This dataset displays the _location of schools that are overseen by the Bureau of Indian Education. There are 183 Bureau-funded elementary and secondary schools on 64 reservations in 23 states, serving approximately 40,000 Indian students. Of these, 55 are BIE-operated and 128 are tribally controlled under BIE contracts or grants. The Bureau also funds or operates off-reservation boarding schools and peripheral dormitories near reservations for public school students. The BIE also serves American Indian and Alaska Native post-secondary students through higher education scholarships and support funding for tribal colleges and universities. The BIE directly operates two post-secondary institutions: the Haskell Indian Nations University (HINU) in Lawrence, Kansas, and the Southwestern Indian Polytechnic Institute (SIPI) in Albuquerque, New Mexico. Native American boarding schools and dormitories were established in the United States during the late 19th and early 20th centuries. The land where the schools are located is administered by the Bureau of Indian Affairs while the facilities and there operation is under the jurisdiction of the Bureau of Indian Education. As stated in Title 25 CFR Part 32.3, BIE’s mission is to provide quality education opportunities from early childhood through life in accordance with a tribe’s needs for cultural and economic well-being, in keeping with the vast diversity of Indian tribes and Alaska Native villages as distinct cultural and governmental entities. Further, the BIE is to manifest consideration of the whole person by considering the individual's spiritual, mental, physical, and cultural aspects within his or her family and tribal or village context. The BIE school system employs thousands of teachers, administrators and support personnel, while many more work in tribal school systems.
https://en.wikipedia.org/wiki/Public_domainhttps://en.wikipedia.org/wiki/Public_domain
This Public Schools feature dataset is composed of all Public elementary and secondary education facilities in the United States as defined by the Common Core of Data (CCD, https://nces.ed.gov/ccd/ ), National Center for Education Statistics (NCES, https://nces.ed.gov ), US Department of Education for the 2017-2018 school year. This includes all Kindergarten through 12th grade schools as tracked by the Common Core of Data. Included in this dataset are military schools in US territories and referenced in the city field with an APO or FPO address. DOD schools represented in the NCES data that are outside of the United States or US territories have been omitted. This feature class contains all MEDS/MEDS+ as approved by NGA. Complete field and attribute information is available in the ”Entities and Attributes” metadata section. Geographical coverage is depicted in the thumbnail above and detailed in the Place Keyword section of the metadata. This release includes the addition of 3065 new records, modifications to the spatial location and/or attribution of 99,287 records, and removal of 2996 records not present in the NCES CCD data.
https://en.wikipedia.org/wiki/Public_domainhttps://en.wikipedia.org/wiki/Public_domain
This Private Schools feature dataset is composed of private elementary and secondary education facilities in the United States as defined by the Private School Survey (PSS, https://nces.ed.gov/surveys/pss/), National Center for Education Statistics (NCES, https://nces.ed.gov), US Department of Education for the 2017-2018 school year. This includes all prekindergarten through 12th grade schools as tracked by the PSS. This feature class contains all MEDS/MEDS+ as approved by NGA. Complete field and attribute information is available in the ”Entities and Attributes” metadata section. Geographical coverage is depicted in the thumbnail above and detailed in the Place Keyword section of the metadata. This release includes the addition of 2675 new records, modifications to the spatial location and/or attribution of 19836 records, the removal of 254 records no longer applicable. Additionally, 10,870 records were removed that previously had a STATUS value of 2 (Unknown; not represented in the most recent PSS data) and duplicate records identified by ORNL.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Residential School Locations Dataset [IRS_Locations.csv] contains the locations (latitude and longitude) of Residential Schools and student hostels operated by the federal government in Canada. All the residential schools and hostels that are listed in the Indian Residential School Settlement Agreement are included in this dataset, as well as several Industrial schools and residential schools that were not part of the IRRSA. This version of the dataset doesn’t include the five schools under the Newfoundland and Labrador Residential Schools Settlement Agreement. The original school location data was created by the Truth and Reconciliation Commission, and was provided to the researcher (Rosa Orlandini) by the National Centre for Truth and Reconciliation in April 2017. The dataset was created by Rosa Orlandini, and builds upon and enhances the previous work of the Truth and Reconcilation Commission, Morgan Hite (creator of the Atlas of Indian Residential Schools in Canada that was produced for the Tk'emlups First Nation and Justice for Day Scholar's Initiative, and Stephanie Pyne (project lead for the Residential Schools Interactive Map). Each individual school location in this dataset is attributed either to RSIM, Morgan Hite, NCTR or Rosa Orlandini. Many schools/hostels had several locations throughout the history of the institution. If the school/hostel moved from its’ original location to another property, then the school is considered to have two unique locations in this dataset,the original location and the new location. For example, Lejac Indian Residential School had two locations while it was operating, Stuart Lake and Fraser Lake. If a new school building was constructed on the same property as the original school building, it isn't considered to be a new location, as is the case of Girouard Indian Residential School.When the precise location is known, the coordinates of the main building are provided, and when the precise location of the building isn’t known, an approximate location is provided. For each residential school institution location, the following information is provided: official names, alternative name, dates of operation, religious affiliation, latitude and longitude coordinates, community location, Indigenous community name, contributor (of the location coordinates), school/institution photo (when available), location point precision, type of school (hostel or residential school) and list of references used to determine the location of the main buildings or sites.
The 2021-2022 School Learning Modalities dataset provides weekly estimates of school learning modality (including in-person, remote, or hybrid learning) for U.S. K-12 public and independent charter school districts for the 2021-2022 school year and the Fall 2022 semester, from August 2021 – December 2022. These data were modeled using multiple sources of input data (see below) to infer the most likely learning modality of a school district for a given week. These data should be considered district-level estimates and may not always reflect true learning modality, particularly for districts in which data are unavailable. If a district reports multiple modality types within the same week, the modality offered for the majority of those days is reflected in the weekly estimate. All school district metadata are sourced from the National Center for Educational Statistics (NCES) for 2020-2021. School learning modality types are defined as follows: In-Person: All schools within the district offer face-to-face instruction 5 days per week to all students at all available grade levels. Remote: Schools within the district do not offer face-to-face instruction; all learning is conducted online/remotely to all students at all available grade levels. Hybrid: Schools within the district offer a combination of in-person and remote learning; face-to-face instruction is offered less than 5 days per week, or only to a subset of students. Data Information School learning modality data provided here are model estimates using combined input data and are not guaranteed to be 100% accurate. This learning modality dataset was generated by combining data from four different sources: Burbio [1], MCH Strategic Data [2], the AEI/Return to Learn Tracker [3], and state dashboards [4-20]. These data were combined using a Hidden Markov model which infers the sequence of learning modalities (In-Person, Hybrid, or Remote) for each district that is most likely to produce the modalities reported by these sources. This model was trained using data from the 2020-2021 school year. Metadata describing the location, number of schools and number of students in each district comes from NCES [21]. You can read more about the model in the CDC MMWR: COVID-19–Related School Closures and Learning Modality Changes — United States, August 1–September 17, 2021. The metrics listed for each school learning modality reflect totals by district and the number of enrolled students per district for which data are available. School districts represented here exclude private schools and include the following NCES subtypes: Public school district that is NOT a component of a supervisory union Public school district that is a component of a supervisory union Independent charter district “BI” in the state column refers to school districts funded by the Bureau of Indian Education. Technical Notes Data from August 1, 2021 to June 24, 2022 correspond to the 2021-2022 school year. During this time frame, data from the AEI/Return to Learn Tracker and most state dashboards were not available. Inferred modalities with a probability below 0.6 were deemed inconclusive and were omitted. During the Fall 2022 semester, modalities for districts with a school closure reported by Burbio were updated to either “Remote”, if the closure spanned the entire week, or “Hybrid”, if the closure spanned 1-4 days of the week. Data from August
https://en.wikipedia.org/wiki/Public_domainhttps://en.wikipedia.org/wiki/Public_domain
The Colleges and Universities feature class/shapefile is composed of all Post Secondary Education facilities as defined by the Integrated Post Secondary Education System (IPEDS, http://nces.ed.gov/ipeds/), National Center for Education Statistics (NCES, https://nces.ed.gov/), US Department of Education for the 2018-2019 school year. Included are Doctoral/Research Universities, Masters Colleges and Universities, Baccalaureate Colleges, Associates Colleges, Theological seminaries, Medical Schools and other health care professions, Schools of engineering and technology, business and management, art, music, design, Law schools, Teachers colleges, Tribal colleges, and other specialized institutions. Overall, this data layer covers all 50 states, as well as Puerto Rico and other assorted U.S. territories. This feature class contains all MEDS/MEDS+ as approved by the National Geospatial-Intelligence Agency (NGA) Homeland Security Infrastructure Program (HSIP) Team. Complete field and attribute information is available in the ”Entities and Attributes” metadata section. Geographical coverage is depicted in the thumbnail above and detailed in the "Place Keyword" section of the metadata. This feature class does not have a relationship class but is related to Supplemental Colleges. Colleges and Universities that are not included in the NCES IPEDS data are added to the Supplemental Colleges feature class when found. This release includes the addition of 175 new records, the removal of 468 no longer reported by NCES, and modifications to the spatial location and/or attribution of 6682 records.
Citywide Class Size Report, including Region, District, School, Program, Grade or Service Category, Average Class Size, and Pupil / Teacher Ratio (PTR) SOURCES: 10/31/06 Official Register (K-9) and 12/15/06 Register/Schedule (9-12) Grade 9 not in high schools Indicates how special class is delivered For schools with students in any grades between Kindergarten and 9th grade (where 9th grade is the termination grade for the school), class size is reported by four program areas: general education, special education self-contained class, collaborative team teaching and gifted and talented self-contained class. Within each program area class size is reported by grade or service category, which indicates how a special education self-contained class is delivered. Class size is calculated by dividing the number of students in a program and grade by the number of official classes in that program and grade. The following data is excluded from all the reports: District 75 schools, bridge classes which span more than one grade, classes with fewer than five students (for other than special education self-contained classes) and classes with one student (for special education self-contained classes). On the summary reports programs and grades with three or fewer classes are excluded from the citywide, borough and region reports and programs and grades with one class are excluded from the district report. For schools with students in any grades between 9th and 12th grade (where 9th grade is not the termination grade for the school), class size is reported by two program areas: general education and special education. For general education students class size is reported by grade for each core subject area: English, Math, Science and Social Studies. For special education students with a self-contained program recommendation, class size is reported by service category (self-contained or mainstream) for each core subject area. Since high school classes may contain students in multiple grades and programs, class size is calculated by taking a weighted average of all the classes in a core subject area with students in a particular grade or program. For example, there are 75 ninth graders enrolled at a high school. 25 ninth graders attend a Math class with 28 students, a second group of 25 ninth graders attend a Math class with 25 students, and a third group of 25 ninth graders attend a Math class with 30 students. Average class size for ninth grade Math equals: (25x28 + 25x25 + 25x30)/75 = 27.7. The Pupil Teacher Ratio is also provided on the school level report. Pupil Teacher Ratio is another means to evaluate the instructional resources provided at a school. Pupil Teacher Ratio for All Students is calculated by dividing the number of students at a school by the number of full-time equivalent teachers, including both teachers in classes taught by two teachers, “cluster” teachers providing instruction in specialized topics like art or science, and teachers providing special education instruction. Pupil Teacher Ratio Excluding Special Education is calculated by dividing the number of non-special education students at a school by the number of full-time equivalent non-special education teachers.
This dataset attempts to represent the point locations of every educational program in the state of Minnesota that is currently operational and reporting to the Minnesota Department of Education. It can be used to identify schools, various individual school programs, school districts (by office location), colleges, and libraries, among other programs. Please note that not all school programs are statutorily required to report, and many types of programs can be reported at any time of the year, so this dataset is by nature an incomplete snapshot in time.
Maintenance of these locations are a result of an ongoing project to identify current school program locations where Food and Nutrition Services Office (FNS) programs are utilized. The FNS Office is in the Minnesota Department of Education (MDE). GIS staff at MDE maintain the dataset using school program and physical addresses provided by local education authorities (LEAs) for an MDE database called "MDE ORG". MDE GIS staff track weekly changes to program locations, along with comprehensive reviews each summer. All records have been reviewed for accuracy or edited at least once since January 1, 2020.
Note that there may remain errors due to the number of program locations and inconsistency in reporting from LEAs and other organizations. In particular, some organization types (such as colleges and treatment programs) are not subject to annual reporting requirements, so some records included in this file may in fact be inactive or inaccurately located.
Note that multiple programs may occur at the same location and are represented as separate records. For example, a junior and a senior high school may be in the same building, but each has a separate record in the data layer. Users leverage the "CLASS" and "ORGTYPE" attributes to filter and sort records according to their needs. In general, records at the same physical address will be located at the same coordinates.
This data is now available in CSV format. For that format only, OBJECTID and Shape columns are removed, and the Shape column is replaced by Latitude and Longitude columns.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Note: This version supersedes version 1: https://doi.org/10.15482/USDA.ADC/1522654. In Fall of 2019 the USDA Food and Nutrition Service (FNS) conducted the third Farm to School Census. The 2019 Census was sent via email to 18,832 school food authorities (SFAs) including all public, private, and charter SFAs, as well as residential care institutions, participating in the National School Lunch Program. The questionnaire collected data on local food purchasing, edible school gardens, other farm to school activities and policies, and evidence of economic and nutritional impacts of participating in farm to school activities. A total of 12,634 SFAs completed usable responses to the 2019 Census. Version 2 adds the weight variable, “nrweight”, which is the Non-response weight. Processing methods and equipment used The 2019 Census was administered solely via the web. The study team cleaned the raw data to ensure the data were as correct, complete, and consistent as possible. This process involved examining the data for logical errors, contacting SFAs and consulting official records to update some implausible values, and setting the remaining implausible values to missing. The study team linked the 2019 Census data to information from the National Center of Education Statistics (NCES) Common Core of Data (CCD). Records from the CCD were used to construct a measure of urbanicity, which classifies the area in which schools are located. Study date(s) and duration Data collection occurred from September 9 to December 31, 2019. Questions asked about activities prior to, during and after SY 2018-19. The 2019 Census asked SFAs whether they currently participated in, had ever participated in or planned to participate in any of 30 farm to school activities. An SFA that participated in any of the defined activities in the 2018-19 school year received further questions. Study spatial scale (size of replicates and spatial scale of study area) Respondents to the survey included SFAs from all 50 States as well as American Samoa, Guam, the Northern Mariana Islands, Puerto Rico, the U.S. Virgin Islands, and Washington, DC. Level of true replication Unknown Sampling precision (within-replicate sampling or pseudoreplication) No sampling was involved in the collection of this data. Level of subsampling (number and repeat or within-replicate sampling) No sampling was involved in the collection of this data. Study design (before–after, control–impacts, time series, before–after-control–impacts) None – Non-experimental Description of any data manipulation, modeling, or statistical analysis undertaken Each entry in the dataset contains SFA-level responses to the Census questionnaire for SFAs that responded. This file includes information from only SFAs that clicked “Submit” on the questionnaire. (The dataset used to create the 2019 Farm to School Census Report includes additional SFAs that answered enough questions for their response to be considered usable.) In addition, the file contains constructed variables used for analytic purposes. The file does not include weights created to produce national estimates for the 2019 Farm to School Census Report. The dataset identified SFAs, but to protect individual privacy the file does not include any information for the individual who completed the questionnaire. Description of any gaps in the data or other limiting factors See the full 2019 Farm to School Census Report [https://www.fns.usda.gov/cfs/farm-school-census-and-comprehensive-review] for a detailed explanation of the study’s limitations. Outcome measurement methods and equipment used None Resources in this dataset:Resource Title: 2019 Farm to School Codebook with Weights. File Name: Codebook_Update_02SEP21.xlsxResource Description: 2019 Farm to School Codebook with WeightsResource Title: 2019 Farm to School Data with Weights CSV. File Name: census2019_public_use_with_weight.csvResource Description: 2019 Farm to School Data with Weights CSVResource Title: 2019 Farm to School Data with Weights SAS R Stata and SPSS Datasets. File Name: Farm_to_School_Data_AgDataCommons_SAS_SPSS_R_STATA_with_weight.zipResource Description: 2019 Farm to School Data with Weights SAS R Stata and SPSS Datasets
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
Boston Public Schools (BPS) schools for the school year 2018-2019. Updated September 2018.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset comprises novel aspects specifically, in terms of student grading in diverse educational cultures within the multiple countries – Researchers and other education sectors will be able to see the impact of having varied curriculums in a country. Dataset compares different levelling cases when student transfer from curriculum to curriculum and the unreliable levelling criteria set by schools currently in an international school. The collected data can be used within the intelligent algorithms specifically machine learning and pattern analysis methods, to develop an intelligent framework applicable in multi-cultural educational systems to aid in a smooth transition “levelling, hereafter” of students who relocate from a particular education curriculum to another; and minimize the impact of switching on the students’ educational performance. The preliminary variables taken into consideration when deciding which data to collect depended on the variables. UAE is a multicultural country with many expats relocating from regions such as Asia, Europe and America. In order to meet expats needs, UAE has established many international private schools, therefore UAE was chosen to be the location of study based on many cases and struggles in levelling declared by the Ministry of Education and schools. For the first time, we present this dataset comprising students’ records for two academic years that included math, English, and science for 3 terms. Selection of subject areas and number of terms was based on influence from other researchers in similar subject matters.
The 2020-2021 School Learning Modalities dataset provides weekly estimates of school learning modality (including in-person, remote, or hybrid learning) for U.S. K-12 public and independent charter school districts for the 2020-2021 school year, from August 2020 – June 2021. These data were modeled using multiple sources of input data (see below) to infer the most likely learning modality of a school district for a given week. These data should be considered district-level estimates and may not always reflect true learning modality, particularly for districts in which data are unavailable. If a district reports multiple modality types within the same week, the modality offered for the majority of those days is reflected in the weekly estimate. All school district metadata are sourced from the National Center for Educational Statistics (NCES) for 2020-2021. School learning modality types are defined as follows: In-Person: All schools within the district offer face-to-face instruction 5 days per week to all students at all available grade levels. Remote: Schools within the district do not offer face-to-face instruction; all learning is conducted online/remotely to all students at all available grade levels. Hybrid: Schools within the district offer a combination of in-person and remote learning; face-to-face instruction is offered less than 5 days per week, or only to a subset of students. Data Information School learning modality data provided here are model estimates using combined input data and are not guaranteed to be 100% accurate. This learning modality dataset was generated by combining data from four different sources: Burbio [1], MCH Strategic Data [2], the AEI/Return to Learn Tracker [3], and state dashboards [4-20]. These data were combined using a Hidden Markov model which infers the sequence of learning modalities (In-Person, Hybrid, or Remote) for each district that is most likely to produce the modalities reported by these sources. This model was trained using data from the 2020-2021 school year. Metadata describing the location, number of schools and number of students in each district comes from NCES [21]. You can read more about the model in the CDC MMWR: COVID-19–Related School Closures and Learning Modality Changes — United States, August 1–September 17, 2021. The metrics listed for each school learning modality reflect totals by district and the number of enrolled students per district for which data are available. School districts represented here exclude private schools and include the following NCES subtypes: Public school district that is NOT a component of a supervisory union Public school district that is a component of a supervisory union Independent charter district “BI” in the state column refers to school districts funded by the Bureau of Indian Education. Technical Notes Data from September 1, 2020 to June 25, 2021 correspond to the 2020-2021 school year. During this timeframe, all four sources of data were available. Inferred modalities with a probability below 0.75 were deemed inconclusive and were omitted. Data for the month of July may show “In Person” status although most school districts are effectively closed during this time for summer break. Users may wish to exclude July data from use for this reason where applicable. Sources K-12 School Opening Tracker. Burbio 2021; https
September 2020The Schools 2019 layer is an annual update of public and private K-12 schools in the SACOG region. Public school data, including employment and enrollment, is compiled from the California Department of Education (CDE) and from local school districts. Private school data is compiled from CDE, from the Diocese of Sacramento, and private school websites. Schools with fewer than 6 students are not required to report data so those whose enrollment fluctuates annually around the 6-student mark will have incomplete data across years. Likewise, some larger schools have not been found in every report and may not appear in some years. Effort has been made to maintain in the list those school campuses that have been closed as they are important in the historical context of the data, but also retain the possibility of re-opening as another school, often charter or private. In the case of a new school opening on the campus of a closed school, a new point is now added to show the new school. In the early years of the dataset, the name was simply changed and the old name was only noted in the "Notes" field.Next update: September 2021
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Residential Schools Locations Dataset in shapefile format contains the locations (latitude and longitude) of Residential Schools and student hostels operated by the federal government in Canada. All the residential schools and hostels that are listed in the Indian Residential School Settlement Agreement are included in this data set, as well as several Industrial schools and residential schools that were not part of the IRRSA. This version of the dataset doesn’t include the five schools under the Newfoundland and Labrador Residential Schools Settlement Agreement. The original school location data was created by the Truth and Reconciliation Commission, and was provided to the researcher (Rosa Orlandini) by the National Centre for Truth and Reconciliation in April 2017. The data set was created by Rosa Orlandini, and builds upon and enhances the previous work of the Truth and Reconcilation Commission, Morgan Hite (creator of the Atlas of Indian Residential Schools in Canada that was produced for the Tk'emlups First Nation and Justice for Day Scholar's Initiative, and Stephanie Pyne (project lead for the Residential Schools Interactive Map). Each individual school location in this dataset is attributed either to RSIM, Morgan Hite, NCTR or Rosa Orlandini. Many schools/hostels had several locations throughout the history of the institution. If the school/hostel moved from its’ original location to another property, then the school is considered to have two unique locations in this data set,the original location and the new location. For example, Lejac Indian Residential School had two locations while it was operating, Stuart Lake and Fraser Lake. If a new school building was constructed on the same property as the original school building, it isn't considered to be a new location, as is the case of Girouard Indian Residential School. When the precise location is known, the coordinates of the main building are provided, and when the precise location of the building isn’t known, an approximate location is provided. For each residential school institution location, the following information is provided: official names, alternative name, dates of operation, religious affiliation, latitude and longitude coordinates, community location, Indigenous community name, contributor (of the location coordinates), school/institution photo (when available), location point precision, type of school (hostel or residential school) and list of references used to determine the location of the main buildings or sites. The geographic coordinate system for this dataset is WGS 1984. The data in shapefile format [IRS_locations.zip] can be viewed and mapped in a Geographic Information System software. Detailed metadata in xml format is available as part of the data in shapefile format. In addition, the field name descriptions (IRS_locfields.csv) and the detailed locations descriptions (IRS_locdescription.csv) should be used alongside the data in shapefile format.
This is an ESRI shape file of school point locations based on the official address. It includes some additional basic and pertinent information needed to link to other data sources. It also includes some basic school information such as Name, Address, Principal, and Principal’s contact information.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The master dataset contains comprehensive information for all government schools in NSW. Data items include school locations, latitude and longitude coordinates, school type, student enrolment numbers, electorate information, contact details and more.
This dataset is publicly available through the Data NSW website, and is used to support the School Finder tool.
Data Notes:
Data relating to healthy canteen is no longer up to date as it is no longer updated by the Department, this data can be sourced through NSW health.
Student enrolment numbers are based on the census of government school students undertaken on the first Friday of August; and LBOTE numbers are based on data collected in March.
School information, such as addresses and contact details, are updated regularly as required, and are the most current source of information.
Data is suppressed for indigenous and LBOTE percentages where student numbers are equal to, or less than five indicated by "np".
NSSC out of scope schools will not have an enrolment figure.
NSSC and LBOTE figures are updated annually in December.
ICSEA values are updated every February with the previous year's ICSEA values. Small schools, SSPs and Senior Secondary schools do not have their ICSEA values published by ACARA.
Family Occupation and Educational Index (FOEI) is a school-level index of educational disadvantage. Data is extracted in May and values are updated annually in December.
Following the introduction of part-time study in secondary schools in 1993, student enrolments are generally reported in full-time equivalent units (FTE). The FTE for students studying less than 10 units, the minimum workload, is determined by the formula: 0.1 x the number of units studied and represented as a proportion of the full-time enrolment of 1.0 FTE.
Data Source:
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This feature layer presents Public Schools defined by the Common Core Data (CCD) for the Homeland Infrastructure Foundation-Level Data (HIFLD) database, with an added Placekey to enable joining with other datasets. Placekey is a free, universal standard identifier for any physical place, so that the data pertaining to those places can be shared across organizations easily. This feature layer was created using exported data from this Public Schools layer and is intended for testing and demo purposes.This Public Schools feature dataset is composed of all Public elementary and secondary education facilities in the United States as defined by the Common Core of Data (CCD, https://nces.ed.gov/ccd/), National Center for Education Statistics (NCES, https://nces.ed.gov), US Department of Education for the 2017-2018 school year. This includes all Kindergarten through 12th grade schools as tracked by the Common Core of Data. Included in this dataset are military schools in US territories and referenced in the city field with an APO or FPO address. DOD schools represented in the NCES data that are outside of the United States or US territories have been omitted. This feature class contains all MEDS/MEDS+ as approved by NGA. Complete field and attribute information is available in the ”Entities and Attributes” metadata section. Geographical coverage is depicted in the thumbnail above and detailed in the Place Keyword section of the metadata. This release includes the addition of 3065 new records, modifications to the spatial location and/or attribution of 99,287 records, and removal of 2996 records not present in the NCES CCD data.
We know that students at elite universities tend to be from high-income families, and that graduates are more likely to end up in high-status or high-income jobs. But very little public data has been available on university admissions practices. This dataset, collected by Opportunity Insights, gives extensive detail on college application and admission rates for 139 colleges and universities across the United States, including data on the incomes of students. How do admissions practices vary by institution, and are wealthy students overrepresented?
Education equality is one of the most contested topics in society today. It can be defined and explored in many ways, from accessible education to disabled/low-income/rural students to the cross-generational influence of doctorate degrees and tenure track positions. One aspect of equality is the institutions students attend. Consider the “Ivy Plus” universities, which are all eight Ivy League schools plus MIT, Stanford, Duke, and Chicago. Although less than half of one percent of Americans attend Ivy-Plus colleges, they account for more than 10% of Fortune 500 CEOs, a quarter of U.S. Senators, half of all Rhodes scholars, and three-fourths of Supreme Court justices appointed in the last half-century.
A 2023 study (Chetty et al, 2023) tried to understand how these elite institutions affect educational equality:
Do highly selective private colleges amplify the persistence of privilege across generations by taking students from high-income families and helping them obtain high-status, high-paying leadership positions? Conversely, to what extent could such colleges diversify the socioeconomic backgrounds of society’s leaders by changing their admissions policies?
To answer these questions, they assembled a dataset documenting the admission and attendance rate for 13 different income bins for 139 selective universities around the country. They were able to access and link not only student SAT/ACT scores and high school grades, but also parents’ income through their tax records, students’ post-college graduate school enrollment or employment (including earnings, employers, and occupations), and also for some selected colleges, their internal admission ratings for each student. This dataset covers students in the entering classes of 2010–2015, or roughly 2.4 million domestic students.
They found that children from families in the top 1% (by income) are more than twice as likely to attend an Ivy-Plus college as those from middle-class families with comparable SAT/ACT scores, and two-thirds of this gap can be attributed to higher admission rates with similar scores, with the remaining third due to the differences in rates of application and matriculation (enrollment conditional on admission). This is not a shocking conclusion, but we can further explore elite college admissions by socioeconomic status to understand the differences between elite private colleges and public flagships admission practices, and to reflect on the privilege we have here and to envision what a fairer higher education system could look like.
The data has been aggregated by university and by parental income level, grouped into 13 income brackets. The income brackets are grouped by percentile relative to the US national income distribution, so for instance the 75.0 bin represents parents whose incomes are between the 70th and 80th percentile. The top two bins overlap: the 99.4 bin represents parents between the 99 and 99.9th percentiles, while the 99.5 bin represents parents in the top 1%.
Each row represents students’ admission and matriculation outcomes from one income bracket at a given university. There are 139 colleges covered in this dataset.
The variables include an array of different college-level-income-binned estimates for things including attendance rate (both raw and reweighted by SAT/ACT scores), application rate, and relative attendance rate conditional on application, also with respect to specific test score bands for each college and in/out-of state. Colleges are categorized into six tiers: Ivy Plus, other elite schools (public and private), highly selective public/private, and selective public/private, with selectivity generally in descending order. It also notes whether a college is public and/or flagship, where “flagship” means public flagship universities. Furthermore, they also report the relative application rate for each income bin within specific test bands, which are 50-point bands that had the most attendees in each school tier/category.
Several values are reported in “test-score-reweighted” form. These values control for SAT score: they are calculated separately for each SAT score value, then averaged with weights based on the distribution of SAT scores at the institution.
Note that since private schools typically don’t differentiate between in-...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Primary and post-primary schools throughout the Dublin Region for academic year 2019-2020. Includes type, patronage, M/F enrollment numbers, location, etc. Dublin region comprises Dublin City, Dun Laoghaire-Rathdown County, Fingal County and South Dublin County Council areas, data may be queried by Council area. The source for this data is the National School Annual Census for 2019/2020, Dept. Education, see: https://www.education.ie/en/Publications/Statistics/Data-on-Individual-Schools/
Non-school educational institutions in the Detroit Educational Institutions datasets were identified from the State of Michigan Center for Educational Performance and Information (CEPI) Educational Entity Master (EEM) database. Schools of all statuses (Open - Active; Open - Pending; Open - Inactive; Open - Under construction/remodeling; Open - Vacant/empty; Closed – Pending; Closed) are included in the dataset to provide access to information about schools that currently and previously operated in Detroit. Educational institutions with a mailing address in Detroit but a physical location outside the City are not included in this dataset. Each record in the dataset represents an educational entity, which may be a school, a district, or other entity directly associated with an educational institution. The word, "entity" is used in field (i.e., column) names and descriptions when a field is applicable to multiple types units associated with an educational entity (e.g., if applicable to schools, districts, and other facilities).
Link to metadata: https://cepi.state.mi.us/eem/Documents/ColumnDescriptions.pdf
This dataset displays the _location of schools that are overseen by the Bureau of Indian Education. There are 183 Bureau-funded elementary and secondary schools on 64 reservations in 23 states, serving approximately 40,000 Indian students. Of these, 55 are BIE-operated and 128 are tribally controlled under BIE contracts or grants. The Bureau also funds or operates off-reservation boarding schools and peripheral dormitories near reservations for public school students. The BIE also serves American Indian and Alaska Native post-secondary students through higher education scholarships and support funding for tribal colleges and universities. The BIE directly operates two post-secondary institutions: the Haskell Indian Nations University (HINU) in Lawrence, Kansas, and the Southwestern Indian Polytechnic Institute (SIPI) in Albuquerque, New Mexico. Native American boarding schools and dormitories were established in the United States during the late 19th and early 20th centuries. The land where the schools are located is administered by the Bureau of Indian Affairs while the facilities and there operation is under the jurisdiction of the Bureau of Indian Education. As stated in Title 25 CFR Part 32.3, BIE’s mission is to provide quality education opportunities from early childhood through life in accordance with a tribe’s needs for cultural and economic well-being, in keeping with the vast diversity of Indian tribes and Alaska Native villages as distinct cultural and governmental entities. Further, the BIE is to manifest consideration of the whole person by considering the individual's spiritual, mental, physical, and cultural aspects within his or her family and tribal or village context. The BIE school system employs thousands of teachers, administrators and support personnel, while many more work in tribal school systems.