100+ datasets found
  1. Instagram accounts with the most followers worldwide 2024

    • statista.com
    • es.statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stacy Jo Dixon, Instagram accounts with the most followers worldwide 2024 [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Stacy Jo Dixon
    Description

    Cristiano Ronaldo has one of the most popular Instagram accounts as of April 2024.

                  The Portuguese footballer is the most-followed person on the photo sharing app platform with 628 million followers. Instagram's own account was ranked first with roughly 672 million followers.
    
                  How popular is Instagram?
    
                  Instagram is a photo-sharing social networking service that enables users to take pictures and edit them with filters. The platform allows users to post and share their images online and directly with their friends and followers on the social network. The cross-platform app reached one billion monthly active users in mid-2018. In 2020, there were over 114 million Instagram users in the United States and experts project this figure to surpass 127 million users in 2023.
    
                  Who uses Instagram?
    
                  Instagram audiences are predominantly young – recent data states that almost 60 percent of U.S. Instagram users are aged 34 years or younger. Fall 2020 data reveals that Instagram is also one of the most popular social media for teens and one of the social networks with the biggest reach among teens in the United States.
    
                  Celebrity influencers on Instagram
                  Many celebrities and athletes are brand spokespeople and generate additional income with social media advertising and sponsored content. Unsurprisingly, Ronaldo ranked first again, as the average media value of one of his Instagram posts was 985,441 U.S. dollars.
    
  2. Data from: Youtube social network

    • kaggle.com
    zip
    Updated Sep 1, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lorenzo De Tomasi (2019). Youtube social network [Dataset]. https://www.kaggle.com/datasets/lodetomasi1995/youtube-social-network
    Explore at:
    zip(10604317 bytes)Available download formats
    Dataset updated
    Sep 1, 2019
    Authors
    Lorenzo De Tomasi
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    YouTube
    Description

    Youtube social network and ground-truth communities Dataset information Youtube is a video-sharing web site that includes a social network. In the Youtube social network, users form friendship each other and users can create groups which other users can join. We consider such user-defined groups as ground-truth communities. This data is provided by Alan Mislove et al.

    We regard each connected component in a group as a separate ground-truth community. We remove the ground-truth communities which have less than 3 nodes. We also provide the top 5,000 communities with highest quality which are described in our paper. As for the network, we provide the largest connected component.

    more info : https://snap.stanford.edu/data/com-Youtube.html

  3. Average daily time spent on social media worldwide 2012-2025

    • statista.com
    Updated Jun 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Average daily time spent on social media worldwide 2012-2025 [Dataset]. https://www.statista.com/statistics/433871/daily-social-media-usage-worldwide/
    Explore at:
    Dataset updated
    Jun 19, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    How much time do people spend on social media? As of 2025, the average daily social media usage of internet users worldwide amounted to 141 minutes per day, down from 143 minutes in the previous year. Currently, the country with the most time spent on social media per day is Brazil, with online users spending an average of 3 hours and 49 minutes on social media each day. In comparison, the daily time spent with social media in the U.S. was just 2 hours and 16 minutes. Global social media usageCurrently, the global social network penetration rate is 62.3 percent. Northern Europe had an 81.7 percent social media penetration rate, topping the ranking of global social media usage by region. Eastern and Middle Africa closed the ranking with 10.1 and 9.6 percent usage reach, respectively. People access social media for a variety of reasons. Users like to find funny or entertaining content and enjoy sharing photos and videos with friends, but mainly use social media to stay in touch with current events friends. Global impact of social mediaSocial media has a wide-reaching and significant impact on not only online activities but also offline behavior and life in general. During a global online user survey in February 2019, a significant share of respondents stated that social media had increased their access to information, ease of communication, and freedom of expression. On the flip side, respondents also felt that social media had worsened their personal privacy, increased a polarization in politics and heightened everyday distractions.

  4. Top 10 social media by active users

    • kaggle.com
    Updated Aug 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mahmoud Gamil (2024). Top 10 social media by active users [Dataset]. https://www.kaggle.com/datasets/mahmoudredagamail/number-of-monthly-active-users-worldwide
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 15, 2024
    Dataset provided by
    Kaggle
    Authors
    Mahmoud Gamil
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    Social Media has become a part of our day-to-day routine, keeping users from across the world well-connected through digital platforms. With each passing year, social media is evolving at a rapid speed. With each passing year, the number of social media users is increasing at an immersive speed. Reports also suggest the number of social media users will reach a milestone of 5.85 billion in 2027.

    In 2024, 62.6% of the world’s population will access social media, which clearly indicates the dominance of social media platforms in today’s world. In this article, we will examine social media statistics for 2024, uncovering monthly active users, daily time spent by users, most downloaded social media apps, etc.

  5. Social Media Channels and Statistics at the National Archives

    • catalog.data.gov
    • data.amerigeoss.org
    • +1more
    Updated Nov 7, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Archives and Records Administration (2024). Social Media Channels and Statistics at the National Archives [Dataset]. https://catalog.data.gov/dataset/social-media-channels-and-statistics-at-the-national-archives
    Explore at:
    Dataset updated
    Nov 7, 2024
    Dataset provided by
    National Archives and Records Administrationhttp://www.archives.gov/
    Description

    More than 100 social media channels and statistics for the National Archives and Records Administration.

  6. Social Media Datasets

    • brightdata.com
    .json, .csv, .xlsx
    Updated Sep 7, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bright Data (2022). Social Media Datasets [Dataset]. https://brightdata.com/products/datasets/social-media
    Explore at:
    .json, .csv, .xlsxAvailable download formats
    Dataset updated
    Sep 7, 2022
    Dataset authored and provided by
    Bright Datahttps://brightdata.com/
    License

    https://brightdata.com/licensehttps://brightdata.com/license

    Area covered
    Worldwide
    Description

    Gain valuable insights with our comprehensive Social Media Dataset, designed to help businesses, marketers, and analysts track trends, monitor engagement, and optimize strategies. This dataset provides structured and reliable social media data from multiple platforms.

    Dataset Features

    User Profiles: Access public social media profiles, including usernames, bios, follower counts, engagement metrics, and more. Ideal for audience analysis, influencer marketing, and competitive research. Posts & Content: Extract posts, captions, hashtags, media (images/videos), timestamps, and engagement metrics such as likes, shares, and comments. Useful for trend analysis, sentiment tracking, and content strategy optimization. Comments & Interactions: Analyze user interactions, including replies, mentions, and discussions. This data helps brands understand audience sentiment and engagement patterns. Hashtag & Trend Tracking: Monitor trending hashtags, topics, and viral content across platforms to stay ahead of industry trends and consumer interests.

    Customizable Subsets for Specific Needs Our Social Media Dataset is fully customizable, allowing you to filter data based on platform, region, keywords, engagement levels, or specific user profiles. Whether you need a broad dataset for market research or a focused subset for brand monitoring, we tailor the dataset to your needs.

    Popular Use Cases

    Brand Monitoring & Reputation Management: Track brand mentions, customer feedback, and sentiment analysis to manage online reputation effectively. Influencer Marketing & Audience Analysis: Identify key influencers, analyze engagement metrics, and optimize influencer partnerships. Competitive Intelligence: Monitor competitor activity, content performance, and audience engagement to refine marketing strategies. Market Research & Consumer Insights: Analyze social media trends, customer preferences, and emerging topics to inform business decisions. AI & Predictive Analytics: Leverage structured social media data for AI-driven trend forecasting, sentiment analysis, and automated content recommendations.

    Whether you're tracking brand sentiment, analyzing audience engagement, or monitoring industry trends, our Social Media Dataset provides the structured data you need. Get started today and customize your dataset to fit your business objectives.

  7. c

    Social Media Usage Dataset(Applications)

    • cubig.ai
    Updated May 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CUBIG (2025). Social Media Usage Dataset(Applications) [Dataset]. https://cubig.ai/store/products/321/social-media-usage-datasetapplications
    Explore at:
    Dataset updated
    May 28, 2025
    Dataset authored and provided by
    CUBIG
    License

    https://cubig.ai/store/terms-of-servicehttps://cubig.ai/store/terms-of-service

    Measurement technique
    Synthetic data generation using AI techniques for model training, Privacy-preserving data transformation via differential privacy
    Description

    1) Data Introduction • The Social Media Usage Dataset(Applications) features patterns and activity indicators that 1,000 users use seven major social media platforms, including Facebook, Instagram, and Twitter.

    2) Data Utilization (1) Social Media Usage Dataset(Applications) has characteristics that: • This dataset provides different social media activity data for each user, including daily usage time, number of posts, number of likes received, and number of new followers. (2) Social Media Usage Dataset(Applications) can be used to: • Analysis of User Participation by Platform: You can analyze participation and popular trends by platform by comparing usage time and activity for each social media. • Establish marketing strategy: Based on user activity data, it can be used for targeted marketing, content production, and user retention strategies.

  8. Instagram: distribution of global audiences 2024, by age and gender

    • statista.com
    • es.statista.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stacy Jo Dixon, Instagram: distribution of global audiences 2024, by age and gender [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Stacy Jo Dixon
    Description

    As of April 2024, around 16.5 percent of global active Instagram users were men between the ages of 18 and 24 years. More than half of the global Instagram population worldwide was aged 34 years or younger.

                  Teens and social media
    
                  As one of the biggest social networks worldwide, Instagram is especially popular with teenagers. As of fall 2020, the photo-sharing app ranked third in terms of preferred social network among teenagers in the United States, second to Snapchat and TikTok. Instagram was one of the most influential advertising channels among female Gen Z users when making purchasing decisions. Teens report feeling more confident, popular, and better about themselves when using social media, and less lonely, depressed and anxious.
                  Social media can have negative effects on teens, which is also much more pronounced on those with low emotional well-being. It was found that 35 percent of teenagers with low social-emotional well-being reported to have experienced cyber bullying when using social media, while in comparison only five percent of teenagers with high social-emotional well-being stated the same. As such, social media can have a big impact on already fragile states of mind.
    
  9. h

    social-network-ads

    • huggingface.co
    Updated Jul 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Seifullah Bello (2024). social-network-ads [Dataset]. https://huggingface.co/datasets/saifhmb/social-network-ads
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 11, 2024
    Authors
    Seifullah Bello
    Description

    Dataset Card for Social Network Ads Dataset

      Dataset Summary
    

    The Social Network Ads Dataset is an English Language dataset containing 400 entries of customer information and their purchasing behavior

      Dataset Structure
    
    
    
    
    
      Data Instances
    

    For each instance, there is an integer for the age, an integer for the estimated salary, and the purchased feature has 2 possible values , 0 and 1 which correspond to No and Yes respectively. {'Age': '19'… See the full description on the dataset page: https://huggingface.co/datasets/saifhmb/social-network-ads.

  10. Instagram: distribution of global audiences 2024, by age group

    • statista.com
    • es.statista.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stacy Jo Dixon, Instagram: distribution of global audiences 2024, by age group [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Stacy Jo Dixon
    Description

    As of April 2024, almost 32 percent of global Instagram audiences were aged between 18 and 24 years, and 30.6 percent of users were aged between 25 and 34 years. Overall, 16 percent of users belonged to the 35 to 44 year age group.

                  Instagram users
    
                  With roughly one billion monthly active users, Instagram belongs to the most popular social networks worldwide. The social photo sharing app is especially popular in India and in the United States, which have respectively 362.9 million and 169.7 million Instagram users each.
    
                  Instagram features
    
                  One of the most popular features of Instagram is Stories. Users can post photos and videos to their Stories stream and the content is live for others to view for 24 hours before it disappears. In January 2019, the company reported that there were 500 million daily active Instagram Stories users. Instagram Stories directly competes with Snapchat, another photo sharing app that initially became famous due to it’s “vanishing photos” feature.
                  As of the second quarter of 2021, Snapchat had 293 million daily active users.
    
  11. Data from: Datasets of Twitter mentions and publications in Information...

    • zenodo.org
    • produccioncientifica.ugr.es
    tsv
    Updated Nov 19, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wenceslao Arroyo-Machado; Wenceslao Arroyo-Machado; Daniel Torres-Salinas; Daniel Torres-Salinas; Nicolás Robinson-García; Nicolás Robinson-García (2021). Datasets of Twitter mentions and publications in Information Science & Library Science and Microbiology [Dataset]. http://doi.org/10.5281/zenodo.4148941
    Explore at:
    tsvAvailable download formats
    Dataset updated
    Nov 19, 2021
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Wenceslao Arroyo-Machado; Wenceslao Arroyo-Machado; Daniel Torres-Salinas; Daniel Torres-Salinas; Nicolás Robinson-García; Nicolás Robinson-García
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Datasets used in the study 'Identifying and characterizing social media communities: a socio-semantic network approach to altmetrics'.

    Microbiology publications (mic_publiccations.tsv). Dataset of 101,206 Microbiology publications with their author keywords.

    Microbiology mentions (mic_mentions.tsv). Dataset of 328,110 Twitter mentions to Microbiology publications.

    Information Science & Library Science publications (lis_publications.tsv). Dataset of 8452 Information Science & Library Science publications with their author keywords.

    Information Science & Library Science mentions (lis_mentions.tsv). Dataset of 35,411 Twitter mentions to Information Science & Library Science publications.

  12. Social Media vs Productivity

    • kaggle.com
    Updated May 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mahdi Mashayekhi (2025). Social Media vs Productivity [Dataset]. https://www.kaggle.com/datasets/mahdimashayekhi/social-media-vs-productivity/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 15, 2025
    Dataset provided by
    Kaggle
    Authors
    Mahdi Mashayekhi
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    📊 Social Media vs Productivity — Realistic Behavioral Dataset (30,000 Users)

    This dataset explores how daily digital habits — including social media usage, screen time, and notification exposure — relate to individual productivity, stress, and well-being.

    🔍 What’s Inside?

    The dataset contains 30,000 real-world-style records simulating behavioral patterns of people with various jobs, social habits, and lifestyle choices. The goal is to understand how different digital behaviors correlate with perceived and actual productivity.

    🧠 Why This Dataset is Valuable

    • Designed for real-world ML workflows
      Includes missing values, noise, and outliers — ideal for practicing data cleaning and preprocessing.

    • 🔗 High correlation between target features
      The perceived_productivity_score and actual_productivity_score are strongly correlated, making this dataset suitable for experiments in feature selection and multicollinearity.

    • 🛠️ Feature Engineering playground
      Use this dataset to practice feature scaling, encoding, binning, interaction terms, and more.

    • 🧪 Perfect for EDA, regression & classification
      You can model productivity, stress, or satisfaction based on behavior patterns and digital exposure.

    🧾 Columns & Feature Info

    Column NameDescription
    ageAge of the individual (18–65 years)
    genderGender identity: Male, Female, or Other
    job_typeEmployment sector or status (IT, Education, Student, etc.)
    daily_social_media_timeAverage daily time spent on social media (hours)
    social_platform_preferenceMost-used social platform (Instagram, TikTok, Telegram, etc.)
    number_of_notificationsNumber of mobile/social notifications per day
    work_hours_per_dayAverage hours worked each day
    perceived_productivity_scoreSelf-rated productivity score (scale: 0–10)
    actual_productivity_scoreSimulated ground-truth productivity score (scale: 0–10)
    stress_levelCurrent stress level (scale: 1–10)
    sleep_hoursAverage hours of sleep per night
    screen_time_before_sleepTime spent on screens before sleeping (hours)
    breaks_during_workNumber of breaks taken during work hours
    uses_focus_appsWhether the user uses digital focus apps (True/False)
    has_digital_wellbeing_enabledWhether Digital Wellbeing is activated (True/False)
    coffee_consumption_per_dayNumber of coffee cups consumed per day
    days_feeling_burnout_per_monthNumber of burnout days reported per month
    weekly_offline_hoursTotal hours spent offline each week (excluding sleep)
    job_satisfaction_scoreSatisfaction with job/life responsibilities (scale: 0–10)

    📌 Notes

    • Contains NaN values in critical columns (productivity, sleep, stress) for data imputation tasks
    • Includes outliers in media usage, coffee intake, and notification count
    • Target columns are strongly correlated for multicollinearity testing
    • Multi-purpose: regression, classification, clustering, visualization

    💡 Use Cases

    • Exploratory Data Analysis (EDA)
    • Feature engineering pipelines
    • Machine learning model benchmarking
    • Statistical hypothesis testing
    • Burnout and mental health prediction projects

    📥 Bonus

    👉 Sample notebook coming soon with data cleaning, visualization, and productivity prediction!

  13. n

    FourSquare

    • networkrepository.com
    csv
    Updated Jul 31, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Network Data Repository (2021). FourSquare [Dataset]. https://networkrepository.com/soc-FourSquare.php
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jul 31, 2021
    Dataset authored and provided by
    Network Data Repository
    License

    https://networkrepository.com/policy.phphttps://networkrepository.com/policy.php

    Description

    Location-based online social network - Foursquare is a location-based online social network. The dataset contains a list of all of the user-to-user links.

  14. s

    How Many Social Media Accounts Does The Average Person Have?

    • searchlogistics.com
    Updated Apr 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). How Many Social Media Accounts Does The Average Person Have? [Dataset]. https://www.searchlogistics.com/learn/statistics/social-media-addiction-statistics/
    Explore at:
    Dataset updated
    Apr 1, 2025
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The average person has 8-9 social media accounts. This has doubled since 2013, when the average person just had 4-5 accounts.

  15. Data from: Social Network Advertising

    • kaggle.com
    Updated Aug 29, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    mohitbasantani (2020). Social Network Advertising [Dataset]. https://www.kaggle.com/mohit1987/social-network-advertising/activity
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 29, 2020
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    mohitbasantani
    Description

    Context

    This data set is a social networking Ads data having the information of the add board on the social networking sites, to promote their products.

    Do leave an upvote if you found this dataset useful!

  16. Datasets of three social networks in PLOS ONE 2015 paper

    • figshare.com
    application/gzip
    Updated Jan 20, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jichang Zhao (2016). Datasets of three social networks in PLOS ONE 2015 paper [Dataset]. http://doi.org/10.6084/m9.figshare.1512836.v2
    Explore at:
    application/gzipAvailable download formats
    Dataset updated
    Jan 20, 2016
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Jichang Zhao
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    All the real-world data sets are employed in the paper "Competition Between Homophily and Information Entropy Maximization in Social Networks", which will be published in PLOS ONE 2015. Three soical networks are included, in which CA-HepPh .txt is a collaboration network from the e-print arXiv(http://www.arxiv.org) and covers scientific collaborations between authors of papers submitted to High Energy Physics, neworleans-links-connected.txt is the giant component of the Facebook network in New Orleans (all node ids are converted to random numbers), jure_Email-Enron.txt is an email communication network that covers all the email communication within a data set of around half million emails. In each file, one line represtnes an edge and two nodes are seperated by a Tab. The demo code to read the graph can be found in test.py. These datasets are obtained from public available soruces in the Internet and their original download links or contacts can also be found as follows: CA-HepPh: http://snap.stanford.edu/data/ca-HepPh.html NewOrleans: http://socialnetworks.mpi-sws.org/datasets.html Email-Enron: http://snap.stanford.edu/data/email-Enron.html

  17. Galatanet dataset

    • zenodo.org
    • data.niaid.nih.gov
    bin, csv, png, txt +1
    Updated Oct 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Vincent Labatut; Vincent Labatut; Jean-Michel Balasque; Jean-Michel Balasque (2024). Galatanet dataset [Dataset]. http://doi.org/10.5281/zenodo.6811542
    Explore at:
    bin, txt, csv, png, zipAvailable download formats
    Dataset updated
    Oct 1, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Vincent Labatut; Vincent Labatut; Jean-Michel Balasque; Jean-Michel Balasque
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Description. This project contains the dataset relative to the Galatanet survey, conducted in 2009 and 2010 at the Galatasaray University in Istanbul (Turkey). The goal of this survey was to retrieve information regarding the social relationships between students, their feeling regarding the university in general, and their purchase behavior. The survey was conducted during two phases: the first one in 2009 and the second in 2010.

    The dataset includes two kinds of data. First, the answers to most of the questions are contained in a large table, available under both CSV and MS Excel formats. An description file allows understanding the meaning of each field appearing in the table. Note the
    survey form is also contained in the archive, for reference (it is in French and Turkish only, though). Second, the social network of students is available under both Pajek and Graphml formats. Having both individual (nodal attributes) and relational (links) information in the same dataset is, to our knowledge, rare and difficult to find in public sources, and this makes (to our opinion) this dataset interesting and valuable.

    All data are completely anonymous: students' names have been replaced by random numbers. Note that the survey is not exactly the same between the two phases: some small adjustments were applied thanks to the feedback from the first phase (but the datasets have been normalized since then). Also, the electronic form was very much improved for the second phase, which explains why the answers are much more complete than in the first phase.

    The data were used in our following publications:

    1. Labatut, V. & Balasque, J.-M. (2010). Business-oriented Analysis of a Social Network of University Students. In: International Conference on Advances in Social Network Analysis and Mining, 25-32. Odense, DK : IEEE. ⟨hal-00633643⟩ - DOI: 10.1109/ASONAM.2010.15
    2. An extended version of the original article: Labatut, V. & Balasque, J.-M. (2013). Informative Value of Individual and Relational Data Compared Through Business-Oriented Community Detection. Özyer, T.; Rokne, J.; Wagner, G. & Reuser, A. H. (Eds.), The Influence of Technology on Social Network Analysis and Mining, Springer, 2013, chap.6, 303-330. ⟨hal-00633650⟩ - DOI: 10.1007/978-3-7091-1346-2_13
    3. A more didactic article using some of these data just for illustration purposes: Labatut, V. & Balasque, J.-M. (2012). Detection and Interpretation of Communities in Complex Networks: Methods and Practical Application. Abraham, A. & Hassanien, A.-E. (Eds.), Computational Social Networks: Tools, Perspectives and Applications, Springer, chap.4, 81-113. ⟨hal-00633653⟩ - DOI: 10.1007/978-1-4471-4048-1_4

    Citation. If you use this data, please cite article [1] above:


    @InProceedings{Labatut2010,
    author = {Labatut, Vincent and Balasque, Jean-Michel},
    title = {Business-oriented Analysis of a Social Network of University Students},
    booktitle = {International Conference on Advances in Social Networks Analysis and Mining},
    year = {2010},
    pages = {25-32},
    address = {Odense, DK},
    publisher = {IEEE Publishing},
    doi = {10.1109/ASONAM.2010.15},
    }

    Contact. 2009-2010 by Jean-Michel Balasque (jmbalasque@gsu.edu.tr) & Vincent Labatut (vlabatut@gsu.edu.tr)

    License. This dataset is open data: you can redistribute it and/or use it under the terms of the Creative Commons Zero license (see `license.txt`).

  18. Social Media Usage Dataset(Applications)

    • kaggle.com
    Updated Oct 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bhadra Mohit (2024). Social Media Usage Dataset(Applications) [Dataset]. https://www.kaggle.com/datasets/bhadramohit/social-media-usage-datasetapplications/suggestions
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Oct 23, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Bhadra Mohit
    License

    https://cdla.io/sharing-1-0/https://cdla.io/sharing-1-0/

    Description

    Context: This dataset offers insights into the usage patterns of social media apps for 1,000 users across seven popular platforms: Facebook, Instagram, Twitter, Snapchat, TikTok, LinkedIn, and Pinterest. It tracks various metrics such as daily time spent on the app, number of posts made, likes received, and new followers gained.

    Dataset Features:

    User_ID: Unique identifier for each user. App: The social media platform being used. Daily_Minutes_Spent: Total time a user spends on the app each day, ranging from 5 to 500 minutes. Posts_Per_Day: Number of posts a user creates per day, ranging from 0 to 20. Likes_Per_Day: Total number of likes a user receives on their posts each day, ranging from 0 to 200. Follows_Per_Day: The number of new followers a user gains daily, ranging from 0 to 50. Context & Use Cases: This dataset could be particularly useful for social media analysts, digital marketers, or researchers interested in understanding user engagement trends across different platforms. It provides insights into how much time users spend, how actively they post, and the level of engagement they receive (in terms of likes and followers).

    Conclusion & Outcome: Analyzing this dataset could yield several outcomes:

    Engagement Patterns: Identifying which platforms have higher engagement in terms of time spent or likes received. Active Users: Determining which users are the most active across various platforms based on the number of posts and followers gained. User Retention: Studying the correlation between time spent and follower growth, providing insight into user retention strategies for different platforms. Overall, the dataset allows for exploration of social media usage trends and helps drive decision-making for marketing strategies, content creation, and platform engagement.

  19. Data from: Social Media Engagement Dataset

    • kaggle.com
    Updated May 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Subash Shanmugam (2025). Social Media Engagement Dataset [Dataset]. https://www.kaggle.com/datasets/subashmaster0411/social-media-engagement-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 6, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Subash Shanmugam
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    This machine-generated dataset simulates social media engagement data across various metrics, including likes, shares, comments, impressions, sentiment scores, toxicity, and engagement growth. It is designed for analysis and visualization of trends, buzz frequency, public sentiment, and user behavior on digital platforms.

    The dataset can be used to:

    Identify spikes or drops in engagement

    Analyze changes in sentiment over time

    Build dashboards for digital trend tracking

    Test algorithms for sentiment analysis or trend prediction

  20. h

    social-media-instruction

    • huggingface.co
    Updated Jan 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bojan Jakimovski (2025). social-media-instruction [Dataset]. https://huggingface.co/datasets/Shekswess/social-media-instruction
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 6, 2025
    Authors
    Bojan Jakimovski
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    Social Media Synthetic Dataset

      Description
    

    Topic: Social Media Posts and Interactions Domains: Social Media Platforms (Twitter, Facebook, Instagram) Focus: Synthetic collection of social media content and interactions Number of Entries: 500 Dataset Type: Raw Dataset Model Used: anthropic/claude-3-5-sonnet-20241022 Language: English Generated by: SynthGenAI Package

      Additional Information
    

    The dataset contains synthesized social media posts mimicking real… See the full description on the dataset page: https://huggingface.co/datasets/Shekswess/social-media-instruction.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Stacy Jo Dixon, Instagram accounts with the most followers worldwide 2024 [Dataset]. https://www.statista.com/topics/1164/social-networks/
Organization logo

Instagram accounts with the most followers worldwide 2024

Explore at:
Dataset provided by
Statistahttp://statista.com/
Authors
Stacy Jo Dixon
Description

Cristiano Ronaldo has one of the most popular Instagram accounts as of April 2024.

              The Portuguese footballer is the most-followed person on the photo sharing app platform with 628 million followers. Instagram's own account was ranked first with roughly 672 million followers.

              How popular is Instagram?

              Instagram is a photo-sharing social networking service that enables users to take pictures and edit them with filters. The platform allows users to post and share their images online and directly with their friends and followers on the social network. The cross-platform app reached one billion monthly active users in mid-2018. In 2020, there were over 114 million Instagram users in the United States and experts project this figure to surpass 127 million users in 2023.

              Who uses Instagram?

              Instagram audiences are predominantly young – recent data states that almost 60 percent of U.S. Instagram users are aged 34 years or younger. Fall 2020 data reveals that Instagram is also one of the most popular social media for teens and one of the social networks with the biggest reach among teens in the United States.

              Celebrity influencers on Instagram
              Many celebrities and athletes are brand spokespeople and generate additional income with social media advertising and sponsored content. Unsurprisingly, Ronaldo ranked first again, as the average media value of one of his Instagram posts was 985,441 U.S. dollars.
Search
Clear search
Close search
Google apps
Main menu