Daily utilization metrics for data.lacity.org and geohub.lacity.org. Updated monthly
This file contains 5 years of daily time series data for several measures of traffic on a statistical forecasting teaching notes website whose alias is statforecasting.com. The variables have complex seasonality that is keyed to the day of the week and to the academic calendar. The patterns you you see here are similar in principle to what you would see in other daily data with day-of-week and time-of-year effects. Some good exercises are to develop a 1-day-ahead forecasting model, a 7-day ahead forecasting model, and an entire-next-week forecasting model (i.e., next 7 days) for unique visitors.
The variables are daily counts of page loads, unique visitors, first-time visitors, and returning visitors to an academic teaching notes website. There are 2167 rows of data spanning the date range from September 14, 2014, to August 19, 2020. A visit is defined as a stream of hits on one or more pages on the site on a given day by the same user, as identified by IP address. Multiple individuals with a shared IP address (e.g., in a computer lab) are considered as a single user, so real users may be undercounted to some extent. A visit is classified as "unique" if a hit from the same IP address has not come within the last 6 hours. Returning visitors are identified by cookies if those are accepted. All others are classified as first-time visitors, so the count of unique visitors is the sum of the counts of returning and first-time visitors by definition. The data was collected through a traffic monitoring service known as StatCounter.
This file and a number of other sample datasets can also be found on the website of RegressIt, a free Excel add-in for linear and logistic regression which I originally developed for use in the course whose website generated the traffic data given here. If you use Excel to some extent as well as Python or R, you might want to try it out on this dataset.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
SDCC Traffic Congestion Saturation Flow Data for January to June 2023. Traffic volumes, traffic saturation, and congestion data for sites across South Dublin County. Used by traffic management to control stage timings on junctions. It is recommended that this dataset is read in conjunction with the ‘Traffic Data Site Names SDCC’ dataset.A detailed description of each column heading can be referenced below;scn: Site Serial numberregion: A group of Nodes that are operated under SCOOT control at the same common cycle time. Normally these will be nodes between which co-ordination is desirable. Some of the nodes may be double cycling at half of the region cycle time.system: SCOOT STC UTC (UTC-MX)locn: Locationssite: Site numbersday: Days of the week Monday to Sunday. Abbreviations; MO,TU,WE,TH,FR,SA,SU.date: Reflects correct actual Date of when data was collected.start_time: NOTE - Please ignore the date displayed in this column. The actual data collection date is correctly displayed in the 'date' column. The date displayed here is the date of when report was run and extracted from the system, but correctly reflects start time of 15 minute intervals. end_time: End time of 15 minute intervals.flow: A representation of demand (flow) for each link built up over several minutes by the SCOOT model. SCOOT has two profiles:(1) Short – Raw data representing the actual values over the previous few minutes(2) Long – A smoothed average of values over a longer periodSCOOT will choose to use the appropriate profile depending on a number of factors.flow_pc: Same as above ref PC SCOOTcong: Congestion is directly measured from the detector. If the detector is placed beyond the normal end of queue in the street it is rarely covered by stationary traffic, except of course when congestion occurs. If any detector shows standing traffic for the whole of an interval this is recorded. The number of intervals of congestion in any cycle is also recorded.The percentage congestion is calculated from:No of congested intervals x 4 x 100 cycle time in seconds.This percentage of congestion is available to view and more importantly for the optimisers to take into account.cong_pc: Same as above ref PC SCOOTdsat: The ratio of the demand flow to the maximum possible discharge flow, i.e. it is the ratio of the demand to the discharge rate (Saturation Occupancy) multiplied by the duration of the effective green time. The Split optimiser will try to minimise the maximum degree of saturation on links approaching the node.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The Google Merchandise Store sells Google branded merchandise. The data is typical of what you would see for an ecommerce website.
The sample dataset contains Google Analytics 360 data from the Google Merchandise Store, a real ecommerce store. The Google Merchandise Store sells Google branded merchandise. The data is typical of what you would see for an ecommerce website. It includes the following kinds of information:
Traffic source data: information about where website visitors originate. This includes data about organic traffic, paid search traffic, display traffic, etc. Content data: information about the behavior of users on the site. This includes the URLs of pages that visitors look at, how they interact with content, etc. Transactional data: information about the transactions that occur on the Google Merchandise Store website.
Fork this kernel to get started.
Banner Photo by Edho Pratama from Unsplash.
What is the total number of transactions generated per device browser in July 2017?
The real bounce rate is defined as the percentage of visits with a single pageview. What was the real bounce rate per traffic source?
What was the average number of product pageviews for users who made a purchase in July 2017?
What was the average number of product pageviews for users who did not make a purchase in July 2017?
What was the average total transactions per user that made a purchase in July 2017?
What is the average amount of money spent per session in July 2017?
What is the sequence of pages viewed?
Click Web Traffic Combined with Transaction Data: A New Dimension of Shopper Insights
Consumer Edge is a leader in alternative consumer data for public and private investors and corporate clients. Click enhances the unparalleled accuracy of CE Transact by allowing investors to delve deeper and browse further into global online web traffic for CE Transact companies and more. Leverage the unique fusion of web traffic and transaction datasets to understand the addressable market and understand spending behavior on consumer and B2B websites. See the impact of changes in marketing spend, search engine algorithms, and social media awareness on visits to a merchant’s website, and discover the extent to which product mix and pricing drive or hinder visits and dwell time. Plus, Click uncovers a more global view of traffic trends in geographies not covered by Transact. Doubleclick into better forecasting, with Click.
Consumer Edge’s Click is available in machine-readable file delivery and enables: • Comprehensive Global Coverage: Insights across 620+ brands and 59 countries, including key markets in the US, Europe, Asia, and Latin America. • Integrated Data Ecosystem: Click seamlessly maps web traffic data to CE entities and stock tickers, enabling a unified view across various business intelligence tools. • Near Real-Time Insights: Daily data delivery with a 5-day lag ensures timely, actionable insights for agile decision-making. • Enhanced Forecasting Capabilities: Combining web traffic indicators with transaction data helps identify patterns and predict revenue performance.
Use Case: Analyze Year Over Year Growth Rate by Region
Problem A public investor wants to understand how a company’s year-over-year growth differs by region.
Solution The firm leveraged Consumer Edge Click data to: • Gain visibility into key metrics like views, bounce rate, visits, and addressable spend • Analyze year-over-year growth rates for a time period • Breakout data by geographic region to see growth trends
Metrics Include: • Spend • Items • Volume • Transactions • Price Per Volume
Inquire about a Click subscription to perform more complex, near real-time analyses on public tickers and private brands as well as for industries beyond CPG like: • Monitor web traffic as a leading indicator of stock performance and consumer demand • Analyze customer interest and sentiment at the brand and sub-brand levels
Consumer Edge offers a variety of datasets covering the US, Europe (UK, Austria, France, Germany, Italy, Spain), and across the globe, with subscription options serving a wide range of business needs.
Consumer Edge is the Leader in Data-Driven Insights Focused on the Global Consumer
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Visitor numbers for the data hotel (hotel.difi.no) showing page views per dataset, and for quarter datasets, many page views that are of different formats (JSON, JSONP, XML, complete download, etc.). In addition, an approximate count for traffic (in bytes) per. dataset. The boiler for data is data about page views in AWStats. These tala are queued through a program that sums up traffic per dataset and filters out unrelevant traffic. For explanation of the various fields, including mulege values, see field definitions. OBS. Please note that statistics before 2017 are incorrect. This is a technical problem that causes us to lack traffic data for larger or smaller periods. For example, one lacks of years of data for over 100 days. Ideas for use — Create a web app that shows statistics per data set, graph for page views over time. — Summing up traffic per data settlement There may be errors in the dataset. Use the comments section if you have any questions, comments or other comments!
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Popular Website Traffic Over Time ’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/yamqwe/popular-website-traffice on 13 February 2022.
--- Dataset description provided by original source is as follows ---
Background
Have you every been in a conversation and the question comes up, who uses Bing? This question comes up occasionally because people wonder if these sites have any views. For this research study, we are going to be exploring popular website traffic for many popular websites.
Methodology
The data collected originates from SimilarWeb.com.
Source
For the analysis and study, go to The Concept Center
This dataset was created by Chase Willden and contains around 0 samples along with 1/1/2017, Social Media, technical information and other features such as: - 12/1/2016 - 3/1/2017 - and more.
- Analyze 11/1/2016 in relation to 2/1/2017
- Study the influence of 4/1/2017 on 1/1/2017
- More datasets
If you use this dataset in your research, please credit Chase Willden
--- Original source retains full ownership of the source dataset ---
Context There's a story behind every dataset and here's your opportunity to share yours.
Content What's inside is more than just rows and columns. Make it easy for others to get started by describing how you acquired the data and what time period it represents, too.
Acknowledgements We wouldn't be here without the help of others. If you owe any attributions or thanks, include them here along with any citations of past research.
Inspiration Your data will be in front of the world's largest data science community. What questions do you want to see answered?
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
SDCC Traffic Data Collection Site Names. A detailed description of each column heading can be referenced below;scn: Site Serial numberregion: A group of Nodes that are operated under SCOOT control at the same common cycle time. Normally these will be nodes between which co-ordination is desirable. Some of the nodes may be double cycling at half of the region cycle time.system: SCOOT STC UTC (UTC-MX)locn: Locations
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This users dataset is a preview of a much bigger dataset, with lots of related data (product listings of sellers, comments on listed products, etc...).
My Telegram bot will answer your queries and allow you to contact me.
There are a lot of unknowns when running an E-commerce store, even when you have analytics to guide your decisions.
Users are an important factor in an e-commerce business. This is especially true in a C2C-oriented store, since they are both the suppliers (by uploading their products) AND the customers (by purchasing other user's articles).
This dataset aims to serve as a benchmark for an e-commerce fashion store. Using this dataset, you may want to try and understand what you can expect of your users and determine in advance how your grows may be.
If you think this kind of dataset may be useful or if you liked it, don't forget to show your support or appreciation with an upvote/comment. You may even include how you think this dataset might be of use to you. This way, I will be more aware of specific needs and be able to adapt my datasets to suits more your needs.
This dataset is part of a preview of a much larger dataset. Please contact me for more.
The data was scraped from a successful online C2C fashion store with over 10M registered users. The store was first launched in Europe around 2009 then expanded worldwide.
Visitors vs Users: Visitors do not appear in this dataset. Only registered users are included. "Visitors" cannot purchase an article but can view the catalog.
We wouldn't be here without the help of others. If you owe any attributions or thanks, include them here along with any citations of past research.
Questions you might want to answer using this dataset:
Example works:
For other licensing options, contact me.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
YouTube flows
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Traffic volumes data across Dublin City from the SCATS traffic management system. The Sydney Coordinated Adaptive Traffic System (SCATS) is an intelligent transportation system used to manage timing of signal phases at traffic signals. SCATS uses sensors at each traffic signal to detect vehicle presence in each lane and pedestrians waiting to cross at the local site. The vehicle sensors are generally inductive loops installed within the road. 3 resources are provided: SCATS Traffic Volumes Data (Monthly) Contained in this report are traffic counts taken from the SCATS traffic detectors located at junctions. The primary function for these traffic detectors is for traffic signal control. Such devices can also count general traffic volumes at defined locations on approach to a junction. These devices are set at specific locations on approaches to the junction but may not be on all approaches to a junction. As there are multiple junctions on any one route, it could be expected that a vehicle would be counted multiple times as it progress along the route. Thus the traffic volume counts here are best used to represent trends in vehicle movement by selecting a specific junction on the route which best represents the overall traffic flows. Information provided: End Time: time that one hour count period finishes. Region: location of the detector site (e.g. North City, West City, etc). Site: this can be matched with the SCATS Sites file to show location Detector: the detectors/ sensors at each site are numbered Sum volume: total traffic volumes in preceding hour Avg volume: average traffic volumes per 5 minute interval in preceding hour All Dates Traffic Volumes Data This file contains daily totals of traffic flow at each site location. SCATS Site Location Data Contained in this report, the location data for the SCATS sites is provided. The meta data provided includes the following; Site id – This is a unique identifier for each junction on SCATS Site description( CAP) – Descriptive location of the junction containing street name(s) intersecting streets Site description (lower) - – Descriptive location of the junction containing street name(s) intersecting streets Region – The area of the city, adjoining local authority, region that the site is located LAT/LONG – Coordinates Disclaimer: the location files are regularly updated to represent the locations of SCATS sites under the control of Dublin City Council. However site accuracy is not absolute. Information for LAT/LONG and region may not be available for all sites contained. It is at the discretion of the user to link the files for analysis and to create further data. Furthermore, detector communication issues or faulty detectors could also result in an inaccurate result for a given period, so values should not be taken as absolute but can be used to indicate trends.
Abstract: The task for this dataset is to forecast the spatio-temporal traffic volume based on the historical traffic volume and other features in neighboring locations.
Data Set Characteristics | Number of Instances | Area | Attribute Characteristics | Number of Attributes | Date Donated | Associated Tasks | Missing Values |
---|---|---|---|---|---|---|---|
Multivariate | 2101 | Computer | Real | 47 | 2020-11-17 | Regression | N/A |
Source: Liang Zhao, liang.zhao '@' emory.edu, Emory University.
Data Set Information: The task for this dataset is to forecast the spatio-temporal traffic volume based on the historical traffic volume and other features in neighboring locations. Specifically, the traffic volume is measured every 15 minutes at 36 sensor locations along two major highways in Northern Virginia/Washington D.C. capital region. The 47 features include: 1) the historical sequence of traffic volume sensed during the 10 most recent sample points (10 features), 2) week day (7 features), 3) hour of day (24 features), 4) road direction (4 features), 5) number of lanes (1 feature), and 6) name of the road (1 feature). The goal is to predict the traffic volume 15 minutes into the future for all sensor locations. With a given road network, we know the spatial connectivity between sensor locations. For the detailed data information, please refer to the file README.docx.
Attribute Information: The 47 features include: (1) the historical sequence of traffic volume sensed during the 10 most recent sample points (10 features), (2) week day (7 features), (3) hour of day (24 features), (4) road direction (4 features), (5) number of lanes (1 feature), and (6) name of the road (1 feature).
Relevant Papers: Liang Zhao, Olga Gkountouna, and Dieter Pfoser. 2019. Spatial Auto-regressive Dependency Interpretable Learning Based on Spatial Topological Constraints. ACM Trans. Spatial Algorithms Syst. 5, 3, Article 19 (August 2019), 28 pages. DOI:[Web Link]
Citation Request: To use these datasets, please cite the papers:
Liang Zhao, Olga Gkountouna, and Dieter Pfoser. 2019. Spatial Auto-regressive Dependency Interpretable Learning Based on Spatial Topological Constraints. ACM Trans. Spatial Algorithms Syst. 5, 3, Article 19 (August 2019), 28 pages. DOI:[Web Link]
Data Dictionary: https://docs.google.com/spreadsheets/d/1ItvGzNG8O_Yj97Tf6am4T-QyhnxP-BeIRjm7ZaUeAxs/edit#gid=1499621902 GreenThumb provides programming and material support to over 550 community gardens in New York City. NYC Parks GreenThumb staff visit all active community gardens under the jurisdiction of NYC Parks once each calendar year, subject to staff capacity. These site visits typically occur during the summer months and representatives of licensed garden groups are invited to attend. During these site visits, NYC Parks GreenThumb staff observe and record quantitative and qualitative information related to the physical status of the garden, as well as its ongoing operation, maintenance, and programming. This information is used by NYC Parks GreenThumb to inform maintenance needs at the garden and to help NYC Parks GreenThumb understand the needs of garden groups so that we can plan accordingly. In addition, this information is necessary for NYC Parks GreenThumb to confirm that publicly accessible community gardens under its jurisdiction are being operated in safe manner and in accordance with the NYC Parks GreenThumb License Agreement and applicable NYS and NYC laws and regulations. NYC Parks GreenThumb may conduct additional site visits as deemed necessary.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
The dataset provides 12 months (August 2016 to August 2017) of obfuscated Google Analytics 360 data from the Google Merchandise Store , a real ecommerce store that sells Google-branded merchandise, in BigQuery. It’s a great way analyze business data and learn the benefits of using BigQuery to analyze Analytics 360 data Learn more about the data The data includes The data is typical of what an ecommerce website would see and includes the following information:Traffic source data: information about where website visitors originate, including data about organic traffic, paid search traffic, and display trafficContent data: information about the behavior of users on the site, such as URLs of pages that visitors look at, how they interact with content, etc. Transactional data: information about the transactions on the Google Merchandise Store website.Limitations: All users have view access to the dataset. This means you can query the dataset and generate reports but you cannot complete administrative tasks. Data for some fields is obfuscated such as fullVisitorId, or removed such as clientId, adWordsClickInfo and geoNetwork. “Not available in demo dataset” will be returned for STRING values and “null” will be returned for INTEGER values when querying the fields containing no data.This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery
http://dcat-ap.ch/vocabulary/licenses/terms_byhttp://dcat-ap.ch/vocabulary/licenses/terms_by
The data on the use of the data sets on the OGD portal BL (data.bl.ch) are collected and published by the specialist and coordination office OGD BL. Contains the day the usage was measured.dataset_title: The title of the dataset_id record: The technical ID of the dataset.visitors: Specifies the number of daily visitors to the record. Visitors are recorded by counting the unique IP addresses that recorded access on the day of the survey. The IP address represents the network address of the device from which the portal was accessed.interactions: Includes all interactions with any record on data.bl.ch. A visitor can trigger multiple interactions. Interactions include clicks on the website (searching datasets, filters, etc.) as well as API calls (downloading a dataset as a JSON file, etc.).RemarksOnly calls to publicly available datasets are shown.IP addresses and interactions of users with a login of the Canton of Basel-Landschaft - in particular of employees of the specialist and coordination office OGD - are removed from the dataset before publication and therefore not shown.Calls from actors that are clearly identifiable as bots by the user agent header are also not shown.Combinations of dataset and date for which no use occurred (Visitors == 0 & Interactions == 0) are not shown.Due to synchronization problems, data may be missing by the day.
A. SUMMARY This dataset consists of San Francisco International Airport (SFO) air traffic cargo dataset contains data about cargo volume into and out of SFO, in both metric tons and pounds, with monthly totals by airline, region and aircraft type. B. HOW THE DATASET IS CREATED Data is self-reported by airlines and is only available at a monthly level. C. UPDATE PROCESS Data is available starting in July 1999 and will be updated monthly. D. HOW TO USE THIS DATASET Airport data is seasonal in nature; therefore, any comparative analyses should be done on a period-over-period basis (i.e. January 2010 vs. January 2009) as opposed to period-to-period (i.e. January 2010 vs. February 2010). It is also important to note that fact and attribute field relationships are not always 1-to-1. For example, Cargo Statistics belonging to United Airlines will appear in multiple attribute fields and are additive, which provides flexibility for the user to derive categorical Cargo Statistics as desired. E. RELATED DATASETS A summary of monthly comparative air-traffic statistics is also available on SFO’s internet site at https://www.flysfo.com/about/media/facts-statistics/air-traffic-statistics
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Traffic volumes data across Dun Laoghaire Rathdown from the SCATS traffic management system. The Sydney Coordinated Adaptive Traffic System (SCATS) is an intelligent transportation system used to manage timing of signal phases at traffic signals. SCATS uses sensors at each traffic signal to detect vehicle presence in each lane and pedestrians waiting to cross at the local site. SCATS Traffic Volumes Data (Monthly) Contained in this report are traffic counts taken from the SCATS traffic detectors located at junctions. The primary function for these traffic detectors is for traffic signal control. Such devices can also count general traffic volumes at defined locations on approach to a junction. These devices are set at specific locations on approaches to the junction but may not be on all approaches to a junction. As there are multiple junctions on any one route, it could be expected that a vehicle would be counted multiple times as it progress along the route. Thus the traffic volume counts here are best used to represent trends in vehicle movement by selecting a specific junction on the route which best represents the overall traffic flows. Please note this data is for information purposes only and may not be an exact representation of the infrastructure. Changes and upgrades occurring since then may not be represented.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
You can also access an API version of this dataset.
TMS
(traffic monitoring system) daily-updated traffic counts API
Important note: due to the size of this dataset, you won't be able to open it fully in Excel. Use notepad / R / any software package which can open more than a million rows.
Data reuse caveats: as per license.
Data quality
statement: please read the accompanying user manual, explaining:
how
this data is collected identification
of count stations traffic
monitoring technology monitoring
hierarchy and conventions typical
survey specification data
calculation TMS
operation.
Traffic
monitoring for state highways: user manual
[PDF 465 KB]
The data is at daily granularity. However, the actual update
frequency of the data depends on the contract the site falls within. For telemetry
sites it's once a week on a Wednesday. Some regional sites are fortnightly, and
some monthly or quarterly. Some are only 4 weeks a year, with timing depending
on contractors’ programme of work.
Data quality caveats: you must use this data in
conjunction with the user manual and the following caveats.
The
road sensors used in data collection are subject to both technical errors and
environmental interference.Data
is compiled from a variety of sources. Accuracy may vary and the data
should only be used as a guide.As
not all road sections are monitored, a direct calculation of Vehicle
Kilometres Travelled (VKT) for a region is not possible.Data
is sourced from Waka Kotahi New Zealand Transport Agency TMS data.For
sites that use dual loops classification is by length. Vehicles with a length of less than 5.5m are
classed as light vehicles. Vehicles over 11m long are classed as heavy
vehicles. Vehicles between 5.5 and 11m are split 50:50 into light and
heavy.In September 2022, the National Telemetry contract was handed to a new contractor. During the handover process, due to some missing documents and aged technology, 40 of the 96 national telemetry traffic count sites went offline. Current contractor has continued to upload data from all active sites and have gradually worked to bring most offline sites back online. Please note and account for possible gaps in data from National Telemetry Sites.
The NZTA Vehicle
Classification Relationships diagram below shows the length classification (typically dual loops) and axle classification (typically pneumatic tube counts),
and how these map to the Monetised benefits and costs manual, table A37,
page 254.
Monetised benefits and costs manual [PDF 9 MB]
For the full TMS
classification schema see Appendix A of the traffic counting manual vehicle
classification scheme (NZTA 2011), below.
Traffic monitoring for state highways: user manual [PDF 465 KB]
State highway traffic monitoring (map)
State highway traffic monitoring sites
Daily utilization metrics for data.lacity.org and geohub.lacity.org. Updated monthly