Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset provides a comprehensive collection of information about all the latest smartphones available in the market as of the current time.
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F13571604%2Fb608498b1cf7f70b9a22952566197db6%2FScreenshot%202023-08-02%20003740.png?generation=1690961033930490&alt=media" alt="">
The dataset was created by web scraping reputable online sources to gather accurate and up-to-date information about various smartphone models, their specifications, features, and pricing.
Facebook
TwitterThe global number of smartphone users in was forecast to continuously increase between 2024 and 2029 by in total *** billion users (+***** percent). After the fifteenth consecutive increasing year, the smartphone user base is estimated to reach *** billion users and therefore a new peak in 2029. Notably, the number of smartphone users of was continuously increasing over the past years.Smartphone users here are limited to internet users of any age using a smartphone. The shown figures have been derived from survey data that has been processed to estimate missing demographics.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to *** countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of smartphone users in countries like the Americas and Asia.
Facebook
TwitterLooking to gain insights into the world of mobile phones? Look no further than our comprehensive dataset, which provides detailed specifications and prices for a wide range of smartphones. With data on everything from screen size and camera quality to battery life and processing power, this dataset is a must-have for anyone interested in the mobile phone market. Whether you're a researcher, a tech enthusiast, or just looking to make an informed purchase, our data will give you the information you need to make smart decisions. So why wait? Download our dataset today and start exploring the world of mobile phones like never before! The prices are in PKR. as the dataset is extracted from Pakistan Mobile market website
Facebook
TwitterIn 2022, smartphone vendors sold around 1.39 billion smartphones were sold worldwide, with this number forecast to drop to 1.34 billion in 2023.
Smartphone penetration rate still on the rise
Less than half of the worldās total population owned a smart device in 2016, but the smartphone penetration rate has continued climbing, reaching 78.05 percent in 2020. By 2025, it is forecast that almost 87 percent of all mobile users in the United States will own a smartphone, an increase from the 27 percent of mobile users in 2010.
Smartphone end user sales
In the United States alone, sales of smartphones were projected to be worth around 73 billion U.S. dollars in 2021, an increase from 18 billion dollars in 2010. Global sales of smartphones are expected to increase from 2020 to 2021 in every major region, as the market starts to recover from the initial impact of the coronavirus (COVID-19) pandemic.
Facebook
TwitterChina is leading the ranking by number of smartphone users, recording ****** million users. Following closely behind is India with ****** million users, while Seychelles is trailing the ranking with **** million users, resulting in a difference of ****** million users to the ranking leader, China. Smartphone users here are limited to internet users of any age using a smartphone. The shown figures have been derived from survey data that has been processed to estimate missing demographics.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).
Facebook
TwitterThis dataset contains detailed information on smartphones, extracted from the Smartprix website. It consists of 30+ attributes related to smartphone brands, models, prices, ratings, and various hardware and software specifications. The data has been cleaned and preprocessed to ensure consistency and accuracy.
Columns:
brand_name: Brand of the smartphone. name: Model name of the smartphone. price: Price of the smartphone in local currency. rating: User rating of the smartphone. spec_score: Overall specification score assigned by the website. has_5g: Indicator of 5G support (Yes/No). has_nfc: Indicator of NFC (Near Field Communication) support. has_ir_blaster: Indicator of IR Blaster availability. sim: Number of SIM slots. processor_type: Type or brand of the processor. processor_core: Number of cores in the processor. clock_speed: Clock speed of the processor. processor: Full name of the processor. ram: Total RAM capacity. battery: Battery information. display: Type of display (AMOLED, LCD, etc.). camera: Details of the camera features. os: Operating system of the smartphone. 3G: Indicator of 3G support. sim_info: Information about the SIM setup. Memory Card: Availability of a memory card slot. RAM(in GB): RAM size in gigabytes. ROM: Internal storage capacity. battery_power(in mAh): Battery power in milliampere-hours. fast_charing: Availability of fast charging. screen_size: Size of the screen in inches. resolution: Screen resolution. refresh_rate: Display refresh rate in Hz. no_of_camera: Number of cameras on the device. primary_camera_rear: Specifications of the primary rear camera. primary_camera_front: Specifications of the front camera. memory card slot: Availability of a memory card slot.
This dataset can be useful for analyzing trends in smartphone technology, price prediction models, and comparing features across different brands and models.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This dataset contains detailed specifications and official launch prices of various mobile phone models from different companies. It provides insights into smartphone hardware, pricing trends, and brand competitiveness across multiple countries. The dataset includes key features such as RAM, camera specifications, battery capacity, processor details, and screen size.
One important aspect of this dataset is the pricing information. The recorded prices represent the official launch prices of the mobile phones at the time they were first introduced in the market. Prices vary based on the country and the launch period, meaning older models reflect their original launch prices, while newer models include their most recent launch prices. This makes the dataset valuable for studying price trends over time and comparing smartphone affordability across different regions.
Features:
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Explore the world of smartphones with this comprehensive dataset, featuring a wide array of information on various brands and their specifications. Dive into the dataset to analyze trends, compare features, and gain insights into the dynamic landscape of mobile technology. Whether you're a data enthusiast, a tech researcher, or someone curious about the latest smartphone advancements, this dataset provides a rich resource for exploration and analysis. Uncover patterns, make informed comparisons, and discover the factors that contribute to the ever-evolving world of smartphones. Happy analyzing!
model : Name of the Device camera : Details about the smartphone camera battery : Information about the smartphone battery processor : Type of processor used in the smartphone price : Price of the smartphone rating: Rating of device sim: supported sim ram: total ram in GB display: size of screen card: support of memory card
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset offers a comprehensive overview of the iPhone's journey in the global smartphone market from 2010 to 2024 . It includes:
š Number of iPhone Users: Total users worldwide and within the USA. š Sales Figures: Yearly iPhone sales data. š Market Share: Comparison of iOS and Android market shares across years. This dataset is perfect for:
Market forecasting and trend analysis. Competitive landscape studies between iOS and Android. Consumer behavior research in the tech industry. Whether you're a data scientist, market analyst, or tech enthusiast, this dataset provides valuable insights to support your research and projects.
Facebook
TwitterThe number of smartphone users in the Philippines was forecast to increase between 2024 and 2029 by in total 5.6 million users (+7.29 percent). This overall increase does not happen continuously, notably not in 2026, 2027, 2028 and 2029. The smartphone user base is estimated to amount to 82.33 million users in 2029. Notably, the number of smartphone users of was continuously increasing over the past years.Smartphone users here are limited to internet users of any age using a smartphone. The shown figures have been derived from survey data that has been processed to estimate missing demographics.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
DESCRIPTION: This dataset provides comprehensive information about various smartphone models, facilitating detailed analysis and comparison. It encompasses crucial attributes such as model name, price, rating, similarity index (sim), processor details, RAM capacity, battery specifications, display features, camera specifications, expandable memory card support, and operating system (OS) details.
Columns:
1.Model: The name or designation of the smartphone model.
2.Price: The retail price of the smartphone, typically in a specified currency.
3.Rating: The user or expert rating of the smartphone, providing an indication of its overall quality and user satisfaction.
4.Sim: The number of SIM cards supported by the smartphone.
5.Processor: Details about the processor or chipset used in the smartphone, including brand, model, and specifications.
6.RAM: The amount of random-access memory (RAM) available in the smartphone, measured in gigabytes (GB).
7.Battery: Information regarding the battery capacity and type, providing insight into the device's endurance and usage duration.
8.Display: Specifications related to the smartphone's display, such as size, resolution, technology (e.g., LCD, OLED), and any additional features (e.g., HDR support).
9.Camera: Details about the smartphone's camera setup, including megapixel count, lens specifications, and additional features like image stabilization or AI enhancements.
10.Card: Indicates whether the smartphone supports expandable memory cards, providing users with the option to increase storage capacity.
11.OS: The operating system installed on the smartphone, including the version number if applicable.
This dataset is valuable for various analyses, including:
1.Price-performance comparisons: Assessing the correlation between price and features like processor, RAM, and camera quality.
2.Market trend analysis: Identifying popular models based on ratings and sales data.
3.Feature preference analysis: Examining which features (e.g., battery capacity, camera quality) are most valued by consumers.
4.Brand comparison: Comparing specifications and performance across different smartphone brands.
5.Predictive modeling: Using historical data to predict future trends in smartphone design and consumer preferences.
The dataset is ideal for data scientists, researchers, and analysts interested in the smartphone industry, consumer behavior, and technology trends. It can be utilized for exploratory data analysis, machine learning modeling, and generating insights to inform business decisions within the mobile device market.
Facebook
TwitterOPPO has significantly increased the production and sales of their smartphone lineup over the past five years, shipping almost 29 million units in the third quarter of 2024. The company ā launched in 2004 ā shipped 7.3 million units in the first quarter of 2015. Despite considerable growth over the past few years, the total smartphone units shipped by OPPO in the first quarter of 2024 was not the highest. OPPOās growth: Leading five vendors OPPOās growth has seen their output consistently place the company among the top five smartphone vendors in the world, shipping around 29 million units in the third quarter of 2024. While many of those shipments were domestic shipments in the companyās home country of China, OPPO has gained a footing in international markets, accounting for four percent of the smartphone market in Europe. OPPOrtunities in emerging markets Many of OPPOās smartphones are available at a lower price-point than the flagship phones of vendors such as Apple, giving the company opportunities in emerging markets. For instance, the company regularly appears among the top vendors in the African smartphone market. A key reason for OPPOās success in Africa is that 97 percent of all phones sold in the region sell for less than 400 U.S. dollars.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
"Mobile phone usage is a global phenomenon, with billions of people worldwide using smartphones for communication, entertainment, and information. Average daily screen time varies across countries, with some nations spending over 5 hours per day on their devices."
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Dataset Overview This dataset provides a curated, example-based snapshot of selected Samsung smartphones released (or expected to be released) between 2020 and 2024. It includes various technical specifications such as camera details, processor type, RAM, internal storage, display size, GPU, battery capacity, operating system, and pricing. Note that these values are illustrative and may not reflect actual market data.
Whatās Inside?
Phone Name & Release Year: Quickly reference the time frame and model. Camera Specs: Understand the rear camera configurations (e.g., ā108+10+10+12 MPā) and compare imaging capabilities across models. Processor & GPU: Gain insights into the performance capabilities by checking the processor and graphics chip. Memory & Storage: Review RAM and internal storage options (e.g., ā8 GB RAMā and ā128 GB Internal Storageā). Display & Battery: Compare screen sizes (from 6.1 to over 7 inches) and battery capacities (e.g., 5000 mAh) to gauge device longevity and usability. Operating System: Note the Android version at release. Price (USD): Examine relative pricing trends over the years. How to Use This Dataset
Exploratory Data Analysis (EDA): Use Python libraries like Pandas and Matplotlib to explore pricing trends over time, changes in camera configurations, or the evolution of battery capacities.
Example: df.groupby('Release Year')['Price (USD)'].mean().plot(kind='bar') can show how average prices have fluctuated year to year. Feature Comparison & Filtering: Easily filter models based on specs. For instance, query phones with at least 8 GB RAM and a 5000 mAh battery to identify devices suitable for power users.
Example: df[(df['RAM (GB)'] >= 8) & (df['Battery Capacity (mAh)'] >= 5000)] Machine Learning & Predictive Analysis: Although this dataset is example-based and not suitable for precise forecasting, you could still practice predictive modeling. For example, create a simple regression model to predict price based on features like RAM and display size.
Example: Train a regression model (e.g., LinearRegression in scikit-learn) to see if increasing RAM or battery capacity correlates with higher prices. Comparing Release Trends: Investigate how flagship and mid-range specifications have evolved. See if thereās a noticeable shift towards larger displays, bigger batteries, or higher camera megapixels over the years.
Recommended Tools & Libraries
Python & Pandas: For data cleaning, manipulation, and initial analysis. Matplotlib & Seaborn: For creating visualizations to understand trends and distributions. scikit-learn: For modeling and basic predictive tasks, if you choose to use these example values as a training ground. Jupyter Notebooks or Kaggle Kernels: For interactive analysis and iterative exploration. Disclaimer This dataset is a synthetic, illustrative example and may not match real-world specifications, prices, or release timelines. Itās intended for learning, experimentation, and demonstration of various data analysis and machine learning techniques rather than as a factual source.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This data set is supplement to this Scientific Reports article.
The data set provides estimates of country-level daily mobility metrics (uncertainty included) for 17 countries from March 11, 2020 to present. Estimates are based on more than 3.8 million smartphone trajectories.
Data ownership
Anonymized data on smartphone trajectories are collected, owned and managed by Futura Innovation SRL. Smartphone trajectories are stored and analyzed on servers owned by Futura Innovation SRL and not shared with third parties, including the author of this repository and his organization (University of Bergamo).
Contribution
Repository update
CSV files of this repository are regularly produced by Futura Innovation SRL and published by the repository's author after validation.
Facebook
Twitteracquired from six different smartphones under diverse real-world conditions.## š± Devices Used
Facebook
Twitterhttp://rightsstatements.org/vocab/InC/1.0/http://rightsstatements.org/vocab/InC/1.0/
This competition involves advertisement data provided by BuzzCity Pte. Ltd. BuzzCity is a global mobile advertising network that has millions of consumers around the world on mobile phones and devices. In Q1 2012, over 45 billion ad banners were delivered across the BuzzCity network consisting of more than 10,000 publisher sites which reach an average of over 300 million unique users per month. The number of smartphones active on the network has also grown significantly. Smartphones now account for more than 32% phones that are served advertisements across the BuzzCity network. The "raw" data used in this competition has two types: publisher database and click database, both provided in CSV format. The publisher database records the publisher's (aka partner's) profile and comprises several fields:
publisherid - Unique identifier of a publisher. Bankaccount - Bank account associated with a publisher (may be empty) address - Mailing address of a publisher (obfuscated; may be empty) status - Label of a publisher, which can be the following: "OK" - Publishers whom BuzzCity deems as having healthy traffic (or those who slipped their detection mechanisms) "Observation" - Publishers who may have just started their traffic or their traffic statistics deviates from system wide average. BuzzCity does not have any conclusive stand with these publishers yet "Fraud" - Publishers who are deemed as fraudulent with clear proof. Buzzcity suspends their accounts and their earnings will not be paid
On the other hand, the click database records the click traffics and has several fields:
id - Unique identifier of a particular click numericip - Public IP address of a clicker/visitor deviceua - Phone model used by a clicker/visitor publisherid - Unique identifier of a publisher adscampaignid - Unique identifier of a given advertisement campaign usercountry - Country from which the surfer is clicktime - Timestamp of a given click (in YYYY-MM-DD format) publisherchannel - Publisher's channel type, which can be the following: ad - Adult sites co - Community es - Entertainment and lifestyle gd - Glamour and dating in - Information mc - Mobile content pp - Premium portal se - Search, portal, services referredurl - URL where the ad banners were clicked (obfuscated; may be empty). More details about the HTTP Referer protocol can be found in this article. Related Publication: R. J. Oentaryo, E.-P. Lim, M. Finegold, D. Lo, F.-D. Zhu, C. Phua, E.-Y. Cheu, G.-E. Yap, K. Sim, M. N. Nguyen, K. Perera, B. Neupane, M. Faisal, Z.-Y. Aung, W. L. Woon, W. Chen, D. Patel, and D. Berrar. (2014). Detecting click fraud in online advertising: A data mining approach, Journal of Machine Learning Research, 15, 99-140.
Facebook
Twitterhttps://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
We are publishing a walking activity dataset including inertial and positioning information from 19 volunteers, including reference distance measured using a trundle wheel. The dataset includes a total of 96.7 Km walked by the volunteers, split into 203 separate tracks. The trundle wheel is of two types: it is either an analogue trundle wheel, which provides the total amount of meters walked in a single track, or it is a sensorized trundle wheel, which measures every revolution of the wheel, therefore recording a continuous incremental distance.
Each track has data from the accelerometer and gyroscope embedded in the phones, location information from the Global Navigation Satellite System (GNSS), and the step count obtained by the device. The dataset can be used to implement walking distance estimation algorithms and to explore data quality in the context of walking activity and physical capacity tests, fitness, and pedestrian navigation.
Methods
The proposed dataset is a collection of walks where participants used their own smartphones to capture inertial and positioning information. The participants involved in the data collection come from two sites. The first site is the Oxford University Hospitals NHS Foundation Trust, United Kingdom, where 10 participants (7 affected by cardiovascular diseases and 3 healthy individuals) performed unsupervised 6MWTs in an outdoor environment of their choice (ethical approval obtained by the UK National Health Service Health Research Authority protocol reference numbers: 17/WM/0355). All participants involved provided informed consent. The second site is at Malm Ģo University, in Sweden, where a group of 9 healthy researchers collected data. This dataset can be used by researchers to develop distance estimation algorithms and how data quality impacts the estimation.
All walks were performed by holding a smartphone in one hand, with an app collecting inertial data, the GNSS signal, and the step counting. On the other free hand, participants held a trundle wheel to obtain the ground truth distance. Two different trundle wheels were used: an analogue trundle wheel that allowed the registration of a total single value of walked distance, and a sensorized trundle wheel which collected timestamps and distance at every 1-meter revolution, resulting in continuous incremental distance information. The latter configuration is innovative and allows the use of temporal windows of the IMU data as input to machine learning algorithms to estimate walked distance. In the case of data collected by researchers, if the walks were done simultaneously and at a close distance from each other, only one person used the trundle wheel, and the reference distance was associated with all walks that were collected at the same time.The walked paths are of variable length, duration, and shape. Participants were instructed to walk paths of increasing curvature, from straight to rounded. Irregular paths are particularly useful in determining limitations in the accuracy of walked distance algorithms. Two smartphone applications were developed for collecting the information of interest from the participants' devices, both available for Android and iOS operating systems. The first is a web-application that retrieves inertial data (acceleration, rotation rate, orientation) while connecting to the sensorized trundle wheel to record incremental reference distance [1]. The second app is the Timed Walk app [2], which guides the user in performing a walking test by signalling when to start and when to stop the walk while collecting both inertial and positioning data. All participants in the UK used the Timed Walk app.
The data collected during the walk is from the Inertial Measurement Unit (IMU) of the phone and, when available, the Global Navigation Satellite System (GNSS). In addition, the step count information is retrieved by the sensors embedded in each participantās smartphone. With the dataset, we provide a descriptive table with the characteristics of each recording, including brand and model of the smartphone, duration, reference total distance, types of signals included and additionally scoring some relevant parameters related to the quality of the various signals. The path curvature is one of the most relevant parameters. Previous literature from our team, in fact, confirmed the negative impact of curved-shaped paths with the use of multiple distance estimation algorithms [3]. We visually inspected the walked paths and clustered them in three groups, a) straight path, i.e. no turns wider than 90 degrees, b) gently curved path, i.e. between one and five turns wider than 90 degrees, and c) curved path, i.e. more than five turns wider than 90 degrees. Other features relevant to the quality of collected signals are the total amount of time above a threshold (0.05s and 6s) where, respectively, inertial and GNSS data were missing due to technical issues or due to the app going in the background thus losing access to the sensors, sampling frequency of different data streams, average walking speed and the smartphone position. The start of each walk is set as 0 ms, thus not reporting time-related information. Walks locations collected in the UK are anonymized using the following approach: the first position is fixed to a central location of the city of Oxford (latitude: 51.7520, longitude: -1.2577) and all other positions are reassigned by applying a translation along the longitudinal and latitudinal axes which maintains the original distance and angle between samples. This way, the exact geographical location is lost, but the path shape and distances between samples are maintained. The difference between consecutive points āas the crow fliesā and path curvature was numerically and visually inspected to obtain the same results as the original walks. Computations were made possible by using the Haversine Python library.
Multiple datasets are available regarding walking activity recognition among other daily living tasks. However, few studies are published with datasets that focus on the distance for both indoor and outdoor environments and that provide relevant ground truth information for it. Yan et al. [4] introduced an inertial walking dataset within indoor scenarios using a smartphone placed in 4 positions (on the leg, in a bag, in the hand, and on the body) by six healthy participants. The reference measurement used in this study is a Visual Odometry System embedded in a smartphone that has to be worn at the chest level, using a strap to hold it. While interesting and detailed, this dataset lacks GNSS data, which is likely to be used in outdoor scenarios, and the reference used for localization also suffers from accuracy issues, especially outdoors. Vezovcnik et al. [5] analysed estimation models for step length and provided an open-source dataset for a total of 22 km of only inertial walking data from 15 healthy adults. While relevant, their dataset focuses on steps rather than total distance and was acquired on a treadmill, which limits the validity in real-world scenarios. Kang et al. [6] proposed a way to estimate travelled distance by using an Android app that uses outdoor walking patterns to match them in indoor contexts for each participant. They collect data outdoors by including both inertial and positioning information and they use average values of speed obtained by the GPS data as reference labels. Afterwards, they use deep learning models to estimate walked distance obtaining high performances. Their results share that 3% to 11% of the data for each participant was discarded due to low quality. Unfortunately, the name of the used app is not reported and the paper does not mention if the dataset can be made available.
This dataset is heterogeneous under multiple aspects. It includes a majority of healthy participants, therefore, it is not possible to generalize the outcomes from this dataset to all walking styles or physical conditions. The dataset is heterogeneous also from a technical perspective, given the difference in devices, acquired data, and used smartphone apps (i.e. some tests lack IMU or GNSS, sampling frequency in iPhone was particularly low). We suggest selecting the appropriate track based on desired characteristics to obtain reliable and consistent outcomes.
This dataset allows researchers to develop algorithms to compute walked distance and to explore data quality and reliability in the context of the walking activity. This dataset was initiated to investigate the digitalization of the 6MWT, however, the collected information can also be useful for other physical capacity tests that involve walking (distance- or duration-based), or for other purposes such as fitness, and pedestrian navigation.
The article related to this dataset will be published in the proceedings of the IEEE MetroXRAINE 2024 conference, held in St. Albans, UK, 21-23 October.
This research is partially funded by the Swedish Knowledge Foundation and the Internet of Things and People research center through the Synergy project Intelligent and Trustworthy IoT Systems.
Facebook
TwitterThe Global Findex 2025 reveals how mobile technology is equipping more adults around the world to own and use financial accounts to save formally, access credit, make and receive digital payments, and pursue opportunities. Including the inaugural Global Findex Digital Connectivity Tracker, this fifth edition of Global Findex presents new insights on the interactions among mobile phone ownership, internet use, and financial inclusion.
The Global Findex is the worldās most comprehensive database on digital and financial inclusion. It is also the only global source of comparable demand-side data, allowing cross-country analysis of how adults access and use mobile phones, the internet, and financial accounts to reach digital information and resources, save, borrow, make payments, and manage their financial health. Data for the Global Findex 2025 were collected from nationally representative surveys of about 145,000 adults in 141 economies. The latest edition follows the 2011, 2014, 2017, and 2021 editions and includes new series measuring mobile phone ownership and internet use, digital safety, and frequency of transactions using financial services.
The Global Findex 2025 is an indispensable resource for policy makers in the fields of digital connectivity and financial inclusion, as well as for practitioners, researchers, and development professionals.
National Coverage
Individual
Observation data/ratings [obs]
In most low- and middle-income economies, Global Findex data were collected through face-to-face interviews. In these economies, an area frame design was used for interviewing. In most high-income economies, telephone surveys were used. In 2024, face-to-face interviews were again conducted in 22 economies after phone-based surveys had been employed in 2021 as a result of mobility restrictions related to COVID-19. In addition, an abridged form of the questionnaire was administered by phone to survey participants in Algeria, China, the Islamic Republic of Iran, Libya, Mauritius, and Ukraine because of economy-specific restrictions. In just one economy, Singapore, did the interviewing mode change from face to face in 2021 to phone based in 2024.
In economies in which face-to-face surveys were conducted, the first stage of sampling was the identification of primary sampling units. These units were then stratified by population size, geography, or both and clustered through one or more stages of sampling. Where population information was available, sample selection was based on probabilities proportional to population size; otherwise, simple random sampling was used. Random route procedures were used to select sampled households. Unless an outright refusal occurred, interviewers made up to three attempts to survey each sampled household. To increase the probability of contact and completion, attempts were made at different times of the day and, where possible, on different days. If an interview could not be completed at a household that was initially part of the sample, a simple substitution method was used to select a replacement household for inclusion.
Respondents were randomly selected within sampled households. Each eligible household member (that is, all those ages 15 or older) was listed, and a handheld survey device randomly selected the household member to be interviewed. For paper surveys, the Kish grid method was used to select the respondent. In economies in which cultural restrictions dictated gender matching, respondents were randomly selected from among all eligible adults of the interviewerās gender.
In economies in which Global Findex surveys have traditionally been phone based, respondent selection followed the same procedure as in previous years, using random digit dialing or a nationally representative list of phone numbers. In most economies in which mobile phone and landline penetration is high, a dual sampling frame was used.
The same procedure for respondent selection was applied to economies in which phone-based interviews were being conducted for the first time. Dual-frame (landline and mobile phone) random digit dialing was used where landline presence and use are 20 percent or higher based on historical Gallup estimates. Mobile phone random digit dialing was used in economies with limited or no landline presence (less than 20 percent). For landline respondents in economies in which mobile phone or landline penetration is 80 percent or higher, respondents were selected randomly by using either the next-birthday method or the household enumeration method, which involves listing all eligible household members and randomly selecting one to participate. For mobile phone respondents in these economies or in economies in which mobile phone or landline penetration is less than 80 percent, no further selection was performed. At least three attempts were made to reach the randomly selected person in each household, spread over different days and times of day.
The English version of the questionnaire is provided for download.
Estimates of standard errors (which account for sampling error) vary by country and indicator. For country-specific margins of error, please refer to the Methodology section and corresponding table in: Klapper, Leora, Dorothe Singer, Laura Starita, and Alexandra Norris. 2025. The Global Findex Database 2025: Connectivity and Financial Inclusion in the Digital Economy. Washington, DC: World Bank. https://doi.org/10.1596/978-1-4648-2204-9.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Context, Sources & Inspiration:
This dataset was created to provide a comprehensive overview of the global smartphone market in 2025. The dataset contains over 1000 mobile phone models from popular brands including Apple, Samsung, Xiaomi, Oppo, Vivo, Google, OnePlus, Realme, and Infinix.
Sources & Methodology:
Data was compiled using publicly available specifications from brand websites, tech blogs, and market reports.
Prices are in USD and represent typical retail pricing for 2025.
Technical specifications such as RAM, storage, camera, battery, display size, processor, and OS were collected from official manufacturer sources and verified against multiple tech review sites.
Ratings are simulated realistic averages (3.5ā5.0) to provide analysis opportunities.
Inspiration:
The goal is to provide an easy-to-use dataset for ML projects, price prediction, market trend visualization, and exploratory data analysis (EDA).
Designed for students, analysts, and ML enthusiasts who want a complete and realistic dataset for smartphones.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset provides a comprehensive collection of information about all the latest smartphones available in the market as of the current time.
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F13571604%2Fb608498b1cf7f70b9a22952566197db6%2FScreenshot%202023-08-02%20003740.png?generation=1690961033930490&alt=media" alt="">
The dataset was created by web scraping reputable online sources to gather accurate and up-to-date information about various smartphone models, their specifications, features, and pricing.