Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
https://i.imgur.com/PLS0HB3.gif" alt="Example Video from Deploy Tab">
Here are a few use cases for this project:
Sports Analytics: The Soccer Players computer vision model can be used to analyze player performance during games by tracking player and ball positions, individual player actions, and goal-scoring events, allowing coaches and trainers to make data-driven decisions for improving performance and strategies.
Automated Highlight Reels: The model can be used to automatically curate soccer match highlights by identifying crucial moments such as goals, outstanding player performances, and referee decisions. This can streamline the video editing process for broadcasting and streaming companies.
Virtual Assistant for Soccer Enthusiasts: The Soccer Players model can be integrated into a mobile application, allowing users to take pictures or upload images from soccer matches and receive instant information about the teams (USA, NED), player roles (goalie, outfield player, referee), and other relevant classes such as ball and goal locations, enhancing their understanding and engagement with the sport.
Real-Time Augmented Reality (AR) Applications: The model can be used to create AR experiences for soccer fans attending live matches, providing pop-up information about players (such as player stats, team affiliations, etc.) and game events (goals, referee decisions) when viewing the live match through an AR device or smartphone.
Training and Scouting Tools: Soccer scouts and trainers can use the Soccer Players model to evaluate potential recruits or assess the performance of their own players during practice sessions. By rapidly identifying key actions (goals, saves, tackles) and providing context for each play, the model can help scouts and trainers make informed decisions faster.
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
Hi all the soccer fans and all those who are interested in our project of "Multi-Agent System for Comprehensive Soccer Understanding", here is the official source of our proposed benchmark SoccerBench. This benchmark is the largest and most comprehensive soccer-specific benchmark, featuring around 10K standardized multimodal (text, image, video) multi-choice QA pairs across 14 distinct understanding tasks, curated through automated pipelines and manual verification. More details of this… See the full description on the dataset page: https://huggingface.co/datasets/Homie0609/SoccerBench.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
ilaigoldstein7/balanced-football-teams dataset hosted on Hugging Face and contributed by the HF Datasets community
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
https://i.imgur.com/PLS0HB3.gif" alt="Example Video from Deploy Tab">
Here are a few use cases for this project:
Sports Analytics: The Soccer Players computer vision model can be used to analyze player performance during games by tracking player and ball positions, individual player actions, and goal-scoring events, allowing coaches and trainers to make data-driven decisions for improving performance and strategies.
Automated Highlight Reels: The model can be used to automatically curate soccer match highlights by identifying crucial moments such as goals, outstanding player performances, and referee decisions. This can streamline the video editing process for broadcasting and streaming companies.
Virtual Assistant for Soccer Enthusiasts: The Soccer Players model can be integrated into a mobile application, allowing users to take pictures or upload images from soccer matches and receive instant information about the teams (USA, NED), player roles (goalie, outfield player, referee), and other relevant classes such as ball and goal locations, enhancing their understanding and engagement with the sport.
Real-Time Augmented Reality (AR) Applications: The model can be used to create AR experiences for soccer fans attending live matches, providing pop-up information about players (such as player stats, team affiliations, etc.) and game events (goals, referee decisions) when viewing the live match through an AR device or smartphone.
Training and Scouting Tools: Soccer scouts and trainers can use the Soccer Players model to evaluate potential recruits or assess the performance of their own players during practice sessions. By rapidly identifying key actions (goals, saves, tackles) and providing context for each play, the model can help scouts and trainers make informed decisions faster.