100+ datasets found
  1. Number of global social network users 2017-2028

    • statista.com
    • grusthub.com
    • +4more
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stacy Jo Dixon, Number of global social network users 2017-2028 [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Stacy Jo Dixon
    Description

    How many people use social media?

                  Social media usage is one of the most popular online activities. In 2024, over five billion people were using social media worldwide, a number projected to increase to over six billion in 2028.
    
                  Who uses social media?
                  Social networking is one of the most popular digital activities worldwide and it is no surprise that social networking penetration across all regions is constantly increasing. As of January 2023, the global social media usage rate stood at 59 percent. This figure is anticipated to grow as lesser developed digital markets catch up with other regions
                  when it comes to infrastructure development and the availability of cheap mobile devices. In fact, most of social media’s global growth is driven by the increasing usage of mobile devices. Mobile-first market Eastern Asia topped the global ranking of mobile social networking penetration, followed by established digital powerhouses such as the Americas and Northern Europe.
    
                  How much time do people spend on social media?
                  Social media is an integral part of daily internet usage. On average, internet users spend 151 minutes per day on social media and messaging apps, an increase of 40 minutes since 2015. On average, internet users in Latin America had the highest average time spent per day on social media.
    
                  What are the most popular social media platforms?
                  Market leader Facebook was the first social network to surpass one billion registered accounts and currently boasts approximately 2.9 billion monthly active users, making it the most popular social network worldwide. In June 2023, the top social media apps in the Apple App Store included mobile messaging apps WhatsApp and Telegram Messenger, as well as the ever-popular app version of Facebook.
    
  2. Average daily time spent on social media worldwide 2012-2024

    • statista.com
    • grusthub.com
    • +4more
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stacy Jo Dixon, Average daily time spent on social media worldwide 2012-2024 [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Stacy Jo Dixon
    Description

    How much time do people spend on social media?

                  As of 2024, the average daily social media usage of internet users worldwide amounted to 143 minutes per day, down from 151 minutes in the previous year. Currently, the country with the most time spent on social media per day is Brazil, with online users spending an average of three hours and 49 minutes on social media each day. In comparison, the daily time spent with social media in
                  the U.S. was just two hours and 16 minutes. Global social media usageCurrently, the global social network penetration rate is 62.3 percent. Northern Europe had an 81.7 percent social media penetration rate, topping the ranking of global social media usage by region. Eastern and Middle Africa closed the ranking with 10.1 and 9.6 percent usage reach, respectively.
                  People access social media for a variety of reasons. Users like to find funny or entertaining content and enjoy sharing photos and videos with friends, but mainly use social media to stay in touch with current events friends. Global impact of social mediaSocial media has a wide-reaching and significant impact on not only online activities but also offline behavior and life in general.
                  During a global online user survey in February 2019, a significant share of respondents stated that social media had increased their access to information, ease of communication, and freedom of expression. On the flip side, respondents also felt that social media had worsened their personal privacy, increased a polarization in politics and heightened everyday distractions.
    
  3. s

    Dataset for Social Media Activity, Number of Friends, and Relationship...

    • eprints.soton.ac.uk
    Updated Jul 8, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Elder, Lindsay; Brignell, Catherine; Cooke, Tim (2022). Dataset for Social Media Activity, Number of Friends, and Relationship Quality [Dataset]. http://doi.org/10.5258/SOTON/D1955
    Explore at:
    Dataset updated
    Jul 8, 2022
    Dataset provided by
    University of Southampton
    Authors
    Elder, Lindsay; Brignell, Catherine; Cooke, Tim
    Description

    The data from my thesis. This data was collected using the Lifeguide Software and exported onto SPSS following data collection. The data was collected from young people aged 11-18 years old to explore the impact of different types of social media use.

  4. Social Media Datasets

    • brightdata.com
    .json, .csv, .xlsx
    Updated Sep 7, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bright Data (2022). Social Media Datasets [Dataset]. https://brightdata.com/products/datasets/social-media
    Explore at:
    .json, .csv, .xlsxAvailable download formats
    Dataset updated
    Sep 7, 2022
    Dataset authored and provided by
    Bright Datahttps://brightdata.com/
    License

    https://brightdata.com/licensehttps://brightdata.com/license

    Area covered
    Worldwide
    Description

    Gain valuable insights with our comprehensive Social Media Dataset, designed to help businesses, marketers, and analysts track trends, monitor engagement, and optimize strategies. This dataset provides structured and reliable social media data from multiple platforms.

    Dataset Features

    User Profiles: Access public social media profiles, including usernames, bios, follower counts, engagement metrics, and more. Ideal for audience analysis, influencer marketing, and competitive research. Posts & Content: Extract posts, captions, hashtags, media (images/videos), timestamps, and engagement metrics such as likes, shares, and comments. Useful for trend analysis, sentiment tracking, and content strategy optimization. Comments & Interactions: Analyze user interactions, including replies, mentions, and discussions. This data helps brands understand audience sentiment and engagement patterns. Hashtag & Trend Tracking: Monitor trending hashtags, topics, and viral content across platforms to stay ahead of industry trends and consumer interests.

    Customizable Subsets for Specific Needs Our Social Media Dataset is fully customizable, allowing you to filter data based on platform, region, keywords, engagement levels, or specific user profiles. Whether you need a broad dataset for market research or a focused subset for brand monitoring, we tailor the dataset to your needs.

    Popular Use Cases

    Brand Monitoring & Reputation Management: Track brand mentions, customer feedback, and sentiment analysis to manage online reputation effectively. Influencer Marketing & Audience Analysis: Identify key influencers, analyze engagement metrics, and optimize influencer partnerships. Competitive Intelligence: Monitor competitor activity, content performance, and audience engagement to refine marketing strategies. Market Research & Consumer Insights: Analyze social media trends, customer preferences, and emerging topics to inform business decisions. AI & Predictive Analytics: Leverage structured social media data for AI-driven trend forecasting, sentiment analysis, and automated content recommendations.

    Whether you're tracking brand sentiment, analyzing audience engagement, or monitoring industry trends, our Social Media Dataset provides the structured data you need. Get started today and customize your dataset to fit your business objectives.

  5. Facebook users worldwide 2017-2027

    • statista.com
    • tokrwards.com
    • +4more
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stacy Jo Dixon, Facebook users worldwide 2017-2027 [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Stacy Jo Dixon
    Description

    The global number of Facebook users was forecast to continuously increase between 2023 and 2027 by in total 391 million users (+14.36 percent). After the fourth consecutive increasing year, the Facebook user base is estimated to reach 3.1 billion users and therefore a new peak in 2027. Notably, the number of Facebook users was continuously increasing over the past years. User figures, shown here regarding the platform Facebook, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period and count multiple accounts by persons only once.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).

  6. Social Media Engagement (2025)

    • kaggle.com
    Updated Mar 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Damla Ağaça (2025). Social Media Engagement (2025) [Dataset]. https://www.kaggle.com/datasets/dagaca/social-media-engagement-2025
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 21, 2025
    Dataset provided by
    Kaggle
    Authors
    Damla Ağaça
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Social Media Engagement (2025)

    This dataset contains 20,000 synthetic social media posts crafted to mimic realistic user activity on a fictional platform. It simulates various user demographics, post content, hashtags, topics, and detailed engagement metrics such as likes, comments, and shares.

    Overview

    Each record represents a unique social media post made by a user, enriched with features that allow for analysis of trends, behavior, and engagement. The dataset includes:

    • User-level information: age, gender, followers, verified status, etc.
    • Post-level information: topic, hashtags, media, engagement
    • Platform and device data
    • Calculated engagement rate

    Column Descriptions

    ColumnDescription
    post_idUnique identifier for each post
    user_idUnique identifier for each user
    user_nameSynthetic username
    user_genderGender of the user (Male, Female, Other)
    user_ageAge of the user (16–60)
    followers_countNumber of followers the user has
    following_countNumber of accounts the user follows
    account_creation_dateAccount registration date
    is_verifiedBoolean flag for verified users
    locationCity or region where the user is located
    topicMain topic of the post (e.g., Travel, Food, Fashion, etc.)
    post_contentActual content of the post
    content_lengthNumber of characters in the post content
    hashtagsRelevant hashtags used in the post
    has_mediaWhether the post includes image or video
    post_dateTimestamp of when the post was made
    deviceDevice used to make the post (e.g., iPhone, Android)
    languageLanguage of the post
    likesNumber of likes received
    commentsNumber of comments received
    sharesNumber of times the post was shared
    engagement_rateNormalized metric: (likes + comments + shares) / followers_count
  7. u

    Social Media and Mental Health - Dataset - BSOS Data Repository

    • bsos-data.umd.edu
    Updated Jul 24, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Social Media and Mental Health - Dataset - BSOS Data Repository [Dataset]. https://bsos-data.umd.edu/dataset/social-media-and-mental-health
    Explore at:
    Dataset updated
    Jul 24, 2024
    License

    ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
    License information was derived automatically

    Description

    The dataset encompasses demographic, health, and mental health information of students from 48 different states in the USA, born between 1971 and 2003. It includes data on general health ratings, responses to the PHQ-9 depression screening tool, and the GAD-7 anxiety assessment tool. It details how often students experienced various mental health symptoms over the past two weeks, their depression severity scores, and anxiety severity scores. Also, it covers experiences of feeling overwhelmed, exhausted, and hopeless within the last 12 months, along with diagnoses of depression, therapy, and medication usage. The dataset also includes information on various medical conditions, student status (full-time or international), sex, and race.

  8. IMDB & Social Media Dataset

    • kaggle.com
    Updated Nov 5, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    momo5577 (2023). IMDB & Social Media Dataset [Dataset]. https://www.kaggle.com/datasets/momo5577/imdb-and-social-media-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 5, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    momo5577
    Description

    This dataset is compiled using this dataset from GitHub.

    Data Description Table

    Variable NameDescription
    movie_titleTitle of the Movie
    durationDuration in minutes
    director_nameName of the Director of the Movie
    director_facebook_likesNumber of likes of the Director on his Facebook Page
    actor_1_namePrimary actor starring in the movie
    actor_1_facebook_likesNumber of likes of the Actor_1 on his/her Facebook Page
    actor_2_nameOther actor starring in the movie
    actor_2_facebook_likesNumber of likes of the Actor_2 on his/her Facebook Page
    actor_3_nameOther actor starring in the movie
    actor_3_facebook_likesNumber of likes of the Actor_3 on his/her Facebook Page
    num_user_for_reviewsNumber of users who gave a review
    num_critic_for_reviewsNumber of critical reviews on imdb
    num_voted_usersNumber of people who voted for the movie
    cast_total_facebook_likesTotal number of facebook likes of the entire cast of the movie
    movie_facebook_likesNumber of Facebook likes in the movie page
    plot_keywordsKeywords describing the movie plot
    facenumber_in_posterNumber of the actor who featured in the movie poster
    colorFilm colorization. ‘Black and White’ or ‘Color’
    genresFilm categorization like ‘Animation’, ‘Comedy’, etc
    title_yearThe year in which the movie is released (1916:2016)
    languageLanguages like English, Arabic, Chinese, etc
    countryCountry where the movie is produced
    content_ratingContent rating of the movie
    aspect_ratioAspect ratio the movie was made in
    movie_imdb_linkIMDB link of the movie
    grossGross earnings of the movie in Dollars
    budgetBudget of the movie in Dollars
    imdb_scoreIMDB Score of the movie on IMDB
  9. m

    Abbreviated FOMO and social media dataset

    • figshare.mq.edu.au
    • researchdata.edu.au
    txt
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Danielle Einstein; Carol Dabb; Madeleine Ferrari; Anne McMaugh; Peter McEvoy; Ron Rapee; Eyal Karin; Maree J. Abbott (2023). Abbreviated FOMO and social media dataset [Dataset]. http://doi.org/10.25949/20188298.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    Macquarie University
    Authors
    Danielle Einstein; Carol Dabb; Madeleine Ferrari; Anne McMaugh; Peter McEvoy; Ron Rapee; Eyal Karin; Maree J. Abbott
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This database is comprised of 951 participants who provided self-report data online in their school classrooms. The data was collected in 2016 and 2017. The dataset is comprised of 509 males (54%) and 442 females (46%). Their ages ranged from 12 to 16 years (M = 13.69, SD = 0.72). Seven participants did not report their age. The majority were born in Australia (N = 849, 89%). The next most common countries of birth were China (N = 24, 2.5%), the UK (N = 23, 2.4%), and the USA (N = 9, 0.9%). Data were drawn from students at five Australian independent secondary schools. The data contains item responses for the Spence Children’s Anxiety Scale (SCAS; Spence, 1998) which is comprised of 44 items. The Social media question asked about frequency of use with the question “How often do you use social media?”. The response options ranged from constantly to once a week or less. Items measuring Fear of Missing Out were included and incorporated the following five questions based on the APS Stress and Wellbeing in Australia Survey (APS, 2015). These were “When I have a good time it is important for me to share the details online; I am afraid that I will miss out on something if I don’t stay connected to my online social networks; I feel worried and uncomfortable when I can’t access my social media accounts; I find it difficult to relax or sleep after spending time on social networking sites; I feel my brain burnout with the constant connectivity of social media. Internal consistency for this measure was α = .81. Self compassion was measured using the 12-item short-form of the Self-Compassion Scale (SCS-SF; Raes et al., 2011). The data set has the option of downloading an excel file (composed of two worksheet tabs) or CSV files 1) Data and 2) Variable labels. References: Australian Psychological Society. (2015). Stress and wellbeing in Australia survey. https://www.headsup.org.au/docs/default-source/default-document-library/stress-and-wellbeing-in-australia-report.pdf?sfvrsn=7f08274d_4 Raes, F., Pommier, E., Neff, K. D., & Van Gucht, D. (2011). Construction and factorial validation of a short form of the self-compassion scale. Clinical Psychology and Psychotherapy, 18(3), 250-255. https://doi.org/10.1002/cpp.702 Spence, S. H. (1998). A measure of anxiety symptoms among children. Behaviour Research and Therapy, 36(5), 545-566. https://doi.org/10.1016/S0005-7967(98)00034-5

  10. Social media as a news outlet worldwide 2024

    • statista.com
    • grusthub.com
    • +4more
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Amy Watson, Social media as a news outlet worldwide 2024 [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Amy Watson
    Description

    During a 2024 survey, 77 percent of respondents from Nigeria stated that they used social media as a source of news. In comparison, just 23 percent of Japanese respondents said the same. Large portions of social media users around the world admit that they do not trust social platforms either as media sources or as a way to get news, and yet they continue to access such networks on a daily basis.

                  Social media: trust and consumption
    
                  Despite the majority of adults surveyed in each country reporting that they used social networks to keep up to date with news and current affairs, a 2018 study showed that social media is the least trusted news source in the world. Less than 35 percent of adults in Europe considered social networks to be trustworthy in this respect, yet more than 50 percent of adults in Portugal, Poland, Romania, Hungary, Bulgaria, Slovakia and Croatia said that they got their news on social media.
    
                  What is clear is that we live in an era where social media is such an enormous part of daily life that consumers will still use it in spite of their doubts or reservations. Concerns about fake news and propaganda on social media have not stopped billions of users accessing their favorite networks on a daily basis.
                  Most Millennials in the United States use social media for news every day, and younger consumers in European countries are much more likely to use social networks for national political news than their older peers.
                  Like it or not, reading news on social is fast becoming the norm for younger generations, and this form of news consumption will likely increase further regardless of whether consumers fully trust their chosen network or not.
    
  11. d

    Dataset: Decentralized Social Media Use and Users

    • search.dataone.org
    • borealisdata.ca
    • +1more
    Updated Aug 14, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gruzd, Anatoliy; Saiphoo, Alyssa; Mai, Philip (2024). Dataset: Decentralized Social Media Use and Users [Dataset]. http://doi.org/10.5683/SP3/MJYGAR
    Explore at:
    Dataset updated
    Aug 14, 2024
    Dataset provided by
    Borealis
    Authors
    Gruzd, Anatoliy; Saiphoo, Alyssa; Mai, Philip
    Description

    The dataset contains 31 transcribed and anonymized interviews of blockchain-based social media users. The dataset was collected during the summer of 2022 as part of a research project at the Social Media Lab at Toronto Metropolitan University. The dataset is available upon request for validation by peer-reviewers or other researchers in the field.

  12. MultiSocial

    • zenodo.org
    • data.niaid.nih.gov
    Updated Aug 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dominik Macko; Dominik Macko; Jakub Kopal; Robert Moro; Robert Moro; Ivan Srba; Ivan Srba; Jakub Kopal (2025). MultiSocial [Dataset]. http://doi.org/10.5281/zenodo.13846152
    Explore at:
    Dataset updated
    Aug 20, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Dominik Macko; Dominik Macko; Jakub Kopal; Robert Moro; Robert Moro; Ivan Srba; Ivan Srba; Jakub Kopal
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    MultiSocial is a dataset (described in a paper) for multilingual (22 languages) machine-generated text detection benchmark in social-media domain (5 platforms). It contains 472,097 texts, of which about 58k are human-written and approximately the same amount is generated by each of 7 multilingual large language models by using 3 iterations of paraphrasing. The dataset has been anonymized to minimize amount of sensitive data by hiding email addresses, usernames, and phone numbers.

    If you use this dataset in any publication, project, tool or in any other form, please, cite the paper.

    Disclaimer

    Due to data source (described below), the dataset may contain harmful, disinformation, or offensive content. Based on a multilingual toxicity detector, about 8% of the text samples are probably toxic (from 5% in WhatsApp to 10% in Twitter). Although we have used data sources of older date (lower probability to include machine-generated texts), the labeling (of human-written text) might not be 100% accurate. The anonymization procedure might not successfully hiden all the sensitive/personal content; thus, use the data cautiously (if feeling affected by such content, report the found issues in this regard to dpo[at]kinit.sk). The intended use if for non-commercial research purpose only.

    Data Source

    The human-written part consists of a pseudo-randomly selected subset of social media posts from 6 publicly available datasets:

    1. Telegram data originated in Pushshift Telegram, containing 317M messages (Baumgartner et al., 2020). It contains messages from 27k+ channels. The collection started with a set of right-wing extremist and cryptocurrency channels (about 300 in total) and was expanded based on occurrence of forwarded messages from other channels. In the end, it thus contains a wide variety of topics and societal movements reflecting the data collection time.

    2. Twitter data originated in CLEF2022-CheckThat! Task 1, containing 34k tweets on COVID-19 and politics (Nakov et al., 2022, combined with Sentiment140, containing 1.6M tweets on various topics (Go et al., 2009).

    3. Gab data originated in the dataset containing 22M posts from Gab social network. The authors of the dataset (Zannettou et al., 2018) found out that “Gab is predominantly used for the dissemination and discussion of news and world events, and that it attracts alt-right users, conspiracy theorists, and other trolls.” They also found out that hate speech is much more prevalent there compared to Twitter, but lower than 4chan's Politically Incorrect board.

    4. Discord data originated in Discord-Data, containing 51M messages. This is a long-context, anonymized, clean, multi-turn and single-turn conversational dataset based on Discord data scraped from a large variety of servers, big and small. According to the dataset authors, it contains around 0.1% of potentially toxic comments (based on the applied heuristic/classifier).

    5. WhatsApp data originated in whatsapp-public-groups, containing 300k messages (Garimella & Tyson, 2018). The public dataset contains the anonymised data, collected for around 5 months from around 178 groups. Original messages were made available to us on request to dataset authors for research purposes.

    From these datasets, we have pseudo-randomly sampled up to 1300 texts (up to 300 for test split and the remaining up to 1000 for train split if available) for each of the selected 22 languages (using a combination of automated approaches to detect the language) and platform. This process resulted in 61,592 human-written texts, which were further filtered out based on occurrence of some characters or their length, resulting in about 58k human-written texts.

    The machine-generated part contains texts generated by 7 LLMs (Aya-101, Gemini-1.0-pro, GPT-3.5-Turbo-0125, Mistral-7B-Instruct-v0.2, opt-iml-max-30b, v5-Eagle-7B-HF, vicuna-13b). All these models were self-hosted except for GPT and Gemini, where we used the publicly available APIs. We generated the texts using 3 paraphrases of the original human-written data and then preprocessed the generated texts (filtered out cases when the generation obviously failed).

    The dataset has the following fields:

    • 'text' - a text sample,

    • 'label' - 0 for human-written text, 1 for machine-generated text,

    • 'multi_label' - a string representing a large language model that generated the text or the string "human" representing a human-written text,

    • 'split' - a string identifying train or test split of the dataset for the purpose of training and evaluation respectively,

    • 'language' - the ISO 639-1 language code identifying the detected language of the given text,

    • 'length' - word count of the given text,

    • 'source' - a string identifying the source dataset / platform of the given text,

    • 'potential_noise' - 0 for text without identified noise, 1 for text with potential noise.

    ToDo Statistics (under construction)

  13. Social Media Disaster-Related Discussions

    • kaggle.com
    Updated Dec 14, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2022). Social Media Disaster-Related Discussions [Dataset]. https://www.kaggle.com/datasets/thedevastator/mining-disaster-related-insights-from-social-med
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 14, 2022
    Dataset provided by
    Kaggle
    Authors
    The Devastator
    Description

    Social Media Disaster-Related Discussions

    Detecting Relevant Content with Trusted Judgments

    By CrowdFlower [source]

    About this dataset

    Welcome to the disaster tweets dataset! This collection of tweets holds a wealth of information about global disasters and their effects on people, governments, and organizations all over the world. With over 10,000 tweets collected and carefully annotated with labels of whether they reported an actual disaster or not, this dataset provides unique insight into what these events look like in terms of social media conversations.

    This information is derived from a variety of key terms related to disaster events, such as “ablaze” and “pandemonium” which was used to gather each individual tweet for analysis. The columns for each tweet include detailed metadata about the user who posted it along with variables such as keyword relevance and location. Alongside all these attributes is the core text belonging to each individual tweet- giving you access to all sorts of stories from natural disasters, contagious disease outbreaks or conflicts between nations that can be found in one place!

    So whatever you're looking for - whether it's observations about first-hand accounts or conducting research on public sentiment during a major event - this dataset offers you an invaluable source full of timely information that could potentially save lives down the line. So take your journey through this data now and embark upon discovering what devastation looks like through social media!

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    This dataset contains tweets related to disaster events, including the keyword, location, text, tweetid and userid. It provides insights into how people interact with each other on social media during a disaster. Using this dataset you can gain valuable insight into the dynamics of online communication in disasters and provide an important point of reference for future disaster management initiatives.

    Research Ideas

    • Analyzing the effectiveness of disaster relief and humanitarian aid efforts, by mapping tweets against public data of areas affected by disasters and donations made to help those affected.
    • Developing advanced statistical models to predict the magnitude and impact of an oncoming natural disaster using keyword analysis in social media posts related to past disasters.
    • Creating text-based classifiers to accurately detect disaster-related tweets in real-time, allowing emergency services providers early warning signs before a potential event occurs

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    Unknown License - Please check the dataset description for more information.

    Columns

    File: socialmedia-disaster-tweets-DFE.csv | Column name | Description | |:-----------------------|:-----------------------------------------------------------------------------------| | _golden | A boolean value indicating whether the tweet is a golden tweet or not. (Boolean) | | _unit_state | The state of the tweet (e.g. finalized, judged, etc.). (String) | | _trusted_judgments | The number of trusted judgments for the tweet. (Integer) | | _last_judgment_at | The date and time of the last judgment for the tweet. (DateTime) | | choose_one | The label assigned to the tweet (e.g. relevant, not relevant, etc.). (String) | | choose_one_gold | The gold label assigned to the tweet (e.g. relevant, not relevant, etc.). (String) | | keyword | The keyword associated with the tweet. (String) | | location | The location associated with the tweet. (String) | | text | The text content of the tweet. (String) |

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. If you use this dataset in your research, please credit CrowdFlower.

  14. f

    Data set belonging to Beyens et al. (2020). The effect of social media on...

    • uvaauas.figshare.com
    • narcis.nl
    bin
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    I. Beyens; J.L. Pouwels; I.I. van Driel; Loes Keijsers; P.M. Valkenburg (2023). Data set belonging to Beyens et al. (2020). The effect of social media on well-being differs from adolescent to adolescent [Dataset]. http://doi.org/10.21942/uva.12497990.v2
    Explore at:
    binAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    University of Amsterdam / Amsterdam University of Applied Sciences
    Authors
    I. Beyens; J.L. Pouwels; I.I. van Driel; Loes Keijsers; P.M. Valkenburg
    License

    http://rdm.uva.nl/en/support/confidential-data.htmlhttp://rdm.uva.nl/en/support/confidential-data.html

    Description

    This data set belongs to:Beyens, I., Pouwels, J. L., van Driel, I. I., Keijsers, L., & Valkenburg, P. M. (2020). The effect of social media on well-being differs from adolescent to adolescent. Scientific Reports. doi:10.1038/s41598-020-67727-7The design, sampling and analysis plan of the study are available on the Open Science Framework (OSF) at https://osf.io/nhks2.For more information, please contact the authors at i.beyens@uva.nl or info@project-awesome.nl.

  15. Data from: Youtube social network

    • kaggle.com
    zip
    Updated Sep 1, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lorenzo De Tomasi (2019). Youtube social network [Dataset]. https://www.kaggle.com/datasets/lodetomasi1995/youtube-social-network
    Explore at:
    zip(10604317 bytes)Available download formats
    Dataset updated
    Sep 1, 2019
    Authors
    Lorenzo De Tomasi
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    YouTube
    Description

    Youtube social network and ground-truth communities Dataset information Youtube is a video-sharing web site that includes a social network. In the Youtube social network, users form friendship each other and users can create groups which other users can join. We consider such user-defined groups as ground-truth communities. This data is provided by Alan Mislove et al.

    We regard each connected component in a group as a separate ground-truth community. We remove the ground-truth communities which have less than 3 nodes. We also provide the top 5,000 communities with highest quality which are described in our paper. As for the network, we provide the largest connected component.

    more info : https://snap.stanford.edu/data/com-Youtube.html

  16. Social Media Channels and Statistics at the National Archives

    • catalog.data.gov
    • data.amerigeoss.org
    • +1more
    Updated Nov 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Archives and Records Administration (2024). Social Media Channels and Statistics at the National Archives [Dataset]. https://catalog.data.gov/dataset/social-media-channels-and-statistics-at-the-national-archives
    Explore at:
    Dataset updated
    Nov 7, 2024
    Dataset provided by
    National Archives and Records Administrationhttp://www.archives.gov/
    Description

    More than 100 social media channels and statistics for the National Archives and Records Administration.

  17. Social media usage by local government - Dataset - data.gov.uk

    • ckan.publishing.service.gov.uk
    Updated Jun 8, 2010
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.publishing.service.gov.uk (2010). Social media usage by local government - Dataset - data.gov.uk [Dataset]. https://ckan.publishing.service.gov.uk/dataset/social-media-usage-by-local-government
    Explore at:
    Dataset updated
    Jun 8, 2010
    Dataset provided by
    CKANhttps://ckan.org/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    A list of UK local authorities which are using social media such as Facebook, Twitter, YouTube. Also includes those with RSS feeds, web development blogs and open data.

  18. Instagram accounts with the most followers worldwide 2024

    • statista.com
    • de.statista.com
    • +4more
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stacy Jo Dixon, Instagram accounts with the most followers worldwide 2024 [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Stacy Jo Dixon
    Description

    Cristiano Ronaldo has one of the most popular Instagram accounts as of April 2024.

                  The Portuguese footballer is the most-followed person on the photo sharing app platform with 628 million followers. Instagram's own account was ranked first with roughly 672 million followers.
    
                  How popular is Instagram?
    
                  Instagram is a photo-sharing social networking service that enables users to take pictures and edit them with filters. The platform allows users to post and share their images online and directly with their friends and followers on the social network. The cross-platform app reached one billion monthly active users in mid-2018. In 2020, there were over 114 million Instagram users in the United States and experts project this figure to surpass 127 million users in 2023.
    
                  Who uses Instagram?
    
                  Instagram audiences are predominantly young – recent data states that almost 60 percent of U.S. Instagram users are aged 34 years or younger. Fall 2020 data reveals that Instagram is also one of the most popular social media for teens and one of the social networks with the biggest reach among teens in the United States.
    
                  Celebrity influencers on Instagram
                  Many celebrities and athletes are brand spokespeople and generate additional income with social media advertising and sponsored content. Unsurprisingly, Ronaldo ranked first again, as the average media value of one of his Instagram posts was 985,441 U.S. dollars.
    
  19. Social Media Users 2021

    • kaggle.com
    Updated Feb 26, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Margaretha Martinez (2021). Social Media Users 2021 [Dataset]. https://www.kaggle.com/datasets/margarethamartinez/socialmedia2021
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 26, 2021
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Margaretha Martinez
    Description
  20. m

    Graph-Based Social Media Data on Mental Health Topics

    • data.mendeley.com
    Updated Nov 4, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Samuel Ady Sanjaya (2024). Graph-Based Social Media Data on Mental Health Topics [Dataset]. http://doi.org/10.17632/z45txpdp7f.2
    Explore at:
    Dataset updated
    Nov 4, 2024
    Authors
    Samuel Ady Sanjaya
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset is structured as a graph, where nodes represent users and edges capture their interactions, including tweets, retweets, replies, and mentions. Each node provides detailed user attributes, such as unique ID, follower and following counts, and verification status, offering insights into each user's identity, role, and influence in the mental health discourse. The edges illustrate user interactions, highlighting engagement patterns and types of content that drive responses, such as tweet impressions. This interconnected structure enables sentiment analysis and public reaction studies, allowing researchers to explore engagement trends and identify the mental health topics that resonate most with users.

    The dataset consists of three files: 1. Edges Data: Contains graph data essential for social network analysis, including fields for UserID (Source), UserID (Destination), Post/Tweet ID, and Date of Relationship. This file enables analysis of user connections without including tweet content, maintaining compliance with Twitter/X’s data-sharing policies. 2. Nodes Data: Offers user-specific details relevant to network analysis, including UserID, Account Creation Date, Follower and Following counts, Verified Status, and Date Joined Twitter. This file allows researchers to examine user behavior (e.g., identifying influential users or spam-like accounts) without direct reference to tweet content. 3. Twitter/X Content Data: This file contains only the raw tweet text as a single-column dataset, without associated user identifiers or metadata. By isolating the text, we ensure alignment with anonymization standards observed in similar published datasets, safeguarding user privacy in compliance with Twitter/X's data guidelines. This content is crucial for addressing the research focus on mental health discourse in social media. (References to prior Data in Brief publications involving Twitter/X data informed the dataset's structure.)

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Stacy Jo Dixon, Number of global social network users 2017-2028 [Dataset]. https://www.statista.com/topics/1164/social-networks/
Organization logo

Number of global social network users 2017-2028

Explore at:
Dataset provided by
Statistahttp://statista.com/
Authors
Stacy Jo Dixon
Description

How many people use social media?

              Social media usage is one of the most popular online activities. In 2024, over five billion people were using social media worldwide, a number projected to increase to over six billion in 2028.

              Who uses social media?
              Social networking is one of the most popular digital activities worldwide and it is no surprise that social networking penetration across all regions is constantly increasing. As of January 2023, the global social media usage rate stood at 59 percent. This figure is anticipated to grow as lesser developed digital markets catch up with other regions
              when it comes to infrastructure development and the availability of cheap mobile devices. In fact, most of social media’s global growth is driven by the increasing usage of mobile devices. Mobile-first market Eastern Asia topped the global ranking of mobile social networking penetration, followed by established digital powerhouses such as the Americas and Northern Europe.

              How much time do people spend on social media?
              Social media is an integral part of daily internet usage. On average, internet users spend 151 minutes per day on social media and messaging apps, an increase of 40 minutes since 2015. On average, internet users in Latin America had the highest average time spent per day on social media.

              What are the most popular social media platforms?
              Market leader Facebook was the first social network to surpass one billion registered accounts and currently boasts approximately 2.9 billion monthly active users, making it the most popular social network worldwide. In June 2023, the top social media apps in the Apple App Store included mobile messaging apps WhatsApp and Telegram Messenger, as well as the ever-popular app version of Facebook.
Search
Clear search
Close search
Google apps
Main menu