Feb 22, 2025
    Dataset provided by
    Bureau of Indian Affairshttp://www.bia.gov/
    Description

    This dataset displays the _location of schools that are overseen by the Bureau of Indian Education. There are 183 Bureau-funded elementary and secondary schools on 64 reservations in 23 states, serving approximately 40,000 Indian students. Of these, 55 are BIE-operated and 128 are tribally controlled under BIE contracts or grants. The Bureau also funds or operates off-reservation boarding schools and peripheral dormitories near reservations for public school students. The BIE also serves American Indian and Alaska Native post-secondary students through higher education scholarships and support funding for tribal colleges and universities. The BIE directly operates two post-secondary institutions: the Haskell Indian Nations University (HINU) in Lawrence, Kansas, and the Southwestern Indian Polytechnic Institute (SIPI) in Albuquerque, New Mexico. Native American boarding schools and dormitories were established in the United States during the late 19th and early 20th centuries. The land where the schools are located is administered by the Bureau of Indian Affairs while the facilities and there operation is under the jurisdiction of the Bureau of Indian Education. As stated in Title 25 CFR Part 32.3, BIE’s mission is to provide quality education opportunities from early childhood through life in accordance with a tribe’s needs for cultural and economic well-being, in keeping with the vast diversity of Indian tribes and Alaska Native villages as distinct cultural and governmental entities. Further, the BIE is to manifest consideration of the whole person by considering the individual's spiritual, mental, physical, and cultural aspects within his or her family and tribal or village context. The BIE school system employs thousands of teachers, administrators and support personnel, while many more work in tribal school systems.

  3. w

    Global Education Policy Dashboard 2019 - Jordan

    • microdata.worldbank.org
    • catalog.ihsn.org
    Updated Nov 13, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sergio Venegas Marin (2024). Global Education Policy Dashboard 2019 - Jordan [Dataset]. https://microdata.worldbank.org/index.php/catalog/6407
    Explore at:
    Dataset updated
    Nov 13, 2024
    Dataset provided by
    Reema Nayar
    Marta Carnelli
    Brian Stacy
    Sergio Venegas Marin
    Halsey Rogers
    Time period covered
    2019 - 2020
    Area covered
    Jordan
    Description

    Abstract

    The dashboard project collects new data in each country using three new instruments: a School Survey, a Policy Survey, and a Survey of Public Officials. Data collection involves school visits, classroom observations, legislative reviews, teacher and student assessments, and interviews with teachers, principals, and public officials. In addition, the project draws on some existing data sources to complement the new data it collects. A major objective of the GEPD project was to develop focused, cost-effective instruments and data-collection procedures, so that the dashboard can be inexpensive enough to be applied (and re-applied) in many countries. The team achieved this by streamlining and simplifying existing instruments, and thereby reducing the time required for data collection and training of enumerators.

    Geographic coverage

    National

    Analysis unit

    Schools, teachers, students, public officials

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The aim of the Global Education Policy Dashboard school survey is to produce nationally representative estimates, which will be able to detect changes in the indicators over time at a minimum power of 80% and with a 0.05 significance level. We also wish to detect differences by urban/rural location.

    For our school survey, we will employ a two-stage random sample design, where in the first stage a sample of typically around 200 schools, based on local conditions, is drawn, chosen in advance by the Bank staff. In the second stage, a sample of teachers and students will be drawn to answer questions from our survey modules, chosen in the field. A total of 10 teachers will be sampled for absenteeism. Five teachers will be interviewed and given a content knowledge exam. Three 1st grade students will be assessed at random, and a classroom of 4th grade students will be assessed at random. Stratification will be based on the school’s urban/rural classification and based on region. When stratifying by region, we will work with our partners within the country to make sure we include all relevant geographical divisions.

    For our Survey of Public Officials, we will sample a total of 200 public officials. Roughly 60 officials are typically surveyed at the federal level, while 140 officials will be surveyed at the regional/district level. For selection of officials at the regional and district level, we will employ a cluster sampling strategy, where roughly 10 regional offices (or whatever the secondary administrative unit is called) are chosen at random from among the regions in which schools were sampled. Then among these 10 regions, we also typically select around 10 districts (tertiary administrative level units) from among the districts in which schools werer sampled. The result of this sampling approach is that for 10 clusters we will have links from the school to the district office to the regional office to the central office. Within the regions/districts, five or six officials will be sampled, including the head of organization, HR director, two division directors from finance and planning, and one or two randomly selected professional employees among the finance, planning, and one other service related department chosen at random. At the federal level, we will interview the HR director, finance director, planning director, and three randomly selected service focused departments. In addition to the directors of each of these departments, a sample of 9 professional employees will be chosen in each department at random on the day of the interview.

    Sampling deviation

    For our school survey, we select only schools that are supervised by the Minsitry or Education or are Private schools. No schools supervised by the Ministry of Defense, Ministry of Endowments, Ministry of Higher Education , or Ministry of Social Development are included. This left us with a sampling frame containing 3,330 schools, with 1297 private schools and 2003 schools managed by the Minsitry of Education. The schools must also have at least 3 grade 1 students, 3 grade 4 students, and 3 teachers. We oversampled Southern schools to reach a total of 50 Southern schools for regional comparisons. Additionally, we oversampled Evening schools, for a total of 40 evening schools.

    A total of 250 schools were surveyed.

    Mode of data collection

    Computer Assisted Personal Interview [capi]

    Research instrument

    The dashboard project collects new data in each country using three new instruments: a School Survey, a Policy Survey, and a Survey of Public Officials. Data collection involves school visits, classroom observations, legislative reviews, teacher and student assessments, and interviews with teachers, principals, and public officials. In addition, the project draws on some existing data sources to complement the new data it collects. A major objective of the GEPD project was to develop focused, cost-effective instruments and data-collection procedures, so that the dashboard can be inexpensive enough to be applied (and re-applied) in many countries. The team achieved this by streamlining and simplifying existing instruments, and thereby reducing the time required for data collection and training of enumerators.

    More information pertaining to each of the three instruments can be found below:

    • School Survey: The School Survey collects data primarily on practices (the quality of service delivery in schools), but also on some de facto policy indicators. It consists of streamlined versions of existing instruments—including Service Delivery Surveys on teachers and inputs/infrastructure, Teach on pedagogical practice, Global Early Child Development Database (GECDD) on school readiness of young children, and the Development World Management Survey (DWMS) on management quality—together with new questions to fill gaps in those instruments. Though the number of modules is similar to the full version of the Service Delivery Indicators (SDI) Survey, the number of items and the complexity of the questions within each module is significantly lower. The School Survey includes 8 short modules: School Information, Teacher Presence, Teacher Survey, Classroom Observation, Teacher Assessment, Early Learner Direct Assessment, School Management Survey, and 4th-grade Student Assessment. For a team of two enumerators, it takes on average about 4 hours to collect all information in a given school. For more information, refer to the Frequently Asked Questions.

    • Policy Survey: The Policy Survey collects information to feed into the policy de jure indicators. This survey is filled out by key informants in each country, drawing on their knowledge to identify key elements of the policy framework (as in the SABER approach to policy-data collection that the Bank has used over the past 7 years). The survey includes questions on policies related to teachers, school management, inputs and infrastructure, and learners. In total, there are 52 questions in the survey as of June 2020. The key informant is expected to spend 2-3 days gathering and analyzing the relavant information to answer the survey questions.

    • Survey of Public Officials: The Survey of Public Officials collects information about the capacity and orientation of the bureaucracy, as well as political factors affecting education outcomes. This survey is a streamlined and education-focused version of the civil-servant surveys that the Bureaucracy Lab (a joint initiative of the Governance Global Practice and the Development Impact Evaluation unit of the World Bank) has implemented in several countries. The survey includes questions about technical and leadership skills, work environment, stakeholder engagement, impartial decision-making, and attitudes and behaviors. The survey takes 30-45 minutes per public official and is used to interview Ministry of Education officials working at the central, regional, and district levels in each country.

    Sampling error estimates

    The aim of the Global Education Policy Dashboard school survey is to produce nationally representative estimates, which will be able to detect changes in the indicators over time at a minimum power of 80% and with a 0.05 significance level.

  4. o

    US Colleges and Universities

    • public.opendatasoft.com
    • data.smartidf.services
    • +1more
    csv, excel, geojson +1
    Updated Aug 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). US Colleges and Universities [Dataset]. https://public.opendatasoft.com/explore/dataset/us-colleges-and-universities/
    Explore at:
    json, excel, geojson, csvAvailable download formats
    Dataset updated
    Aug 6, 2025
    License

    https://en.wikipedia.org/wiki/Public_domainhttps://en.wikipedia.org/wiki/Public_domain

    Area covered
    United States
    Description

    The Colleges and Universities feature class/shapefile is composed of all Post Secondary Education facilities as defined by the Integrated Post Secondary Education System (IPEDS, http://nces.ed.gov/ipeds/), National Center for Education Statistics (NCES, https://nces.ed.gov/), US Department of Education for the 2018-2019 school year. Included are Doctoral/Research Universities, Masters Colleges and Universities, Baccalaureate Colleges, Associates Colleges, Theological seminaries, Medical Schools and other health care professions, Schools of engineering and technology, business and management, art, music, design, Law schools, Teachers colleges, Tribal colleges, and other specialized institutions. Overall, this data layer covers all 50 states, as well as Puerto Rico and other assorted U.S. territories. This feature class contains all MEDS/MEDS+ as approved by the National Geospatial-Intelligence Agency (NGA) Homeland Security Infrastructure Program (HSIP) Team. Complete field and attribute information is available in the ”Entities and Attributes” metadata section. Geographical coverage is depicted in the thumbnail above and detailed in the "Place Keyword" section of the metadata. This feature class does not have a relationship class but is related to Supplemental Colleges. Colleges and Universities that are not included in the NCES IPEDS data are added to the Supplemental Colleges feature class when found. This release includes the addition of 175 new records, the removal of 468 no longer reported by NCES, and modifications to the spatial location and/or attribution of 6682 records.

  5. w

    Global Education Policy Dashboard 2022 - Sierra Leone

    • microdata.worldbank.org
    • datacatalog.ihsn.org
    • +1more
    Updated Nov 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sergio Venegas Marin (2024). Global Education Policy Dashboard 2022 - Sierra Leone [Dataset]. https://microdata.worldbank.org/index.php/catalog/6401
    Explore at:
    Dataset updated
    Nov 1, 2024
    Dataset provided by
    Brian Stacy
    Adrien Ciret
    Marie Helene Cloutier
    Sergio Venegas Marin
    Halsey Rogers
    Time period covered
    2022
    Area covered
    Sierra Leone
    Description

    Abstract

    The dashboard project collects new data in each country using three new instruments: a School Survey, a Policy Survey, and a Survey of Public Officials. Data collection involves school visits, classroom observations, legislative reviews, teacher and student assessments, and interviews with teachers, principals, and public officials. In addition, the project draws on some existing data sources to complement the new data it collects. A major objective of the GEPD project was to develop focused, cost-effective instruments and data-collection procedures, so that the dashboard can be inexpensive enough to be applied (and re-applied) in many countries. The team achieved this by streamlining and simplifying existing instruments, and thereby reducing the time required for data collection and training of enumerators.

    Geographic coverage

    National

    Analysis unit

    Schools, teachers, students, public officials

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The aim of the Global Education Policy Dashboard school survey is to produce nationally representative estimates, which will be able to detect changes in the indicators over time at a minimum power of 80% and with a 0.05 significance level. We also wish to detect differences by urban/rural location. For our school survey, we will employ a two-stage random sample design, where in the first stage a sample of typically around 200 schools, based on local conditions, is drawn, chosen in advance by the Bank staff. In the second stage, a sample of teachers and students will be drawn to answer questions from our survey modules, chosen in the field. A total of 10 teachers will be sampled for absenteeism. Five teachers will be interviewed and given a content knowledge exam. Three 1st grade students will be assessed at random, and a classroom of 4th grade students will be assessed at random. Stratification will be based on the school’s urban/rural classification and based on region. When stratifying by region, we will work with our partners within the country to make sure we include all relevant geographical divisions. For our Survey of Public Officials, we will sample a total of 200 public officials. Roughly 60 officials are typically surveyed at the federal level, while 140 officials will be surveyed at the regional/district level. For selection of officials at the regional and district level, we will employ a cluster sampling strategy, where roughly 10 regional offices (or whatever the secondary administrative unit is called) are chosen at random from among the regions in which schools were sampled. Then among these 10 regions, we also typically select around 10 districts (tertiary administrative level units) from among the districts in which schools werer sampled. The result of this sampling approach is that for 10 clusters we will have links from the school to the district office to the regional office to the central office. Within the regions/districts, five or six officials will be sampled, including the head of organization, HR director, two division directors from finance and planning, and one or two randomly selected professional employees among the finance, planning, and one other service related department chosen at random. At the federal level, we will interview the HR director, finance director, planning director, and three randomly selected service focused departments. In addition to the directors of each of these departments, a sample of 9 professional employees will be chosen in each department at random on the day of the interview.

    Sampling deviation

    The sample for the Global Education Policy Dashboard in SLE was based in part on a previous sample of 260 schools which were part of an early EGRA study. Details from the sampling for that study are quoted below. An additional booster sample of 40 schools was chosen to be representative of smaller schools of less than 30 learners.

    EGRA Details:

    "The sampling frame began with the 2019 Annual School Census (ASC) list of primary schools as provided by UNICEF/MBSSE where the sample of 260 schools for this study were obtained from an initial list of 7,154 primary schools. Only schools that meet a pre-defined selection criteria were eligible for sampling.

    To achieve the recommended sample size of 10 learners per grade, schools that had an enrolment of at least 30 learners in Grade 2 in 2019 were considered. To achieve a high level of confidence in the findings and generate enough data for analysis, the selection criteria only considered schools that: • had an enrolment of at least 30 learners in grade 1; and • had an active grade 4 in 2019 (enrolment not zero)

    The sample was taken from a population of 4,597 primary schools that met the eligibility criteria above, representing 64.3% of all the 7,154 primary schools in Sierra Leone (as per the 2019 school census). Schools with higher numbers of learners were purposefully selected to ensure the sample size could be met in each site.

    As a result, a sample of 260 schools were drawn using proportional to size allocation with simple random sampling without replacement in each stratum. In the population, there were 16 districts and five school ownership categories (community, government, mission/religious, private and others). A total of 63 strata were made by forming combinations of the 16 districts and school ownership categories. In each stratum, a sample size was computed proportional to the total population and samples were drawn randomly without replacement. Drawing from other EGRA/EGMA studies conducted by Montrose in the past, a backup sample of up to 78 schools (30% of the sample population) with which enumerator teams can replace sample schools was also be drawn.

    In the distribution of sampled schools by ownership, majority of the sampled schools are owned by mission/religious group (62.7%, n=163) followed by the government owned schools at 18.5% (n=48). Additionally, in school distribution by district, majority of the sampled schools (54%) were found in Bo, Kambia, Kenema, Kono, Port Loko and Kailahun districts. Refer to annex 9. for details on the population and sample distribution by district."

    Because of the restriction that at least 30 learners were available in Grade 2, we chose to add an additional 40 schools to the sample from among smaller schools, with between 3 and 30 grade 2 students. The objective of this supplement was to make the sample more nationally representative, as the restriction reduced the sampling frame for the EGRA/EGMA sample by over 1,500 schools from 7,154 to 4,597.

    The 40 schools were chosen in a manner consistent with the original set of EGRA/EGMA schools. The 16 districts formed the strata. In each stratum, the number of schools selected were proportional to the total population of the stratum, and within stratum schools were chosen with probability proportional to size.

    Mode of data collection

    Computer Assisted Personal Interview [capi]

    Research instrument

    The dashboard project collects new data in each country using three new instruments: a School Survey, a Policy Survey, and a Survey of Public Officials. Data collection involves school visits, classroom observations, legislative reviews, teacher and student assessments, and interviews with teachers, principals, and public officials. In addition, the project draws on some existing data sources to complement the new data it collects. A major objective of the GEPD project was to develop focused, cost-effective instruments and data-collection procedures, so that the dashboard can be inexpensive enough to be applied (and re-applied) in many countries. The team achieved this by streamlining and simplifying existing instruments, and thereby reducing the time required for data collection and training of enumerators.

    More information pertaining to each of the three instruments can be found below: - School Survey: The School Survey collects data primarily on practices (the quality of service delivery in schools), but also on some de facto policy indicators. It consists of streamlined versions of existing instruments—including Service Delivery Surveys on teachers and inputs/infrastructure, Teach on pedagogical practice, Global Early Child Development Database (GECDD) on school readiness of young children, and the Development World Management Survey (DWMS) on management quality—together with new questions to fill gaps in those instruments. Though the number of modules is similar to the full version of the Service Delivery Indicators (SDI) Survey, the number of items and the complexity of the questions within each module is significantly lower. The School Survey includes 8 short modules: School Information, Teacher Presence, Teacher Survey, Classroom Observation, Teacher Assessment, Early Learner Direct Assessment, School Management Survey, and 4th-grade Student Assessment. For a team of two enumerators, it takes on average about 4 hours to collect all information in a given school. For more information, refer to the Frequently Asked Questions.

    • Policy Survey: The Policy Survey collects information to feed into the policy de jure indicators. This survey is filled out by key informants in each country, drawing on their knowledge to identify key elements of the policy framework (as in the SABER approach to policy-data collection that the Bank has used over the past 7 years). The survey includes questions on policies related to teachers, school management, inputs and infrastructure, and learners. In total, there are 52 questions in the survey as of June 2020. The key informant is expected to spend 2-3 days gathering and analyzing the relavant information to answer the survey
  6. w

    India - Young Lives: School Survey 2010-2011 - Dataset - waterdata

    • wbwaterdata.org
    • waterdata3.staging.derilinx.com
    Updated Mar 16, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). India - Young Lives: School Survey 2010-2011 - Dataset - waterdata [Dataset]. https://wbwaterdata.org/dataset/india-young-lives-school-survey-2010-2011
    Explore at:
    Dataset updated
    Mar 16, 2020
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    India
    Description

    The Young Lives survey is an innovative long-term project investigating the changing nature of childhood poverty in four developing countries. The purpose of the project is to improve understanding of the causes and consequences of childhood poverty and examine how policies affect children's well-being, in order to inform the development of future policy and to target child welfare interventions more effectively. The objectives of the study are to provide good quality long-term data about the lives of children living in poverty, trace linkages between key policy changes and child welfare, and inform and respond to the needs of policymakers, planners and other stakeholders. Research activities of the project include the collection of data on a set of child welfare outcomes and their determinants and the monitoring of changes in policy, in order to explore the links between the policy environment and outcomes for children. The study is being conducted in Ethiopia, India (in Andhra Pradesh), Peru and Vietnam. These countries were selected because they reflect a range of cultural, geographical and social contexts and experience differing issues facing the developing world; high debt burden, emergence from conflict, and vulnerability to environmental conditions such as drought and flood. The Young Lives study aims to track the lives of 12,000 children over a 15-year period. This is the time-frame set by the UN to assess progress towards the Millennium Development Goals. Round 1 of the study followed 2,000 children (aged between 6 and 18 months in 2002) and their households, from both urban and rural communities, in each of the four countries (8,000 children in total). Data were also collected on an older cohort of 1,000 children aged 7 to 8 years in each country, in order to provide a basis for comparison with the younger children when they reach that age. Round 2 of the study returned to the same children who were aged 1-year-old in Round 1 when they were aged approximately 5-years-old, and to the children aged 8-years-old in Round 1 when they were approximately 12-years-old. Round 3 of the study returned to the same children again when they were aged 7 to 8 years (the same as the older cohort in Round 1) and 14 to 15 years. It is envisaged that subsequent survey waves will take place in 2013 and 2016. Thus the younger children are being tracked from infancy to their mid-teens and the older children through into adulthood, when some will become parents themselves. Further information about the survey, including publications, can be downloaded from the Young Lives website. School Survey: A school survey was introduced into Young Lives in 2010, following the third round of the household survey, in order to capture detailed information about children’s experiences of schooling. It addressed two main research questions: • how do the relationships between poverty and child development manifest themselves and impact upon children's educational experiences and outcomes? • to what extent does children’s experience of school reinforce or compensate for disadvantage in terms of child development and poverty? The survey allows researchers to link longitudinal information on household and child characteristics from the household survey with data on the schools attended by the Young Lives children and children's achievements inside and outside the school. A wide range of stakeholders, including government representatives at national and sub-national levels, NGOs and donor organisations were involved in the design of the school survey, so the researchers could be sure that the ‘right questions’ were being asked to address major policy concerns. This consultation process means that policymakers already understand the context and potential of the Young Lives research and are interested to utilise the data and analysis to inform their policy decisions. The survey provides policy-relevant information on the relationship between child development (and its determinants) and children’s experience of school, including access, quality and progression. This combination of household, child and school-level data over time constitutes the comparative advantage of the Young Lives study. School Survey data are currently only available for India and Peru. The Peru data are available from the UK Data Archive under SN 7479. Further information is available from the Young Lives School Survey webpages.

  7. Philippines Enrolment Data

    • kaggle.com
    Updated Dec 3, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2022). Philippines Enrolment Data [Dataset]. https://www.kaggle.com/datasets/thedevastator/exploring-educational-inequality-with-philippine/versions/1
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 3, 2022
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    The Devastator
    Area covered
    Philippines
    Description

    Philippines Enrolment Data

    Examining Private and Public Schools

    By Humanitarian Data Exchange [source]

    About this dataset

    This dataset provides an interesting insight into the enrolment numbers in public and private schools across the Philippines. It covers all levels of enrolment – elementary, secondary, and post-secondary – as well as gender and urban/rural distinctions. This information is an invaluable asset for anyone looking to gain a comprehensive understanding of educational enrolment trends within the country in order to make informed decisions regarding resource allocation or policy implementations. However, keep in mind that due to differences in methodology and data collection techniques, caution should be taken when using this data as there may be inaccuracies or vague definitions applicable to specific age groups or subpopulations. Regardless, this dataset still serves as a valuable source of information for anyone wanting a proper picture of educational dynamics within the Philippines

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    This dataset provides enrolment figures in public and private schools by level in the Philippines. With this data, users can explore disparities between public and private school enrolment and other potential inequalities associated with educational access.

    In order to use this Kaggle dataset to analyze educational inequality in the Philippines, firstly one must understand which columns are included:

    • Country: The name of the Philippine country
    • School Level (Grouped): Groupings of school levels within primary/elementary and secondary level
    • Enrolment Type: Public or Private
    • Year: Time period of data collection

    Now that you have an understanding about what this dataset contains, here are few ways you could use it for your analysis!

    • Compare enrollment rates between genders - Use the 'School Level' column grouped into Primary/Elementary or Secondary fields along with 'Enrolment Type' (public vs. private) to sort out male/female enrollment differences from 2007 - 2018 at each grade level.
    • Investigate discrepancies between urban vs rural areas - Look at where most students attend as reflected through the different divisions within provinces as defined by Commission on Elections (COMELEC). Depending if pupils mainly take up residence in urban or rural areas make sure to supplement this data with available measures towards educational disparities between these two settings such as infrastructure, resources etc.
    • Analyze expansion trends over time - Using all columns within this dataset one could see how trends have changed over time since its inception year 2007 till recent year 2018 spanning different area types (such as mindanao through CAR etc.), school levels and regions across governance such provinces(NCR etc.).One could get additional insights such patterns around funding allocations too.

    Using all these different analyses offered one can gain a better understanding about evolving disparities around education access in particular region or even countrywide!

    Research Ideas

    • Comparing enrolment statistics between public and private schools to identify more effective approaches in either sector.
    • Identifying regions or areas which may benefit from additional investment in education infrastructure and resources.
    • Visualizing enrolment rates at different levels of schooling to understand the relative level of educational attainment within a certain geographical area or region over time

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    See the dataset description for more information.

    Columns

    File: education-nscb-xls-1.csv

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. If you use this dataset in your research, please credit Humanitarian Data Exchange.

  8. Learning and Educational Achievement in Punjab Schools (LEAPS) - Master Data...

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +2more
    Updated Dec 6, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tahir Andrabi (Pomona College), Jishnu Das and Tara Viswanath (World Bank), Asim Ijaz Khwaja and Tristan Zajonc (Harvard University) (2016). Learning and Educational Achievement in Punjab Schools (LEAPS) - Master Data 2003-2006 - Pakistan [Dataset]. https://microdata.worldbank.org/index.php/catalog/440
    Explore at:
    Dataset updated
    Dec 6, 2016
    Dataset provided by
    World Bankhttp://topics.nytimes.com/top/reference/timestopics/organizations/w/world_bank/index.html
    Authors
    Tahir Andrabi (Pomona College), Jishnu Das and Tara Viswanath (World Bank), Asim Ijaz Khwaja and Tristan Zajonc (Harvard University)
    Time period covered
    2003 - 2006
    Area covered
    Pakistan
    Description

    Abstract

    The Master datasets comprise of four datasets: on children, schools, teachers and households. These master datasets contain key variables and identifiers which will allow users of the data to determine the progression of sample sizes and attrition of children, households, schools and teachers across the four years of the LEAPS panel data.

    The children dataset contains round-by-round status of children's grades, enrollment, promotion etc. It also has variables indicating the panel child belongs to (the first panel being grade 3 children LEAPS started following in 2003, and the second one being 3rd graders followed starting in 2005 i.e. round 3 of the survey) as well as whether child was randomly selected for child questionnaire in class. The school dataset contains information such as school type, survey status, construction date. Note that there is only one schoolid variable and it is constant across all rounds. To capture the fact that there is merging of some schools going on across the rounds, refer to the school_merged_into and school_merged_with variables. The school_merged_into variable only exists for the small schools that merged into a larger school whereas the school_merged_with variable exists for the larger schools that the smaller schools merged in to. The teachers dataset contains information such as their round-by-round school, teaching status. The household dataset contains a Mauza indicator, and a variable on whether the household was surveyed in a particular round.

    Geographic coverage

    Rural Punjab, Pakistan

    Sampling procedure

    The sample comprises 112 villages in 3 districts of Punjab-Attock, Faisalabad and Rahim Yar Khan. The districts represent an accepted stratification of the province into North (Attock), Central (Faisalabad) and South (Rahim Yar Khan). The 112 villages in these districts were chosen randomly from the list of all villages with an existing private school. This allows us to look at differences between private and public schools in the same village. Although these villages are thus bigger and richer than average villages in these districts, we believe this is a forward-looking strategy and the insights earned here will soon be applicable to a significant fraction of all villages in the country.

    Sampling deviation

    None

    Response rate

    The attrition has been remarkably small, averaging 3-4 percent in each year.

  9. Dugong Sites and Dolphin Schools on the Eastern Coast of Kenya - Datasets -...

    • old-datasets.wri.org
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    wri.org, Dugong Sites and Dolphin Schools on the Eastern Coast of Kenya - Datasets - Data | World Resources Institute [Dataset]. https://old-datasets.wri.org/dataset/dugong-sites-and-dolphin-schools-on-the-eastern-coast-of-kenya
    Explore at:
    Dataset provided by
    World Resources Institutehttps://www.wri.org/
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Area covered
    Kenya
    Description

    This data was used in Map 6.4 and Map 6.5 in Nature's Benefits in Kenya: An Atlas of Ecosystems and Human Well-Being. Original report and data available on http://www.unep.org/eafatlas/dbke.htm Cautions Data set is not for use in litigation. While efforts have been made to ensure that these data are accurate and reliable within the state of the art, WRI, cannot assume liability for any damages, or misrepresentations, caused by any inaccuracies in the data, or as a result of the data to be used on a particular system. WRI makes no warranty, expressed or implied, nor does the fact of distribution constitute such a warranty. Citation

  10. s

    Green Schools DLR - Dataset - data.smartdublin.ie

    • data.smartdublin.ie
    Updated Jan 31, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Green Schools DLR - Dataset - data.smartdublin.ie [Dataset]. https://data.smartdublin.ie/dataset/green-schools-dlr
    Explore at:
    Dataset updated
    Jan 31, 2025
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Green-Schools, known internationally as Eco-Schools, is an environmental education programme run by An Taisce and local authorities, designed to promote and acknowledge whole school action for the environment. Schools undertake long term projects on environmental issues such as waste and litter management, energy, water, sustainable transport and biodiversity. On a practical front the Green-Schools programme helps schools to reduce waste and save money on waste charges and it also helps schools to conserve energy and water, therefore saving on utility bills. There are approximately 100 schools in the Dún Laoghaire-Rathdown County Council area registered with An Taisce Green-Schools. Many of these schools have achieved Green-Schools status and proudly fly the internationally recognised Green Flag. Following the award of their first Green Flag for the Litter & Waste theme schools renew their Green Flag award every two years by working on a new theme: Energy, Water, Travel, Biodiversity and Global Citizenship.

  11. PISA Test Scores

    • kaggle.com
    Updated Dec 30, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    piAI (2019). PISA Test Scores [Dataset]. https://www.kaggle.com/datasets/econdata/pisa-test-scores/versions/1
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 30, 2019
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    piAI
    Description

    Context

    The Programme for International Student Assessment (PISA) is a test given every three years to 15-year-old students from around the world to evaluate their performance in mathematics, reading, and science. This test provides a quantitative way to compare the performance of students from different parts of the world. In this homework assignment, we will predict the reading scores of students from the United States of America on the 2009 PISA exam.

    The datasets pisa2009train.csv and pisa2009test.csv contain information about the demographics and schools for American students taking the exam, derived from 2009 PISA Public-Use Data Files distributed by the United States National Center for Education Statistics (NCES). While the datasets are not supposed to contain identifying information about students taking the test, by using the data you are bound by the NCES data use agreement, which prohibits any attempt to determine the identity of any student in the datasets.

    Each row in the datasets pisa2009train.csv and pisa2009test.csv represents one student taking the exam. The datasets have the following variables:

    Content

    grade: The grade in school of the student (most 15-year-olds in America are in 10th grade)

    male: Whether the student is male (1/0)

    raceeth: The race/ethnicity composite of the student

    preschool: Whether the student attended preschool (1/0)

    expectBachelors: Whether the student expects to obtain a bachelor's degree (1/0)

    motherHS: Whether the student's mother completed high school (1/0)

    motherBachelors: Whether the student's mother obtained a bachelor's degree (1/0)

    motherWork: Whether the student's mother has part-time or full-time work (1/0)

    fatherHS: Whether the student's father completed high school (1/0)

    fatherBachelors: Whether the student's father obtained a bachelor's degree (1/0)

    fatherWork: Whether the student's father has part-time or full-time work (1/0)

    selfBornUS: Whether the student was born in the United States of America (1/0)

    motherBornUS: Whether the student's mother was born in the United States of America (1/0)

    fatherBornUS: Whether the student's father was born in the United States of America (1/0)

    englishAtHome: Whether the student speaks English at home (1/0)

    computerForSchoolwork: Whether the student has access to a computer for schoolwork (1/0)

    read30MinsADay: Whether the student reads for pleasure for 30 minutes/day (1/0)

    minutesPerWeekEnglish: The number of minutes per week the student spend in English class

    studentsInEnglish: The number of students in this student's English class at school

    schoolHasLibrary: Whether this student's school has a library (1/0)

    publicSchool: Whether this student attends a public school (1/0)

    urban: Whether this student's school is in an urban area (1/0)

    schoolSize: The number of students in this student's school

    readingScore: The student's reading score, on a 1000-point scale

    Acknowledgements

    MITx ANALYTIX

  12. w

    Dataset of book subjects that contain Powerful schools : how schools can be...

    • workwithdata.com
    Updated Nov 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Work With Data (2024). Dataset of book subjects that contain Powerful schools : how schools can be drivers of social and global mobility [Dataset]. https://www.workwithdata.com/datasets/book-subjects?f=1&fcol0=j0-book&fop0=%3D&fval0=Powerful+schools+:+how+schools+can+be+drivers+of+social+and+global+mobility&j=1&j0=books
    Explore at:
    Dataset updated
    Nov 7, 2024
    Dataset authored and provided by
    Work With Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset is about book subjects. It has 4 rows and is filtered where the books is Powerful schools : how schools can be drivers of social and global mobility. It features 10 columns including number of authors, number of books, earliest publication date, and latest publication date.

  13. World Cities

    • data.lojic.org
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • +4more
    Updated Jun 30, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2013). World Cities [Dataset]. https://data.lojic.org/datasets/esri::world-cities
    Explore at:
    Dataset updated
    Jun 30, 2013
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This world cities layer presents the locations of many cities of the world, both major cities and many provincial capitals.Population estimates are provided for those cities listed in open source data from the United Nations and US Census.

  14. I

    India Number of Schools: Secondary School

    • ceicdata.com
    Updated Aug 5, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2020). India Number of Schools: Secondary School [Dataset]. https://www.ceicdata.com/en/india/number-of-schools-secondary-school/number-of-schools-secondary-school
    Explore at:
    Dataset updated
    Aug 5, 2020
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Sep 1, 2004 - Sep 1, 2015
    Area covered
    India
    Variables measured
    Education Statistics
    Description

    India Number of Schools: Secondary School data was reported at 252,176.000 Unit in 2015. This records an increase from the previous number of 244,653.000 Unit for 2014. India Number of Schools: Secondary School data is updated yearly, averaging 114,629.000 Unit from Sep 1950 (Median) to 2015, with 34 observations. The data reached an all-time high of 252,176.000 Unit in 2015 and a record low of 7,416.000 Unit in 1950. India Number of Schools: Secondary School data remains active status in CEIC and is reported by Ministry of Education. The data is categorized under India Premium Database’s Education Sector – Table IN.EDC001: Number of Schools: Secondary School.

  15. School information and student demographics

    • open.canada.ca
    • datasets.ai
    html, xlsx
    Updated Aug 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Ontario (2025). School information and student demographics [Dataset]. https://open.canada.ca/data/en/dataset/d85f68c5-fcb0-4b4d-aec5-3047db47dcd5
    Explore at:
    xlsx, htmlAvailable download formats
    Dataset updated
    Aug 20, 2025
    Dataset provided by
    Government of Ontariohttps://www.ontario.ca/
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Time period covered
    Sep 1, 2017 - Jun 30, 2024
    Description

    Data includes: board and school information, grade 3 and 6 EQAO student achievements for reading, writing and mathematics, and grade 9 mathematics EQAO and OSSLT. Data excludes private schools, Education and Community Partnership Programs (ECPP), summer, night and continuing education schools. How Are We Protecting Privacy? Results for OnSIS and Statistics Canada variables are suppressed based on school population size to better protect student privacy. In order to achieve this additional level of protection, the Ministry has used a methodology that randomly rounds a percentage either up or down depending on school enrolment. In order to protect privacy, the ministry does not publicly report on data when there are fewer than 10 individuals represented. * Percentages depicted as 0 may not always be 0 values as in certain situations the values have been randomly rounded down or there are no reported results at a school for the respective indicator. * Percentages depicted as 100 are not always 100, in certain situations the values have been randomly rounded up. The school enrolment totals have been rounded to the nearest 5 in order to better protect and maintain student privacy. The information in the School Information Finder is the most current available to the Ministry of Education at this time, as reported by schools, school boards, EQAO and Statistics Canada. The information is updated as frequently as possible. This information is also available on the Ministry of Education's School Information Finder website by individual school. Descriptions for some of the data types can be found in our glossary. School/school board and school authority contact information are updated and maintained by school boards and may not be the most current version. For the most recent information please visit: https://data.ontario.ca/dataset/ontario-public-school-contact-information.

  16. National Pupil Database - Dataset - data.gov.uk

    • ckan.publishing.service.gov.uk
    Updated Jun 20, 2014
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.publishing.service.gov.uk (2014). National Pupil Database - Dataset - data.gov.uk [Dataset]. https://ckan.publishing.service.gov.uk/dataset/national-pupil-database_1
    Explore at:
    Dataset updated
    Jun 20, 2014
    Dataset provided by
    CKANhttps://ckan.org/
    Description

    Interested parties can now request extracts of data from the NPD using an improved application process accessed through the following website; GOV.UK The first version of the NPD, including information from the first pupil level School Census matched to attainment information, was produced in 2002. The NPD is one of the richest education datasets in the world holding a wide range of information about pupils and students and has provided invaluable evidence on educational performance to inform independent research, as well as analysis carried out or commissioned by the department. There are a range of data sources in the NPD providing information about children’s education at different phases. The data includes detailed information about pupils’ test and exam results, prior attainment and progression at each key stage for all state schools in England. The department also holds attainment data for pupils and students in non-maintained special schools, sixth form and further education colleges and (where available) independent schools. The NPD also includes information about the characteristics of pupils in the state sector and non-maintained special schools such as their gender, ethnicity, first language, eligibility for free school meals, awarding of bursary funding for 16-19 year olds, information about special educational needs and detailed information about any absences and exclusions. Extracts of the data from NPD can be shared (under strict terms and conditions) with named bodies and third parties who, for the purpose of promoting the education or well-being of children in England, are:- • Conducting research or analysis • Producing statistics; or • Providing information, advice or guidance. The department wants to encourage more third parties to use the data for these purposes and produce secondary analysis of the data. All applications go through a robust approval process and those granted access are subject to strict terms and conditions on the security, handling and use of the data, including compliance with the Data Protection Act. Anyone requesting access to the most sensitive data will also be required to submit a business case. More information on the application process including the User Guide, Application Form, Security Questionnaire and a full list of data items available can be found from the NPD web page at:- https://www.gov.uk/national-pupil-database-apply-for-a-data-extract

  17. u

    Master List of Schools 2023 - South Africa

    • datafirst.uct.ac.za
    Updated Mar 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Basic Education Management Information Systems (EMIS) Directorate (2025). Master List of Schools 2023 - South Africa [Dataset]. http://www.datafirst.uct.ac.za/Dataportal/index.php/catalog/985
    Explore at:
    Dataset updated
    Mar 11, 2025
    Dataset authored and provided by
    Department of Basic Education Management Information Systems (EMIS) Directorate
    Time period covered
    2023
    Area covered
    South Africa
    Description

    Abstract

    The Master List of Schools is a record of all schools in South Africa. The data forms part of the national Education Management Information Systems (EMIS) database used to inform education policymakers and managers in the Department of Basic Education (DBE) and the Provincial education departments, as well as to provide valuable information to external stakeholders. The list is maintained by provincial departments and regularly sent to DBE for updating. A key function of the master list is to uniquely identify each school in the country through a school identifier called the EMIS number. Additionally, the list contains data on school quintiles - categories (quintiles) based on the socioeconomic status of the community in which the school is situated. Analyses comparing schools' performance often use school quintiles as control measures for socioeconomic status, to take into account the effect of, for example, poor infrastructure, shortage of materials and deprived home backgrounds on school performance. There are also other basic data fields in the school master list that could provide the means to answer some of the most frequently asked questions about learner enrolment, teachers and learner-teacher ratio of schools. It is a useful dataset for education planners and researchers and is even widely used in the private sector by those who regularly deal with schools.

    Geographic coverage

    The data has national coverage

    Analysis unit

    Individuals and institutions

    Universe

    The survey covers all schools (ordinary and special needs) in South Africa, both public and independent.

    Kind of data

    Administrative records and survey data

    Mode of data collection

    Other

    Research instrument

    Data from the SNAP survey and ANA that are used to compile the Master List of Schools is collected with a survey questionnaire and educator forms. The principle completes the survey questionnaire and each educator (both state paid and other) in each school completes an educator form. Schools record their EMIS number provided by the DBE on the questionnaire and form for identification.

    Data appraisal

    The 2023 series only includes data for quarter 2 and quarter 3. The GIS coordinates for schools in the Eastern Cape are incorrectly entered in the original data from the DBE. The data entered in the GIS_long variable is incorrectly entered into the GIS_lat variable. This issue only occurs for schools in the Eastern Cape (EC), all other GIS coordinates for all the other provinces is correct. Therefore, for geospatial analysis, users can swap the GIS coordiate data only for the Eastern Cape.

  18. d

    Number of Governmental Schools by Type of School

    • data.gov.bh
    • bahrain.opendatasoft.com
    csv, excel, json
    Updated Mar 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Number of Governmental Schools by Type of School [Dataset]. https://www.data.gov.bh/explore/dataset/1a-number-of-governmental-schools-by-type-of-school/
    Explore at:
    json, excel, csvAvailable download formats
    Dataset updated
    Mar 19, 2025
    Description

    There is no description for this dataset.

  19. Educational Backgrounds of Successful People

    • kaggle.com
    Updated Jul 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Adil Shamim (2025). Educational Backgrounds of Successful People [Dataset]. https://www.kaggle.com/datasets/adilshamim8/educational-backgrounds-of-successful-people/versions/2
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 2, 2025
    Dataset provided by
    Kaggle
    Authors
    Adil Shamim
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Note: Let's collaborate to make this dataset bigger! Connect with me if you're interested.

    The “Educational Backgrounds of Successful People” dataset brings together comprehensive academic profiles for over 30 distinguished figures across entrepreneurship, science, politics, entertainment, sports, and activism. Each record captures the individual’s highest completed degree (or enrollment status), field of study, awarding institution, graduation year, location, institutional ranking, academic performance, and notable scholarships or honors. By aggregating these educational trajectories in one structured CSV, the dataset enables clear, cross‑comparable insights into the academic foundations behind world‑renowned achievement.

    Key Features

    • Broad Representation: Profiles span diverse professions—from Nobel laureates and Fortune 500 CEOs to Olympic champions and social activists.
    • Rich Academic Metadata: Includes institution country, global ranking, GPA (or equivalent), and prestigious scholarships/awards.
    • Complete Educational Paths: Notes both completed degrees and in‑progress or “dropped out” statuses to illustrate alternative success routes.
    • CSV‑Friendly Structure: Ten well‑labeled columns facilitate quick import into any analytics tool or database.

    Columns and Descriptions

    ColumnDescription
    NameFull name of the individual.
    ProfessionPrimary field or role (e.g., Entrepreneur, Scientist).
    DegreeHighest completed degree (e.g., PhD, MBA) or enrollment status.
    FieldMajor or area of study.
    InstitutionName of the university or school.
    Graduation YearYear degree was conferred (or expected).
    CountryCountry where the institution resides.
    Global RankingApproximate world ranking (QS/The Times).
    GPA (or Equivalent)Grade point average or comparable metric.
    Scholarship/AwardNotable academic honors received.

    Why This Dataset Matters

    • Educational Research: Compare how different academic paths correlate with later accomplishments.
    • Policy & Guidance: Inform educators and career counselors about common institutional and field‑of‑study patterns among high achievers.
    • Visualization & Storytelling: Create compelling charts—e.g., the frequency of Ivy League degrees or average GPAs—highlighting trends in elite education.
    • Machine Learning & Clustering: Cluster profiles by educational attributes to uncover hidden groupings (e.g., STEM vs. business‑oriented leaders).
  20. U

    United Arab Emirates No of Schools

    • ceicdata.com
    Updated Jun 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2024). United Arab Emirates No of Schools [Dataset]. https://www.ceicdata.com/en/united-arab-emirates/education-statistics/no-of-schools
    Explore at:
    Dataset updated
    Jun 15, 2024
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jun 1, 2006 - Jun 1, 2017
    Area covered
    United Arab Emirates
    Variables measured
    Education Statistics
    Description

    United Arab Emirates Number of Schools data was reported at 1,226.000 Unit in 2017. This records a decrease from the previous number of 1,230.000 Unit for 2016. United Arab Emirates Number of Schools data is updated yearly, averaging 1,027.000 Unit from Jun 1976 (Median) to 2017, with 41 observations. The data reached an all-time high of 1,238.000 Unit in 2005 and a record low of 227.000 Unit in 1976. United Arab Emirates Number of Schools data remains active status in CEIC and is reported by Ministry of Education. The data is categorized under Global Database’s United Arab Emirates – Table AE.G005: Education Statistics.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Bushra Qurban (2024). 🌍 World Education Dataset 📚 [Dataset]. https://www.kaggle.com/datasets/bushraqurban/world-education-dataset/versions/5
Organization logo

🌍 World Education Dataset 📚

Global Insights into Educational Indicators

Explore at:
37 scholarly articles cite this dataset (View in Google Scholar)
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Nov 22, 2024
Dataset provided by
Kagglehttp://kaggle.com/
Authors
Bushra Qurban
License

https://www.worldbank.org/en/about/legal/terms-of-use-for-datasetshttps://www.worldbank.org/en/about/legal/terms-of-use-for-datasets

Area covered
World
Description

Dataset Overview 📝

The dataset includes the following key indicators, collected for over 200 countries:

  • Government Expenditure on Education (% of GDP): Shows the percentage of a country’s GDP allocated to education.
  • Literacy Rate (Adult Total): Represents the percentage of the population aged 15 and above who can read and write.
  • Primary Completion Rate: The percentage of children who complete their primary education within the official age group.
  • Pupil-Teacher Ratio (Primary and Secondary Education): Indicates the average number of students per teacher at the primary and secondary levels.
  • School Enrollment Rates (Primary, Secondary, Tertiary): Reflects the percentage of the relevant age group enrolled in schools across different education levels.

Data Source 🌐

World Bank: This dataset is compiled from the World Bank's educational database, providing reliable, updated statistics on educational progress worldwide.

Potential Use Cases 🔍 This dataset is ideal for anyone interested in:

Educational Research: Understanding how education spending and policies impact literacy, enrollment, and overall educational outcomes. Predictive Modeling: Building models to predict educational success factors, such as completion rates and literacy. Global Education Analysis: Analyzing trends in global education systems and how different countries allocate resources to education. Policy Development: Helping governments and organizations make data-driven decisions regarding educational reforms and funding.

Key Questions You Can Explore 🤔

How does government expenditure on education correlate with literacy rates and school enrollment across different regions? What are the trends in pupil-teacher ratios over time, and how do they affect educational outcomes? How do education indicators differ between low-income and high-income countries? Can we predict which countries will achieve universal primary education based on current trends?

Important Notes ⚠️ - Missing Data: Some values may be missing for certain years or countries. Consider using techniques like forward filling or interpolation when working with time series models. - Data Limitations: This dataset provides global averages and may not capture regional disparities within countries.

Search
Clear search
Close search
Google apps
Main menu