10 datasets found
  1. U

    United States Google Search Trends: Government Measures: Government Subsidy

    • ceicdata.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, United States Google Search Trends: Government Measures: Government Subsidy [Dataset]. https://www.ceicdata.com/en/united-states/google-search-trends-by-categories/google-search-trends-government-measures-government-subsidy
    Explore at:
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Feb 23, 2025 - Mar 6, 2025
    Area covered
    United States
    Description

    United States Google Search Trends: Government Measures: Government Subsidy data was reported at 0.000 Score in 06 Mar 2025. This stayed constant from the previous number of 0.000 Score for 05 Mar 2025. United States Google Search Trends: Government Measures: Government Subsidy data is updated daily, averaging 0.000 Score from Dec 2021 (Median) to 06 Mar 2025, with 1192 observations. The data reached an all-time high of 0.000 Score in 06 Mar 2025 and a record low of 0.000 Score in 06 Mar 2025. United States Google Search Trends: Government Measures: Government Subsidy data remains active status in CEIC and is reported by Google Trends. The data is categorized under Global Database’s United States – Table US.Google.GT: Google Search Trends: by Categories.

  2. C

    China Google Search Trends: Online Shopping: Tmall

    • ceicdata.com
    Updated Mar 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). China Google Search Trends: Online Shopping: Tmall [Dataset]. https://www.ceicdata.com/en/china/google-search-trends-by-categories/google-search-trends-online-shopping-tmall
    Explore at:
    Dataset updated
    Mar 18, 2025
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 7, 2025 - Mar 18, 2025
    Area covered
    China
    Description

    China Google Search Trends: Online Shopping: Tmall data was reported at 7.000 Score in 18 Mar 2025. This stayed constant from the previous number of 7.000 Score for 17 Mar 2025. China Google Search Trends: Online Shopping: Tmall data is updated daily, averaging 0.000 Score from Dec 2021 (Median) to 18 Mar 2025, with 1204 observations. The data reached an all-time high of 70.000 Score in 22 Jan 2023 and a record low of 0.000 Score in 06 Mar 2025. China Google Search Trends: Online Shopping: Tmall data remains active status in CEIC and is reported by Google Trends. The data is categorized under Global Database’s China – Table CN.Google.GT: Google Search Trends: by Categories.

  3. Google energy consumption 2011-2023

    • statista.com
    Updated Oct 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Google energy consumption 2011-2023 [Dataset]. https://www.statista.com/statistics/788540/energy-consumption-of-google/
    Explore at:
    Dataset updated
    Oct 11, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    Google’s energy consumption has increased over the last few years, reaching 25.9 terawatt hours in 2023, up from 12.8 terawatt hours in 2019. The company has made efforts to make its data centers more efficient through customized high-performance servers, using smart temperature and lighting, advanced cooling techniques, and machine learning. Datacenters and energy Through its operations, Google pursues a more sustainable impact on the environment by creating efficient data centers that use less energy than the average, transitioning towards renewable energy, creating sustainable workplaces, and providing its users with the technological means towards a cleaner future for the future generations. Through its efficient data centers, Google has also managed to divert waste from its operations away from landfills. Reducing Google’s carbon footprint Google’s clean energy efforts is also related to their efforts to reduce their carbon footprint. Since their commitment to using 100 percent renewable energy, the company has met their targets largely through solar and wind energy power purchase agreements and buying renewable power from utilities. Google is one of the largest corporate purchasers of renewable energy in the world.

  4. Google Analytics Sample

    • kaggle.com
    zip
    Updated Sep 19, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Google BigQuery (2019). Google Analytics Sample [Dataset]. https://www.kaggle.com/datasets/bigquery/google-analytics-sample
    Explore at:
    zip(0 bytes)Available download formats
    Dataset updated
    Sep 19, 2019
    Dataset provided by
    Googlehttp://google.com/
    BigQueryhttps://cloud.google.com/bigquery
    Authors
    Google BigQuery
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    The Google Merchandise Store sells Google branded merchandise. The data is typical of what you would see for an ecommerce website.

    Content

    The sample dataset contains Google Analytics 360 data from the Google Merchandise Store, a real ecommerce store. The Google Merchandise Store sells Google branded merchandise. The data is typical of what you would see for an ecommerce website. It includes the following kinds of information:

    Traffic source data: information about where website visitors originate. This includes data about organic traffic, paid search traffic, display traffic, etc. Content data: information about the behavior of users on the site. This includes the URLs of pages that visitors look at, how they interact with content, etc. Transactional data: information about the transactions that occur on the Google Merchandise Store website.

    Fork this kernel to get started.

    Acknowledgements

    Data from: https://bigquery.cloud.google.com/table/bigquery-public-data:google_analytics_sample.ga_sessions_20170801

    Banner Photo by Edho Pratama from Unsplash.

    Inspiration

    What is the total number of transactions generated per device browser in July 2017?

    The real bounce rate is defined as the percentage of visits with a single pageview. What was the real bounce rate per traffic source?

    What was the average number of product pageviews for users who made a purchase in July 2017?

    What was the average number of product pageviews for users who did not make a purchase in July 2017?

    What was the average total transactions per user that made a purchase in July 2017?

    What is the average amount of money spent per session in July 2017?

    What is the sequence of pages viewed?

  5. Bitcoin Blockchain Historical Data

    • kaggle.com
    zip
    Updated Feb 12, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Google BigQuery (2019). Bitcoin Blockchain Historical Data [Dataset]. https://www.kaggle.com/bigquery/bitcoin-blockchain
    Explore at:
    zip(0 bytes)Available download formats
    Dataset updated
    Feb 12, 2019
    Dataset provided by
    BigQueryhttps://cloud.google.com/bigquery
    Authors
    Google BigQuery
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    Blockchain technology, first implemented by Satoshi Nakamoto in 2009 as a core component of Bitcoin, is a distributed, public ledger recording transactions. Its usage allows secure peer-to-peer communication by linking blocks containing hash pointers to a previous block, a timestamp, and transaction data. Bitcoin is a decentralized digital currency (cryptocurrency) which leverages the Blockchain to store transactions in a distributed manner in order to mitigate against flaws in the financial industry.

    Nearly ten years after its inception, Bitcoin and other cryptocurrencies experienced an explosion in popular awareness. The value of Bitcoin, on the other hand, has experienced more volatility. Meanwhile, as use cases of Bitcoin and Blockchain grow, mature, and expand, hype and controversy have swirled.

    Content

    In this dataset, you will have access to information about blockchain blocks and transactions. All historical data are in the bigquery-public-data:crypto_bitcoin dataset. It’s updated it every 10 minutes. The data can be joined with historical prices in kernels. See available similar datasets here: https://www.kaggle.com/datasets?search=bitcoin.

    Querying BigQuery tables

    You can use the BigQuery Python client library to query tables in this dataset in Kernels. Note that methods available in Kernels are limited to querying data. Tables are at bigquery-public-data.crypto_bitcoin.[TABLENAME]. Fork this kernel to get started.

    Method & Acknowledgements

    Allen Day (Twitter | Medium), Google Cloud Developer Advocate & Colin Bookman, Google Cloud Customer Engineer retrieve data from the Bitcoin network using a custom client available on GitHub that they built with the bitcoinj Java library. Historical data from the origin block to 2018-01-31 were loaded in bulk to two BigQuery tables, blocks_raw and transactions. These tables contain fresh data, as they are now appended when new blocks are broadcast to the Bitcoin network. For additional information visit the Google Cloud Big Data and Machine Learning Blog post "Bitcoin in BigQuery: Blockchain analytics on public data".

    Photo by Andre Francois on Unsplash.

    Inspiration

    • How many bitcoins are sent each day?
    • How many addresses receive bitcoin each day?
    • Compare transaction volume to historical prices by joining with other available data sources
  6. Repository Analytics and Metrics Portal (RAMP) 2019 data

    • data.niaid.nih.gov
    • zenodo.org
    zip
    Updated Jul 14, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jonathan Wheeler; Kenning Arlitsch (2021). Repository Analytics and Metrics Portal (RAMP) 2019 data [Dataset]. http://doi.org/10.5061/dryad.crjdfn342
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jul 14, 2021
    Dataset provided by
    University of New Mexico
    Montana State University
    Authors
    Jonathan Wheeler; Kenning Arlitsch
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    Version update: The originally uploaded versions of the CSV files in this dataset included an extra column, "Unnamed: 0," which is not RAMP data and was an artifact of the process used to export the data to CSV format. This column has been removed from the revised dataset. The data are otherwise the same as in the first version.

    The Repository Analytics and Metrics Portal (RAMP) is a web service that aggregates use and performance use data of institutional repositories. The data are a subset of data from RAMP, the Repository Analytics and Metrics Portal (http://rampanalytics.org), consisting of data from all participating repositories for the calendar year 2019. For a description of the data collection, processing, and output methods, please see the "methods" section below.

    Methods

    Data Collection

    RAMP data are downloaded for participating IR from Google Search Console (GSC) via the Search Console API. The data consist of aggregated information about IR pages which appeared in search result pages (SERP) within Google properties (including web search and Google Scholar).

    Data are downloaded in two sets per participating IR. The first set includes page level statistics about URLs pointing to IR pages and content files. The following fields are downloaded for each URL, with one row per URL:

    url: This is returned as a 'page' by the GSC API, and is the URL of the page which was included in an SERP for a Google property.
    impressions: The number of times the URL appears within the SERP.
    clicks: The number of clicks on a URL which took users to a page outside of the SERP.
    clickThrough: Calculated as the number of clicks divided by the number of impressions.
    position: The position of the URL within the SERP.
    date: The date of the search.
    

    Following data processing describe below, on ingest into RAMP a additional field, citableContent, is added to the page level data.

    The second set includes similar information, but instead of being aggregated at the page level, the data are grouped based on the country from which the user submitted the corresponding search, and the type of device used. The following fields are downloaded for combination of country and device, with one row per country/device combination:

    country: The country from which the corresponding search originated.
    device: The device used for the search.
    impressions: The number of times the URL appears within the SERP.
    clicks: The number of clicks on a URL which took users to a page outside of the SERP.
    clickThrough: Calculated as the number of clicks divided by the number of impressions.
    position: The position of the URL within the SERP.
    date: The date of the search.
    

    Note that no personally identifiable information is downloaded by RAMP. Google does not make such information available.

    More information about click-through rates, impressions, and position is available from Google's Search Console API documentation: https://developers.google.com/webmaster-tools/search-console-api-original/v3/searchanalytics/query and https://support.google.com/webmasters/answer/7042828?hl=en

    Data Processing

    Upon download from GSC, the page level data described above are processed to identify URLs that point to citable content. Citable content is defined within RAMP as any URL which points to any type of non-HTML content file (PDF, CSV, etc.). As part of the daily download of page level statistics from Google Search Console (GSC), URLs are analyzed to determine whether they point to HTML pages or actual content files. URLs that point to content files are flagged as "citable content." In addition to the fields downloaded from GSC described above, following this brief analysis one more field, citableContent, is added to the page level data which records whether each page/URL in the GSC data points to citable content. Possible values for the citableContent field are "Yes" and "No."

    The data aggregated by the search country of origin and device type do not include URLs. No additional processing is done on these data. Harvested data are passed directly into Elasticsearch.

    Processed data are then saved in a series of Elasticsearch indices. Currently, RAMP stores data in two indices per participating IR. One index includes the page level data, the second index includes the country of origin and device type data.

    About Citable Content Downloads

    Data visualizations and aggregations in RAMP dashboards present information about citable content downloads, or CCD. As a measure of use of institutional repository content, CCD represent click activity on IR content that may correspond to research use.

    CCD information is summary data calculated on the fly within the RAMP web application. As noted above, data provided by GSC include whether and how many times a URL was clicked by users. Within RAMP, a "click" is counted as a potential download, so a CCD is calculated as the sum of clicks on pages/URLs that are determined to point to citable content (as defined above).

    For any specified date range, the steps to calculate CCD are:

    Filter data to only include rows where "citableContent" is set to "Yes."
    Sum the value of the "clicks" field on these rows.
    

    Output to CSV

    Published RAMP data are exported from the production Elasticsearch instance and converted to CSV format. The CSV data consist of one "row" for each page or URL from a specific IR which appeared in search result pages (SERP) within Google properties as described above. Also as noted above, daily data are downloaded for each IR in two sets which cannot be combined. One dataset includes the URLs of items that appear in SERP. The second dataset is aggregated by combination of the country from which a search was conducted and the device used.

    As a result, two CSV datasets are provided for each month of published data:

    page-clicks:

    The data in these CSV files correspond to the page-level data, and include the following fields:

    url: This is returned as a 'page' by the GSC API, and is the URL of the page which was included in an SERP for a Google property.
    impressions: The number of times the URL appears within the SERP.
    clicks: The number of clicks on a URL which took users to a page outside of the SERP.
    clickThrough: Calculated as the number of clicks divided by the number of impressions.
    position: The position of the URL within the SERP.
    date: The date of the search.
    citableContent: Whether or not the URL points to a content file (ending with pdf, csv, etc.) rather than HTML wrapper pages. Possible values are Yes or No.
    index: The Elasticsearch index corresponding to page click data for a single IR.
    repository_id: This is a human readable alias for the index and identifies the participating repository corresponding to each row. As RAMP has undergone platform and version migrations over time, index names as defined for the previous field have not remained consistent. That is, a single participating repository may have multiple corresponding Elasticsearch index names over time. The repository_id is a canonical identifier that has been added to the data to provide an identifier that can be used to reference a single participating repository across all datasets. Filtering and aggregation for individual repositories or groups of repositories should be done using this field.
    

    Filenames for files containing these data end with “page-clicks”. For example, the file named 2019-01_RAMP_all_page-clicks.csv contains page level click data for all RAMP participating IR for the month of January, 2019.

    country-device-info:

    The data in these CSV files correspond to the data aggregated by country from which a search was conducted and the device used. These include the following fields:

    country: The country from which the corresponding search originated.
    device: The device used for the search.
    impressions: The number of times the URL appears within the SERP.
    clicks: The number of clicks on a URL which took users to a page outside of the SERP.
    clickThrough: Calculated as the number of clicks divided by the number of impressions.
    position: The position of the URL within the SERP.
    date: The date of the search.
    index: The Elasticsearch index corresponding to country and device access information data for a single IR.
    repository_id: This is a human readable alias for the index and identifies the participating repository corresponding to each row. As RAMP has undergone platform and version migrations over time, index names as defined for the previous field have not remained consistent. That is, a single participating repository may have multiple corresponding Elasticsearch index names over time. The repository_id is a canonical identifier that has been added to the data to provide an identifier that can be used to reference a single participating repository across all datasets. Filtering and aggregation for individual repositories or groups of repositories should be done using this field.
    

    Filenames for files containing these data end with “country-device-info”. For example, the file named 2019-01_RAMP_all_country-device-info.csv contains country and device data for all participating IR for the month of January, 2019.

    References

    Google, Inc. (2021). Search Console APIs. Retrieved from https://developers.google.com/webmaster-tools/search-console-api-original.

  7. Data (i.e., evidence) about evidence based medicine

    • figshare.com
    • search.datacite.org
    png
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jorge H Ramirez (2023). Data (i.e., evidence) about evidence based medicine [Dataset]. http://doi.org/10.6084/m9.figshare.1093997.v24
    Explore at:
    pngAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Jorge H Ramirez
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Update — December 7, 2014. – Evidence-based medicine (EBM) is not working for many reasons, for example: 1. Incorrect in their foundations (paradox): hierarchical levels of evidence are supported by opinions (i.e., lowest strength of evidence according to EBM) instead of real data collected from different types of study designs (i.e., evidence). http://dx.doi.org/10.6084/m9.figshare.1122534 2. The effect of criminal practices by pharmaceutical companies is only possible because of the complicity of others: healthcare systems, professional associations, governmental and academic institutions. Pharmaceutical companies also corrupt at the personal level, politicians and political parties are on their payroll, medical professionals seduced by different types of gifts in exchange of prescriptions (i.e., bribery) which very likely results in patients not receiving the proper treatment for their disease, many times there is no such thing: healthy persons not needing pharmacological treatments of any kind are constantly misdiagnosed and treated with unnecessary drugs. Some medical professionals are converted in K.O.L. which is only a puppet appearing on stage to spread lies to their peers, a person supposedly trained to improve the well-being of others, now deceits on behalf of pharmaceutical companies. Probably the saddest thing is that many honest doctors are being misled by these lies created by the rules of pharmaceutical marketing instead of scientific, medical, and ethical principles. Interpretation of EBM in this context was not anticipated by their creators. “The main reason we take so many drugs is that drug companies don’t sell drugs, they sell lies about drugs.” ―Peter C. Gøtzsche “doctors and their organisations should recognise that it is unethical to receive money that has been earned in part through crimes that have harmed those people whose interests doctors are expected to take care of. Many crimes would be impossible to carry out if doctors weren’t willing to participate in them.” —Peter C Gøtzsche, The BMJ, 2012, Big pharma often commits corporate crime, and this must be stopped. Pending (Colombia): Health Promoter Entities (In Spanish: EPS ―Empresas Promotoras de Salud).

    1. Misinterpretations New technologies or concepts are difficult to understand in the beginning, it doesn’t matter their simplicity, we need to get used to new tools aimed to improve our professional practice. Probably the best explanation is here in these videos (credits to Antonio Villafaina for sharing these videos with me). English https://www.youtube.com/watch?v=pQHX-SjgQvQ&w=420&h=315 Spanish https://www.youtube.com/watch?v=DApozQBrlhU&w=420&h=315 ----------------------- Hypothesis: hierarchical levels of evidence based medicine are wrong Dear Editor, I have data to support the hypothesis described in the title of this letter. Before rejecting the null hypothesis I would like to ask the following open question:Could you support with data that hierarchical levels of evidence based medicine are correct? (1,2) Additional explanation to this question: – Only respond to this question attaching publicly available raw data.– Be aware that more than a question this is a challenge: I have data (i.e., evidence) which is contrary to classic (i.e., McMaster) or current (i.e., Oxford) hierarchical levels of evidence based medicine. An important part of this data (but not all) is publicly available. References
    2. Ramirez, Jorge H (2014): The EBM challenge. figshare. http://dx.doi.org/10.6084/m9.figshare.1135873
    3. The EBM Challenge Day 1: No Answers. Competing interests: I endorse the principles of open data in human biomedical research Read this letter on The BMJ – August 13, 2014.http://www.bmj.com/content/348/bmj.g3725/rr/762595Re: Greenhalgh T, et al. Evidence based medicine: a movement in crisis? BMJ 2014; 348: g3725. _ Fileset contents Raw data: Excel archive: Raw data, interactive figures, and PubMed search terms. Google Spreadsheet is also available (URL below the article description). Figure 1. Unadjusted (Fig 1A) and adjusted (Fig 1B) PubMed publication trends (01/01/1992 to 30/06/2014). Figure 2. Adjusted PubMed publication trends (07/01/2008 to 29/06/2014) Figure 3. Google search trends: Jan 2004 to Jun 2014 / 1-week periods. Figure 4. PubMed publication trends (1962-2013) systematic reviews and meta-analysis, clinical trials, and observational studies.
      Figure 5. Ramirez, Jorge H (2014): Infographics: Unpublished US phase 3 clinical trials (2002-2014) completed before Jan 2011 = 50.8%. figshare.http://dx.doi.org/10.6084/m9.figshare.1121675 Raw data: "13377 studies found for: Completed | Interventional Studies | Phase 3 | received from 01/01/2002 to 01/01/2014 | Worldwide". This database complies with the terms and conditions of ClinicalTrials.gov: http://clinicaltrials.gov/ct2/about-site/terms-conditions Supplementary Figures (S1-S6). PubMed publication delay in the indexation processes does not explain the descending trends in the scientific output of evidence-based medicine. Acknowledgments I would like to acknowledge the following persons for providing valuable concepts in data visualization and infographics:
    4. Maria Fernanda Ramírez. Professor of graphic design. Universidad del Valle. Cali, Colombia.
    5. Lorena Franco. Graphic design student. Universidad del Valle. Cali, Colombia. Related articles by this author (Jorge H. Ramírez)
    6. Ramirez JH. Lack of transparency in clinical trials: a call for action. Colomb Med (Cali) 2013;44(4):243-6. URL: http://www.ncbi.nlm.nih.gov/pubmed/24892242
    7. Ramirez JH. Re: Evidence based medicine is broken (17 June 2014). http://www.bmj.com/node/759181
    8. Ramirez JH. Re: Global rules for global health: why we need an independent, impartial WHO (19 June 2014). http://www.bmj.com/node/759151
    9. Ramirez JH. PubMed publication trends (1992 to 2014): evidence based medicine and clinical practice guidelines (04 July 2014). http://www.bmj.com/content/348/bmj.g3725/rr/759895 Recommended articles
    10. Greenhalgh Trisha, Howick Jeremy,Maskrey Neal. Evidence based medicine: a movement in crisis? BMJ 2014;348:g3725
    11. Spence Des. Evidence based medicine is broken BMJ 2014; 348:g22
    12. Schünemann Holger J, Oxman Andrew D,Brozek Jan, Glasziou Paul, JaeschkeRoman, Vist Gunn E et al. Grading quality of evidence and strength of recommendations for diagnostic tests and strategies BMJ 2008; 336:1106
    13. Lau Joseph, Ioannidis John P A, TerrinNorma, Schmid Christopher H, OlkinIngram. The case of the misleading funnel plot BMJ 2006; 333:597
    14. Moynihan R, Henry D, Moons KGM (2014) Using Evidence to Combat Overdiagnosis and Overtreatment: Evaluating Treatments, Tests, and Disease Definitions in the Time of Too Much. PLoS Med 11(7): e1001655. doi:10.1371/journal.pmed.1001655
    15. Katz D. A-holistic view of evidence based medicinehttp://thehealthcareblog.com/blog/2014/05/02/a-holistic-view-of-evidence-based-medicine/ ---
  8. H

    Replication Data for: Computer-Assisted Keyword and Document Set Discovery...

    • dataverse.harvard.edu
    • search.dataone.org
    Updated Dec 11, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gary King; Patrick Lam; Margaret E. Roberts (2018). Replication Data for: Computer-Assisted Keyword and Document Set Discovery from Unstructured Text [Dataset]. http://doi.org/10.7910/DVN/FMJDCD
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 11, 2018
    Dataset provided by
    Harvard Dataverse
    Authors
    Gary King; Patrick Lam; Margaret E. Roberts
    License

    https://dataverse.harvard.edu/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.7910/DVN/FMJDCDhttps://dataverse.harvard.edu/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.7910/DVN/FMJDCD

    Description

    The (unheralded) first step in many applications of automated text analysis involves selecting keywords to choose documents from a large text corpus for further study. Although all substantive results depend on this choice, researchers usually pick keywords in ad hoc ways that are far from optimal and usually biased. Most seem to think that keyword selection is easy, since they do Google searches every day, but we demonstrate that humans perform exceedingly poorly at this basic task. We offer a better approach, one that also can help with following conversations where participants rapidly innovate language to evade authorities, seek political advantage, or express creativity; generic web searching; eDiscovery; look-alike modeling; industry and intelligence analysis; and sentiment and topic analysis. We develop a computer-assisted (as opposed to fully automated or human-only) statistical approach that suggests keywords from available text without needing structured data as inputs. This framing poses the statistical problem in a new way, which leads to a widely applicable algorithm. Our specific approach is based on training classifiers, extracting information from (rather than correcting) their mistakes, and summarizing results with easy-to-understand Boolean search strings. We illustrate how the technique works with analyses of English texts about the Boston Marathon Bombings, Chinese social media posts designed to evade censorship, and others.

  9. N

    Nigeria Google Search Trends: Online Classroom: Zoom

    • ceicdata.com
    Updated Oct 30, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nigeria Google Search Trends: Online Classroom: Zoom [Dataset]. https://www.ceicdata.com/en/nigeria/google-search-trends-by-categories
    Explore at:
    Dataset updated
    Oct 30, 2022
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Nov 13, 2024 - Nov 24, 2024
    Area covered
    Nigeria
    Description

    Google Search Trends: Online Classroom: Zoom data was reported at 1.000 Score in 24 Nov 2024. This stayed constant from the previous number of 1.000 Score for 23 Nov 2024. Google Search Trends: Online Classroom: Zoom data is updated daily, averaging 1.000 Score from Dec 2021 (Median) to 24 Nov 2024, with 1090 observations. The data reached an all-time high of 9.000 Score in 20 Sep 2023 and a record low of 0.000 Score in 12 Feb 2024. Google Search Trends: Online Classroom: Zoom data remains active status in CEIC and is reported by Google Trends. The data is categorized under Global Database’s Nigeria – Table NG.Google.GT: Google Search Trends: by Categories.

  10. T

    Tanzania Google Search Trends: Travel & Accommodations: Booking.com

    • ceicdata.com
    Updated Mar 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tanzania Google Search Trends: Travel & Accommodations: Booking.com [Dataset]. https://www.ceicdata.com/en/tanzania/google-search-trends-by-categories/google-search-trends-travel--accommodations-bookingcom
    Explore at:
    Dataset updated
    Mar 20, 2025
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 9, 2025 - Mar 20, 2025
    Area covered
    Tanzania
    Description

    Tanzania Google Search Trends: Travel & Accommodations: Booking.com data was reported at 8.000 Score in 20 Mar 2025. This records a decrease from the previous number of 9.000 Score for 19 Mar 2025. Tanzania Google Search Trends: Travel & Accommodations: Booking.com data is updated daily, averaging 0.000 Score from Dec 2021 (Median) to 20 Mar 2025, with 1206 observations. The data reached an all-time high of 82.000 Score in 04 Aug 2022 and a record low of 0.000 Score in 07 Mar 2025. Tanzania Google Search Trends: Travel & Accommodations: Booking.com data remains active status in CEIC and is reported by Google Trends. The data is categorized under Global Database’s Tanzania – Table TZ.Google.GT: Google Search Trends: by Categories.

  11. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
CEICdata.com, United States Google Search Trends: Government Measures: Government Subsidy [Dataset]. https://www.ceicdata.com/en/united-states/google-search-trends-by-categories/google-search-trends-government-measures-government-subsidy

United States Google Search Trends: Government Measures: Government Subsidy

Explore at:
Dataset provided by
CEICdata.com
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Time period covered
Feb 23, 2025 - Mar 6, 2025
Area covered
United States
Description

United States Google Search Trends: Government Measures: Government Subsidy data was reported at 0.000 Score in 06 Mar 2025. This stayed constant from the previous number of 0.000 Score for 05 Mar 2025. United States Google Search Trends: Government Measures: Government Subsidy data is updated daily, averaging 0.000 Score from Dec 2021 (Median) to 06 Mar 2025, with 1192 observations. The data reached an all-time high of 0.000 Score in 06 Mar 2025 and a record low of 0.000 Score in 06 Mar 2025. United States Google Search Trends: Government Measures: Government Subsidy data remains active status in CEIC and is reported by Google Trends. The data is categorized under Global Database’s United States – Table US.Google.GT: Google Search Trends: by Categories.

Search
Clear search
Close search
Google apps
Main menu