27 datasets found
  1. F

    Mexican Spanish Call Center Data for Realestate AI

    • futurebeeai.com
    wav
    Updated Aug 1, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FutureBee AI (2022). Mexican Spanish Call Center Data for Realestate AI [Dataset]. https://www.futurebeeai.com/dataset/speech-dataset/realestate-call-center-conversation-spanish-mexico
    Explore at:
    wavAvailable download formats
    Dataset updated
    Aug 1, 2022
    Dataset provided by
    FutureBeeAI
    Authors
    FutureBee AI
    License

    https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement

    Area covered
    Mexico
    Dataset funded by
    FutureBeeAI
    Description

    Introduction

    This Mexican Spanish Call Center Speech Dataset for the Real Estate industry is purpose-built to accelerate the development of speech recognition, spoken language understanding, and conversational AI systems tailored for Spanish -speaking Real Estate customers. With over 30 hours of unscripted, real-world audio, this dataset captures authentic conversations between customers and real estate agents ideal for building robust ASR models.

    Curated by FutureBeeAI, this dataset equips voice AI developers, real estate tech platforms, and NLP researchers with the data needed to create high-accuracy, production-ready models for property-focused use cases.

    Speech Data

    The dataset features 30 hours of dual-channel call center recordings between native Mexican Spanish speakers. Captured in realistic real estate consultation and support contexts, these conversations span a wide array of property-related topics from inquiries to investment advice offering deep domain coverage for AI model development.

    Participant Diversity:
    Speakers: 60 native Mexican Spanish speakers from our verified contributor community.
    Regions: Representing different provinces across Mexico to ensure accent and dialect variation.
    Participant Profile: Balanced gender mix (60% male, 40% female) and age range from 18 to 70.
    Recording Details:
    Conversation Nature: Naturally flowing, unscripted agent-customer discussions.
    Call Duration: Average 5–15 minutes per call.
    Audio Format: Stereo WAV, 16-bit, recorded at 8kHz and 16kHz.
    Recording Environment: Captured in noise-free and echo-free conditions.

    Topic Diversity

    This speech corpus includes both inbound and outbound calls, featuring positive, neutral, and negative outcomes across a wide range of real estate scenarios.

    Inbound Calls:
    Property Inquiries
    Rental Availability
    Renovation Consultation
    Property Features & Amenities
    Investment Property Evaluation
    Ownership History & Legal Info, and more
    Outbound Calls:
    New Listing Notifications
    Post-Purchase Follow-ups
    Property Recommendations
    Value Updates
    Customer Satisfaction Surveys, and others

    Such domain-rich variety ensures model generalization across common real estate support conversations.

    Transcription

    All recordings are accompanied by precise, manually verified transcriptions in JSON format.

    Transcription Includes:
    Speaker-Segmented Dialogues
    Time-coded Segments
    Non-speech Tags (e.g., background noise, pauses)
    High transcription accuracy with word error rate below 5% via dual-layer human review.

    These transcriptions streamline ASR and NLP development for Spanish real estate voice applications.

    Metadata

    Detailed metadata accompanies each participant and conversation:

    Participant Metadata: ID, age, gender, location, accent, and dialect.
    Conversation Metadata: Topic, call type, sentiment, sample rate, and technical details.

    This enables smart filtering, dialect-focused model training, and structured dataset exploration.

    Usage and Applications

    This dataset is ideal for voice AI and NLP systems built for the real estate sector:

    <div style="margin-top:10px; margin-bottom: 10px; padding-left: 30px; display: flex; gap: 16px; align-items:

  2. F

    Mexican Spanish General Conversation Speech Dataset for ASR

    • futurebeeai.com
    wav
    Updated Aug 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FutureBee AI (2022). Mexican Spanish General Conversation Speech Dataset for ASR [Dataset]. https://www.futurebeeai.com/dataset/speech-dataset/general-conversation-spanish-mexico
    Explore at:
    wavAvailable download formats
    Dataset updated
    Aug 1, 2022
    Dataset provided by
    FutureBeeAI
    Authors
    FutureBee AI
    License

    https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement

    Area covered
    Mexico
    Dataset funded by
    FutureBeeAI
    Description

    Introduction

    Welcome to the Mexican Spanish General Conversation Speech Dataset — a rich, linguistically diverse corpus purpose-built to accelerate the development of Spanish speech technologies. This dataset is designed to train and fine-tune ASR systems, spoken language understanding models, and generative voice AI tailored to real-world Mexican Spanish communication.

    Curated by FutureBeeAI, this 30 hours dataset offers unscripted, spontaneous two-speaker conversations across a wide array of real-life topics. It enables researchers, AI developers, and voice-first product teams to build robust, production-grade Spanish speech models that understand and respond to authentic Mexican accents and dialects.

    Speech Data

    The dataset comprises 30 hours of high-quality audio, featuring natural, free-flowing dialogue between native speakers of Mexican Spanish. These sessions range from informal daily talks to deeper, topic-specific discussions, ensuring variability and context richness for diverse use cases.

    Participant Diversity:
    Speakers: 60 verified native Mexican Spanish speakers from FutureBeeAI’s contributor community.
    Regions: Representing various provinces of Mexico to ensure dialectal diversity and demographic balance.
    Demographics: A balanced gender ratio (60% male, 40% female) with participant ages ranging from 18 to 70 years.
    Recording Details:
    Conversation Style: Unscripted, spontaneous peer-to-peer dialogues.
    Duration: Each conversation ranges from 15 to 60 minutes.
    Audio Format: Stereo WAV files, 16-bit depth, recorded at 16kHz sample rate.
    Environment: Quiet, echo-free settings with no background noise.

    Topic Diversity

    The dataset spans a wide variety of everyday and domain-relevant themes. This topic diversity ensures the resulting models are adaptable to broad speech contexts.

    Sample Topics Include:
    Family & Relationships
    Food & Recipes
    Education & Career
    Healthcare Discussions
    Social Issues
    Technology & Gadgets
    Travel & Local Culture
    Shopping & Marketplace Experiences, and many more.

    Transcription

    Each audio file is paired with a human-verified, verbatim transcription available in JSON format.

    Transcription Highlights:
    Speaker-segmented dialogues
    Time-coded utterances
    Non-speech elements (pauses, laughter, etc.)
    High transcription accuracy, achieved through double QA pass, average WER < 5%

    These transcriptions are production-ready, enabling seamless integration into ASR model pipelines or conversational AI workflows.

    Metadata

    The dataset comes with granular metadata for both speakers and recordings:

    Speaker Metadata: Age, gender, accent, dialect, state/province, and participant ID.
    Recording Metadata: Topic, duration, audio format, device type, and sample rate.

    Such metadata helps developers fine-tune model training and supports use-case-specific filtering or demographic analysis.

    Usage and Applications

    This dataset is a versatile resource for multiple Spanish speech and language AI applications:

    ASR Development: Train accurate speech-to-text systems for Mexican Spanish.
    Voice Assistants: Build smart assistants capable of understanding natural Mexican conversations.
    <div style="margin-top:10px; margin-bottom: 10px; padding-left: 30px; display: flex; gap: 16px;

  3. m

    Tracking the Global Pulse: The first public Twitter dataset from FIFA World...

    • data.mendeley.com
    Updated May 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    kheir eddine daouadi (2025). Tracking the Global Pulse: The first public Twitter dataset from FIFA World Cup [Dataset]. http://doi.org/10.17632/gw3mcnbkwr.2
    Explore at:
    Dataset updated
    May 27, 2025
    Authors
    kheir eddine daouadi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    World
    Description

    The first public large-scale multilingual Twitter dataset related to the FIFA World Cup 2022, comprising over 28 million posts in 69 unique spoken languages, including Arabic, English, Spanish, French, and many others. This dataset aims to facilitate research in future sentiment analysis, cross-linguistic studies, event-based analytics, meme and hate speech detection, fake news detection, and social manipulation detection.

    The file 🚨Qatar22WC.csv🚨 contains tweet-level and user-level metadata for our collected tweets. 🚀Codebook for FIFA World Cup 2022 Twitter Dataset🚀 | Column Name | Description| |-------------------------------- |----------------------------------------------------------------------------------------| | day, month, year | The date where the tweet posted | | hou, min, sec | Hour, minute, and second of tweet timestamp | | age_of_the_user_account | User Account age in days | | tweet_count | Total number of tweets posted by the user | | location | User-defined location field | | follower_count | Number of followers the user has | | following_count | Number of accounts the user is following | | follower_to_Following | Follower-following ratio | | favouite_count | Number of likes the user did| | verified | Boolean indicating if the user is verified (1 = Verified, 0 = Not Verified) | | Avg_tweet_count | Average tweets per day for the user activity| | list_count | Number of lists the user is a member | | Tweet_Id | Tweet ID | | is_reply_tweet | ID of the tweet being replied to (if applicable) | | is_quote | boolean representing if the tweet is a quote | | retid | Retweet ID if it's a retweet; NaN otherwise | | lang | Language of the tweet | | hashtags | The keyword or hashtag used to collect the tweet | | is_image, | Boolean indicating if the tweet associated with image| | is_video | Boolean indicating if the tweet associated with video | |-------------------------------|----------------------------------------------------------------------------------------|

    Examples of use case queries are described in the file 🚨fifa_wc_qatar22_examples_of_use_case_queries.ipynb🚨 and accessible via: https://github.com/khairied/Qata_FIFA_World_Cup_22

    🚀 Please Cite This as: Daouadi, K. E., Boualleg, Y., Guehairia, O. & Taleb-Ahmed, A. (2025). Tracking the Global Pulse: The first public Twitter dataset from FIFA World Cup, Journal of Computational Social Science.

  4. F

    Colombian Spanish General Conversation Speech Dataset for ASR

    • futurebeeai.com
    wav
    Updated Aug 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FutureBee AI (2022). Colombian Spanish General Conversation Speech Dataset for ASR [Dataset]. https://www.futurebeeai.com/dataset/speech-dataset/general-conversation-spanish-colombia
    Explore at:
    wavAvailable download formats
    Dataset updated
    Aug 1, 2022
    Dataset provided by
    FutureBeeAI
    Authors
    FutureBee AI
    License

    https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement

    Dataset funded by
    FutureBeeAI
    Description

    Introduction

    Welcome to the Colombian Spanish General Conversation Speech Dataset — a rich, linguistically diverse corpus purpose-built to accelerate the development of Spanish speech technologies. This dataset is designed to train and fine-tune ASR systems, spoken language understanding models, and generative voice AI tailored to real-world Colombian Spanish communication.

    Curated by FutureBeeAI, this 30 hours dataset offers unscripted, spontaneous two-speaker conversations across a wide array of real-life topics. It enables researchers, AI developers, and voice-first product teams to build robust, production-grade Spanish speech models that understand and respond to authentic Colombian accents and dialects.

    Speech Data

    The dataset comprises 30 hours of high-quality audio, featuring natural, free-flowing dialogue between native speakers of Colombian Spanish. These sessions range from informal daily talks to deeper, topic-specific discussions, ensuring variability and context richness for diverse use cases.

    Participant Diversity:
    Speakers: 60 verified native Colombian Spanish speakers from FutureBeeAI’s contributor community.
    Regions: Representing various provinces of Colombia to ensure dialectal diversity and demographic balance.
    Demographics: A balanced gender ratio (60% male, 40% female) with participant ages ranging from 18 to 70 years.
    Recording Details:
    Conversation Style: Unscripted, spontaneous peer-to-peer dialogues.
    Duration: Each conversation ranges from 15 to 60 minutes.
    Audio Format: Stereo WAV files, 16-bit depth, recorded at 16kHz sample rate.
    Environment: Quiet, echo-free settings with no background noise.

    Topic Diversity

    The dataset spans a wide variety of everyday and domain-relevant themes. This topic diversity ensures the resulting models are adaptable to broad speech contexts.

    Sample Topics Include:
    Family & Relationships
    Food & Recipes
    Education & Career
    Healthcare Discussions
    Social Issues
    Technology & Gadgets
    Travel & Local Culture
    Shopping & Marketplace Experiences, and many more.

    Transcription

    Each audio file is paired with a human-verified, verbatim transcription available in JSON format.

    Transcription Highlights:
    Speaker-segmented dialogues
    Time-coded utterances
    Non-speech elements (pauses, laughter, etc.)
    High transcription accuracy, achieved through double QA pass, average WER < 5%

    These transcriptions are production-ready, enabling seamless integration into ASR model pipelines or conversational AI workflows.

    Metadata

    The dataset comes with granular metadata for both speakers and recordings:

    Speaker Metadata: Age, gender, accent, dialect, state/province, and participant ID.
    Recording Metadata: Topic, duration, audio format, device type, and sample rate.

    Such metadata helps developers fine-tune model training and supports use-case-specific filtering or demographic analysis.

    Usage and Applications

    This dataset is a versatile resource for multiple Spanish speech and language AI applications:

    ASR Development: Train accurate speech-to-text systems for Colombian Spanish.
    Voice Assistants: Build smart assistants capable of understanding natural Colombian conversations.
    <div style="margin-top:10px; margin-bottom: 10px; padding-left: 30px; display: flex;

  5. F

    Mexican Spanish Call Center Data for Healthcare AI

    • futurebeeai.com
    wav
    Updated Aug 1, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FutureBee AI (2022). Mexican Spanish Call Center Data for Healthcare AI [Dataset]. https://www.futurebeeai.com/dataset/speech-dataset/healthcare-call-center-conversation-spanish-mexico
    Explore at:
    wavAvailable download formats
    Dataset updated
    Aug 1, 2022
    Dataset provided by
    FutureBeeAI
    Authors
    FutureBee AI
    License

    https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement

    Area covered
    Mexico
    Dataset funded by
    FutureBeeAI
    Description

    Introduction

    This Mexican Spanish Call Center Speech Dataset for the Healthcare industry is purpose-built to accelerate the development of Spanish speech recognition, spoken language understanding, and conversational AI systems. With 30 Hours of unscripted, real-world conversations, it delivers the linguistic and contextual depth needed to build high-performance ASR models for medical and wellness-related customer service.

    Created by FutureBeeAI, this dataset empowers voice AI teams, NLP researchers, and data scientists to develop domain-specific models for hospitals, clinics, insurance providers, and telemedicine platforms.

    Speech Data

    The dataset features 30 Hours of dual-channel call center conversations between native Mexican Spanish speakers. These recordings cover a variety of healthcare support topics, enabling the development of speech technologies that are contextually aware and linguistically rich.

    Participant Diversity:
    Speakers: 60 verified native Mexican Spanish speakers from our contributor community.
    Regions: Diverse provinces across Mexico to ensure broad dialectal representation.
    Participant Profile: Age range of 18–70 with a gender mix of 60% male and 40% female.
    RecordingDetails:
    Conversation Nature: Naturally flowing, unscripted conversations.
    Call Duration: Each session ranges between 5 to 15 minutes.
    Audio Format: WAV format, stereo, 16-bit depth at 8kHz and 16kHz sample rates.
    Recording Environment: Captured in clear conditions without background noise or echo.

    Topic Diversity

    The dataset spans inbound and outbound calls, capturing a broad range of healthcare-specific interactions and sentiment types (positive, neutral, negative).

    Inbound Calls:
    Appointment Scheduling
    New Patient Registration
    Surgical Consultation
    Dietary Advice and Consultations
    Insurance Coverage Inquiries
    Follow-up Treatment Requests, and more
    OutboundCalls:
    Appointment Reminders
    Preventive Care Campaigns
    Test Results & Lab Reports
    Health Risk Assessment Calls
    Vaccination Updates
    Wellness Subscription Outreach, and more

    These real-world interactions help build speech models that understand healthcare domain nuances and user intent.

    Transcription

    Every audio file is accompanied by high-quality, manually created transcriptions in JSON format.

    Transcription Includes:
    Speaker-identified Dialogues
    Time-coded Segments
    Non-speech Annotations (e.g., silence, cough)
    High transcription accuracy with word error rate is below 5%, backed by dual-layer QA checks.

    Metadata

    Each conversation and speaker includes detailed metadata to support fine-tuned training and analysis.

    Participant Metadata: ID, gender, age, region, accent, and dialect.
    Conversation Metadata: Topic, sentiment, call type, sample rate, and technical specs.

    Usage and Applications

    This dataset can be used across a range of healthcare and voice AI use cases:

  6. F

    Mexican Spanish Call Center Data for Delivery & Logistics AI

    • futurebeeai.com
    wav
    Updated Aug 1, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FutureBee AI (2022). Mexican Spanish Call Center Data for Delivery & Logistics AI [Dataset]. https://www.futurebeeai.com/dataset/speech-dataset/delivery-call-center-conversation-spanish-mexico
    Explore at:
    wavAvailable download formats
    Dataset updated
    Aug 1, 2022
    Dataset provided by
    FutureBeeAI
    Authors
    FutureBee AI
    License

    https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement

    Dataset funded by
    FutureBeeAI
    Description

    Introduction

    This Mexican Spanish Call Center Speech Dataset for the Delivery and Logistics industry is purpose-built to accelerate the development of speech recognition, spoken language understanding, and conversational AI systems tailored for Spanish-speaking customers. With over 30 hours of real-world, unscripted call center audio, this dataset captures authentic delivery-related conversations essential for training high-performance ASR models.

    Curated by FutureBeeAI, this dataset empowers AI teams, logistics tech providers, and NLP researchers to build accurate, production-ready models for customer support automation in delivery and logistics.

    Speech Data

    The dataset contains 30 hours of dual-channel call center recordings between native Mexican Spanish speakers. Captured across various delivery and logistics service scenarios, these conversations cover everything from order tracking to missed delivery resolutions offering a rich, real-world training base for AI models.

    Participant Diversity:
    Speakers: 60 native Mexican Spanish speakers from our verified contributor pool.
    Regions: Multiple provinces of Mexico for accent and dialect diversity.
    Participant Profile: Balanced gender distribution (60% male, 40% female) with ages ranging from 18 to 70.
    Recording Details:
    Conversation Nature: Naturally flowing, unscripted customer-agent dialogues.
    Call Duration: 5 to 15 minutes on average.
    Audio Format: Stereo WAV, 16-bit depth, recorded at 8kHz and 16kHz.
    Recording Environment: Captured in clean, noise-free, echo-free conditions.

    Topic Diversity

    This speech corpus includes both inbound and outbound delivery-related conversations, covering varied outcomes (positive, negative, neutral) to train adaptable voice models.

    Inbound Calls:
    Order Tracking
    Delivery Complaints
    Undeliverable Addresses
    Return Process Enquiries
    Delivery Method Selection
    Order Modifications, and more
    Outbound Calls:
    Delivery Confirmations
    Subscription Offer Calls
    Incorrect Address Follow-ups
    Missed Delivery Notifications
    Delivery Feedback Surveys
    Out-of-Stock Alerts, and others

    This comprehensive coverage reflects real-world logistics workflows, helping voice AI systems interpret context and intent with precision.

    Transcription

    All recordings come with high-quality, human-generated verbatim transcriptions in JSON format.

    Transcription Includes:
    Speaker-Segmented Dialogues
    Time-coded Segments
    Non-speech Tags (e.g., pauses, noise)
    High transcription accuracy with word error rate under 5% via dual-layer quality checks.

    These transcriptions support fast, reliable model development for Spanish voice AI applications in the delivery sector.

    Metadata

    Detailed metadata is included for each participant and conversation:

    Participant Metadata: ID, age, gender, region, accent, dialect.
    Conversation Metadata: Topic, call type, sentiment, sample rate, and technical attributes.

    This metadata aids in training specialized models, filtering demographics, and running advanced analytics.

    Usage and Applications

    <p

  7. Gallup World Poll 2013, June - Afghanistan, Angola, Albania...and 183 more

    • catalog.ihsn.org
    • datacatalog.ihsn.org
    Updated Jun 14, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gallup, Inc. (2022). Gallup World Poll 2013, June - Afghanistan, Angola, Albania...and 183 more [Dataset]. https://catalog.ihsn.org/catalog/8494
    Explore at:
    Dataset updated
    Jun 14, 2022
    Dataset authored and provided by
    Gallup, Inc.http://gallup.com/
    Time period covered
    2005 - 2012
    Area covered
    Albania, Angola, Afghanistan
    Description

    Abstract

    Gallup Worldwide Research continually surveys residents in more than 150 countries, representing more than 98% of the world's adult population, using randomly selected, nationally representative samples. Gallup typically surveys 1,000 individuals in each country, using a standard set of core questions that has been translated into the major languages of the respective country. In some regions, supplemental questions are asked in addition to core questions. Face-to-face interviews are approximately 1 hour, while telephone interviews are about 30 minutes. In many countries, the survey is conducted once per year, and fieldwork is generally completed in two to four weeks. The Country Dataset Details spreadsheet displays each country's sample size, month/year of the data collection, mode of interviewing, languages employed, design effect, margin of error, and details about sample coverage.

    Gallup is entirely responsible for the management, design, and control of Gallup Worldwide Research. For the past 70 years, Gallup has been committed to the principle that accurately collecting and disseminating the opinions and aspirations of people around the globe is vital to understanding our world. Gallup's mission is to provide information in an objective, reliable, and scientifically grounded manner. Gallup is not associated with any political orientation, party, or advocacy group and does not accept partisan entities as clients. Any individual, institution, or governmental agency may access the Gallup Worldwide Research regardless of nationality. The identities of clients and all surveyed respondents will remain confidential.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    SAMPLING AND DATA COLLECTION METHODOLOGY With some exceptions, all samples are probability based and nationally representative of the resident population aged 15 and older. The coverage area is the entire country including rural areas, and the sampling frame represents the entire civilian, non-institutionalized, aged 15 and older population of the entire country. Exceptions include areas where the safety of interviewing staff is threatened, scarcely populated islands in some countries, and areas that interviewers can reach only by foot, animal, or small boat.

    Telephone surveys are used in countries where telephone coverage represents at least 80% of the population or is the customary survey methodology (see the Country Dataset Details for detailed information for each country). In Central and Eastern Europe, as well as in the developing world, including much of Latin America, the former Soviet Union countries, nearly all of Asia, the Middle East, and Africa, an area frame design is used for face-to-face interviewing.

    The typical Gallup Worldwide Research survey includes at least 1,000 surveys of individuals. In some countries, oversamples are collected in major cities or areas of special interest. Additionally, in some large countries, such as China and Russia, sample sizes of at least 2,000 are collected. Although rare, in some instances the sample size is between 500 and 1,000. See the Country Dataset Details for detailed information for each country.

    FACE-TO-FACE SURVEY DESIGN

    FIRST STAGE In countries where face-to-face surveys are conducted, the first stage of sampling is the identification of 100 to 135 ultimate clusters (Sampling Units), consisting of clusters of households. Sampling units are stratified by population size and or geography and clustering is achieved through one or more stages of sampling. Where population information is available, sample selection is based on probabilities proportional to population size, otherwise simple random sampling is used. Samples are drawn independent of any samples drawn for surveys conducted in previous years.

    There are two methods for sample stratification:

    METHOD 1: The sample is stratified into 100 to 125 ultimate clusters drawn proportional to the national population, using the following strata: 1) Areas with population of at least 1 million 2) Areas 500,000-999,999 3) Areas 100,000-499,999 4) Areas 50,000-99,999 5) Areas 10,000-49,999 6) Areas with less than 10,000

    The strata could include additional stratum to reflect populations that exceed 1 million as well as areas with populations less than 10,000. Worldwide Research Methodology and Codebook Copyright © 2008-2012 Gallup, Inc. All rights reserved. 8

    METHOD 2:

    A multi-stage design is used. The country is first stratified by large geographic units, and then by smaller units within geography. A minimum of 33 Primary Sampling Units (PSUs), which are first stage sampling units, are selected. The sample design results in 100 to 125 ultimate clusters.

    SECOND STAGE

    Random route procedures are used to select sampled households. Unless an outright refusal occurs, interviewers make up to three attempts to survey the sampled household. To increase the probability of contact and completion, attempts are made at different times of the day, and where possible, on different days. If an interviewer cannot obtain an interview at the initial sampled household, he or she uses a simple substitution method. Refer to Appendix C for a more in-depth description of random route procedures.

    THIRD STAGE

    Respondents are randomly selected within the selected households. Interviewers list all eligible household members and their ages or birthdays. The respondent is selected by means of the Kish grid (refer to Appendix C) in countries where face-to-face interviewing is used. The interview does not inform the person who answers the door of the selection criteria until after the respondent has been identified. In a few Middle East and Asian countries where cultural restrictions dictate gender matching, respondents are randomly selected using the Kish grid from among all eligible adults of the matching gender.

    TELEPHONE SURVEY DESIGN

    In countries where telephone interviewing is employed, random-digit-dial (RDD) or a nationally representative list of phone numbers is used. In select countries where cell phone penetration is high, a dual sampling frame is used. Random respondent selection is achieved by using either the latest birthday or Kish grid method. At least three attempts are made to reach a person in each household, spread over different days and times of day. Appointments for callbacks that fall within the survey data collection period are made.

    PANEL SURVEY DESIGN

    Prior to 2009, United States data were collected using The Gallup Panel. The Gallup Panel is a probability-based, nationally representative panel, for which all members are recruited via random-digit-dial methodology and is only used in the United States. Participants who elect to join the panel are committing to the completion of two to three surveys per month, with the typical survey lasting 10 to 15 minutes. The Gallup Worldwide Research panel survey is conducted over the telephone and takes approximately 30 minutes. No incentives are given to panel participants. Worldwide Research Methodology and Codebook Copyright © 2008-2012 Gallup, Inc. All rights reserved. 9

    Research instrument

    QUESTION DESIGN

    Many of the Worldwide Research questions are items that Gallup has used for years. When developing additional questions, Gallup employed its worldwide network of research and political scientists1 to better understand key issues with regard to question development and construction and data gathering. Hundreds of items were developed, tested, piloted, and finalized. The best questions were retained for the core questionnaire and organized into indexes. Most items have a simple dichotomous ("yes or no") response set to minimize contamination of data because of cultural differences in response styles and to facilitate cross-cultural comparisons.

    The Gallup Worldwide Research measures key indicators such as Law and Order, Food and Shelter, Job Creation, Migration, Financial Wellbeing, Personal Health, Civic Engagement, and Evaluative Wellbeing and demonstrates their correlations with world development indicators such as GDP and Brain Gain. These indicators assist leaders in understanding the broad context of national interests and establishing organization-specific correlations between leading indexes and lagging economic outcomes.

    Gallup organizes its core group of indicators into the Gallup World Path. The Path is an organizational conceptualization of the seven indexes and is not to be construed as a causal model. The individual indexes have many properties of a strong theoretical framework. A more in-depth description of the questions and Gallup indexes is included in the indexes section of this document. In addition to World Path indexes, Gallup Worldwide Research questions also measure opinions about national institutions, corruption, youth development, community basics, diversity, optimism, communications, religiosity, and numerous other topics. For many regions of the world, additional questions that are specific to that region or country are included in surveys. Region-specific questions have been developed for predominantly Muslim nations, former Soviet Union countries, the Balkans, sub-Saharan Africa, Latin America, China and India, South Asia, and Israel and the Palestinian Territories.

    The questionnaire is translated into the major conversational languages of each country. The translation process starts with an English, French, or Spanish version, depending on the region. One of two translation methods may be used.

    METHOD 1: Two independent translations are completed. An independent third party, with some knowledge of survey research methods, adjudicates the differences. A professional translator translates the final version back into the source language.

    METHOD 2: A translator

  8. E

    GlobalPhone Polish

    • catalogue.elra.info
    • live.european-language-grid.eu
    Updated Jun 26, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ELRA (European Language Resources Association) and its operational body ELDA (Evaluations and Language resources Distribution Agency) (2017). GlobalPhone Polish [Dataset]. https://catalogue.elra.info/en-us/repository/browse/ELRA-S0320/
    Explore at:
    Dataset updated
    Jun 26, 2017
    Dataset provided by
    ELRA (European Language Resources Association) and its operational body ELDA (Evaluations and Language resources Distribution Agency)
    ELRA (European Language Resources Association)
    License

    https://catalogue.elra.info/static/from_media/metashare/licences/ELRA_END_USER.pdfhttps://catalogue.elra.info/static/from_media/metashare/licences/ELRA_END_USER.pdf

    https://catalogue.elra.info/static/from_media/metashare/licences/ELRA_VAR.pdfhttps://catalogue.elra.info/static/from_media/metashare/licences/ELRA_VAR.pdf

    Description

    The GlobalPhone corpus developed in collaboration with the Karlsruhe Institute of Technology (KIT) was designed to provide read speech data for the development and evaluation of large continuous speech recognition systems in the most widespread languages of the world, and to provide a uniform, multilingual speech and text database for language independent and language adaptive speech recognition as well as for language identification tasks. The entire GlobalPhone corpus enables the acquisition of acoustic-phonetic knowledge of the following 22 spoken languages: Arabic (ELRA-S0192), Bulgarian (ELRA-S0319), Chinese-Mandarin (ELRA-S0193), Chinese-Shanghai (ELRA-S0194), Croatian (ELRA-S0195), Czech (ELRA-S0196), French (ELRA-S0197), German (ELRA-S0198), Hausa (ELRA-S0347), Japanese (ELRA-S0199), Korean (ELRA-S0200), Polish (ELRA-S0320), Portuguese (Brazilian) (ELRA-S0201), Russian (ELRA-S0202), Spanish (Latin America) (ELRA-S0203), Swahili (ELRA-S0375), Swedish (ELRA-S0204), Tamil (ELRA-S0205), Thai (ELRA-S0321), Turkish (ELRA-S0206), Ukrainian (ELRA-S0377), and Vietnamese (ELRA-S0322).In each language about 100 sentences were read from each of the 100 speakers. The read texts were selected from national newspapers available via Internet to provide a large vocabulary. The read articles cover national and international political news as well as economic news. The speech is available in 16bit, 16kHz mono quality, recorded with a close-speaking microphone (Sennheiser 440-6). The transcriptions are internally validated and supplemented by special markers for spontaneous effects like stuttering, false starts, and non-verbal effects like laughing and hesitations. Speaker information like age, gender, occupation, etc. as well as information about the recording setup complement the database. The entire GlobalPhone corpus contains over 450 hours of speech spoken by more than 2100 native adult speakers.Data is shortened by means of the shorten program written by Tony Robinson. Alternatively, the data could be delivered unshorten.The Polish part of GlobalPhone was collected from altogether 102 native speakers in Poland, of which 48 speakers were female and 54 speakers were male. The majority of speakers are between 20 and 39 years old, the age distribution ranges from 18 to 65 years. Most of the speakers are non-smokers in good health conditions. Each speaker read on average about 100 utterances from newspaper articles, in total we recorded 10130 utterances. The speech was recorded using a close-talking microphone Sennheiser HM420 in a push-to-talk scenario. All data were recorded at 16kHz and 16bit resolution in PCM format. The data collection took place in small and large rooms, about half of the recordings took place under very quiet noise conditions, the other half with moderate background noise. Information on recording place and environmental noise conditions are provided in a separate speaker session file for each speaker. The text data used for reco...

  9. E

    GlobalPhone Spanish (Latin American)

    • catalogue.elra.info
    • live.european-language-grid.eu
    Updated Jun 26, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ELRA (European Language Resources Association) and its operational body ELDA (Evaluations and Language resources Distribution Agency) (2017). GlobalPhone Spanish (Latin American) [Dataset]. https://catalogue.elra.info/en-us/repository/browse/ELRA-S0203/
    Explore at:
    Dataset updated
    Jun 26, 2017
    Dataset provided by
    ELRA (European Language Resources Association) and its operational body ELDA (Evaluations and Language resources Distribution Agency)
    ELRA (European Language Resources Association)
    License

    https://catalogue.elra.info/static/from_media/metashare/licences/ELRA_END_USER.pdfhttps://catalogue.elra.info/static/from_media/metashare/licences/ELRA_END_USER.pdf

    https://catalogue.elra.info/static/from_media/metashare/licences/ELRA_VAR.pdfhttps://catalogue.elra.info/static/from_media/metashare/licences/ELRA_VAR.pdf

    Area covered
    Americas, Latin America
    Description

    The GlobalPhone corpus developed in collaboration with the Karlsruhe Institute of Technology (KIT) was designed to provide read speech data for the development and evaluation of large continuous speech recognition systems in the most widespread languages of the world, and to provide a uniform, multilingual speech and text database for language independent and language adaptive speech recognition as well as for language identification tasks. The entire GlobalPhone corpus enables the acquisition of acoustic-phonetic knowledge of the following 22 spoken languages: Arabic (ELRA-S0192), Bulgarian (ELRA-S0319), Chinese-Mandarin (ELRA-S0193), Chinese-Shanghai (ELRA-S0194), Croatian (ELRA-S0195), Czech (ELRA-S0196), French (ELRA-S0197), German (ELRA-S0198), Hausa (ELRA-S0347), Japanese (ELRA-S0199), Korean (ELRA-S0200), Polish (ELRA-S0320), Portuguese (Brazilian) (ELRA-S0201), Russian (ELRA-S0202), Spanish (Latin America) (ELRA-S0203), Swahili (ELRA-S0375), Swedish (ELRA-S0204), Tamil (ELRA-S0205), Thai (ELRA-S0321), Turkish (ELRA-S0206), Ukrainian (ELRA-S0377), and Vietnamese (ELRA-S0322).In each language about 100 sentences were read from each of the 100 speakers. The read texts were selected from national newspapers available via Internet to provide a large vocabulary. The read articles cover national and international political news as well as economic news. The speech is available in 16bit, 16kHz mono quality, recorded with a close-speaking microphone (Sennheiser 440-6). The transcriptions are internally validated and supplemented by special markers for spontaneous effects like stuttering, false starts, and non-verbal effects like laughing and hesitations. Speaker information like age, gender, occupation, etc. as well as information about the recording setup complement the database. The entire GlobalPhone corpus contains over 450 hours of speech spoken by more than 2100 native adult speakers.Data is shortened by means of the shorten program written by Tony Robinson. Alternatively, the data could be delivered unshorten.The Spanish (Latin America) corpus was produced using the La Nacion newspaper. It contains recordings of 100 speakers (44 males, 56 females) recorded in Heredia and San Jose, Costa Rica. The following age distribution has been obtained: 20 speakers are below 19, 54 speakers are between 20 and 29, 13 speakers are between 30 and 39, 5 speakers are between 40 and 49, and 8 speakers are over 50.

  10. F

    Mexican Spanish Call Center Data for Retail & E-Commerce AI

    • futurebeeai.com
    wav
    Updated Aug 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FutureBee AI (2022). Mexican Spanish Call Center Data for Retail & E-Commerce AI [Dataset]. https://www.futurebeeai.com/dataset/speech-dataset/retail-call-center-conversation-spanish-mexico
    Explore at:
    wavAvailable download formats
    Dataset updated
    Aug 1, 2022
    Dataset provided by
    FutureBeeAI
    Authors
    FutureBee AI
    License

    https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement

    Dataset funded by
    FutureBeeAI
    Description

    Introduction

    This Mexican Spanish Call Center Speech Dataset for the Retail and E-commerce industry is purpose-built to accelerate the development of speech recognition, spoken language understanding, and conversational AI systems tailored for Spanish speakers. Featuring over 30 hours of real-world, unscripted audio, it provides authentic human-to-human customer service conversations vital for training robust ASR models.

    Curated by FutureBeeAI, this dataset empowers voice AI developers, data scientists, and language model researchers to build high-accuracy, production-ready models across retail-focused use cases.

    Speech Data

    The dataset contains 30 hours of dual-channel call center recordings between native Mexican Spanish speakers. Captured in realistic scenarios, these conversations span diverse retail topics from product inquiries to order cancellations, providing a wide context range for model training and testing.

    Participant Diversity:
    Speakers: 60 native Mexican Spanish speakers from our verified contributor pool.
    Regions: Representing multiple provinces across Mexico to ensure coverage of various accents and dialects.
    Participant Profile: Balanced gender mix (60% male, 40% female) with age distribution from 18 to 70 years.
    Recording Details:
    Conversation Nature: Naturally flowing, unscripted interactions between agents and customers.
    Call Duration: Ranges from 5 to 15 minutes.
    Audio Format: Stereo WAV files, 16-bit depth, at 8kHz and 16kHz sample rates.
    Recording Environment: Captured in clean conditions with no echo or background noise.

    Topic Diversity

    This speech corpus includes both inbound and outbound calls with varied conversational outcomes like positive, negative, and neutral, ensuring real-world scenario coverage.

    Inbound Calls:
    Product Inquiries
    Order Cancellations
    Refund & Exchange Requests
    Subscription Queries, and more
    Outbound Calls:
    Order Confirmations
    Upselling & Promotions
    Account Updates
    Loyalty Program Offers
    Customer Verifications, and others

    Such variety enhances your model’s ability to generalize across retail-specific voice interactions.

    Transcription

    All audio files are accompanied by manually curated, time-coded verbatim transcriptions in JSON format.

    Transcription Includes:
    Speaker-Segmented Dialogues
    30 hours-coded Segments
    Non-speech Tags (e.g., pauses, cough)
    High transcription accuracy with word error rate < 5% due to double-layered quality checks.

    These transcriptions are production-ready, making model training faster and more accurate.

    Metadata

    Rich metadata is available for each participant and conversation:

    Participant Metadata: ID, age, gender, accent, dialect, and location.
    Conversation Metadata: Topic, sentiment, call type, sample rate, and technical specs.

    This granularity supports advanced analytics, dialect filtering, and fine-tuned model evaluation.

    Usage and Applications

    This dataset is ideal for a range of voice AI and NLP applications:

    Automatic Speech Recognition (ASR): Fine-tune Spanish speech-to-text systems.
    <span

  11. F

    US Spanish Call Center Data for Healthcare AI

    • futurebeeai.com
    wav
    Updated Aug 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FutureBee AI (2022). US Spanish Call Center Data for Healthcare AI [Dataset]. https://www.futurebeeai.com/dataset/speech-dataset/healthcare-call-center-conversation-spanish-usa
    Explore at:
    wavAvailable download formats
    Dataset updated
    Aug 1, 2022
    Dataset provided by
    FutureBeeAI
    Authors
    FutureBee AI
    License

    https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement

    Area covered
    United States
    Dataset funded by
    FutureBeeAI
    Description

    Introduction

    This US Spanish Call Center Speech Dataset for the Healthcare industry is purpose-built to accelerate the development of Spanish speech recognition, spoken language understanding, and conversational AI systems. With 30 Hours of unscripted, real-world conversations, it delivers the linguistic and contextual depth needed to build high-performance ASR models for medical and wellness-related customer service.

    Created by FutureBeeAI, this dataset empowers voice AI teams, NLP researchers, and data scientists to develop domain-specific models for hospitals, clinics, insurance providers, and telemedicine platforms.

    Speech Data

    The dataset features 30 Hours of dual-channel call center conversations between native US Spanish speakers. These recordings cover a variety of healthcare support topics, enabling the development of speech technologies that are contextually aware and linguistically rich.

    Participant Diversity:
    Speakers: 60 verified native US Spanish speakers from our contributor community.
    Regions: Diverse provinces across USA to ensure broad dialectal representation.
    Participant Profile: Age range of 18–70 with a gender mix of 60% male and 40% female.
    RecordingDetails:
    Conversation Nature: Naturally flowing, unscripted conversations.
    Call Duration: Each session ranges between 5 to 15 minutes.
    Audio Format: WAV format, stereo, 16-bit depth at 8kHz and 16kHz sample rates.
    Recording Environment: Captured in clear conditions without background noise or echo.

    Topic Diversity

    The dataset spans inbound and outbound calls, capturing a broad range of healthcare-specific interactions and sentiment types (positive, neutral, negative).

    Inbound Calls:
    Appointment Scheduling
    New Patient Registration
    Surgical Consultation
    Dietary Advice and Consultations
    Insurance Coverage Inquiries
    Follow-up Treatment Requests, and more
    OutboundCalls:
    Appointment Reminders
    Preventive Care Campaigns
    Test Results & Lab Reports
    Health Risk Assessment Calls
    Vaccination Updates
    Wellness Subscription Outreach, and more

    These real-world interactions help build speech models that understand healthcare domain nuances and user intent.

    Transcription

    Every audio file is accompanied by high-quality, manually created transcriptions in JSON format.

    Transcription Includes:
    Speaker-identified Dialogues
    Time-coded Segments
    Non-speech Annotations (e.g., silence, cough)
    High transcription accuracy with word error rate is below 5%, backed by dual-layer QA checks.

    Metadata

    Each conversation and speaker includes detailed metadata to support fine-tuned training and analysis.

    Participant Metadata: ID, gender, age, region, accent, and dialect.
    Conversation Metadata: Topic, sentiment, call type, sample rate, and technical specs.

    Usage and Applications

    This dataset can be used across a range of healthcare and voice AI use cases:

    <b

  12. F

    Argentine Spanish General Conversation Speech Dataset for ASR

    • futurebeeai.com
    wav
    Updated Aug 1, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FutureBee AI (2022). Argentine Spanish General Conversation Speech Dataset for ASR [Dataset]. https://www.futurebeeai.com/dataset/speech-dataset/general-conversation-spanish-argentina
    Explore at:
    wavAvailable download formats
    Dataset updated
    Aug 1, 2022
    Dataset provided by
    FutureBeeAI
    Authors
    FutureBee AI
    License

    https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement

    Area covered
    Argentina
    Dataset funded by
    FutureBeeAI
    Description

    Introduction

    Welcome to the Argentinians Spanish General Conversation Speech Dataset — a rich, linguistically diverse corpus purpose-built to accelerate the development of Spanish speech technologies. This dataset is designed to train and fine-tune ASR systems, spoken language understanding models, and generative voice AI tailored to real-world Argentinians Spanish communication.

    Curated by FutureBeeAI, this 30 hours dataset offers unscripted, spontaneous two-speaker conversations across a wide array of real-life topics. It enables researchers, AI developers, and voice-first product teams to build robust, production-grade Spanish speech models that understand and respond to authentic Argentinians accents and dialects.

    Speech Data

    The dataset comprises 30 hours of high-quality audio, featuring natural, free-flowing dialogue between native speakers of Argentinians Spanish. These sessions range from informal daily talks to deeper, topic-specific discussions, ensuring variability and context richness for diverse use cases.

    Participant Diversity:
    Speakers: 60 verified native Argentinians Spanish speakers from FutureBeeAI’s contributor community.
    Regions: Representing various provinces of Argentina to ensure dialectal diversity and demographic balance.
    Demographics: A balanced gender ratio (60% male, 40% female) with participant ages ranging from 18 to 70 years.
    Recording Details:
    Conversation Style: Unscripted, spontaneous peer-to-peer dialogues.
    Duration: Each conversation ranges from 15 to 60 minutes.
    Audio Format: Stereo WAV files, 16-bit depth, recorded at 16kHz sample rate.
    Environment: Quiet, echo-free settings with no background noise.

    Topic Diversity

    The dataset spans a wide variety of everyday and domain-relevant themes. This topic diversity ensures the resulting models are adaptable to broad speech contexts.

    Sample Topics Include:
    Family & Relationships
    Food & Recipes
    Education & Career
    Healthcare Discussions
    Social Issues
    Technology & Gadgets
    Travel & Local Culture
    Shopping & Marketplace Experiences, and many more.

    Transcription

    Each audio file is paired with a human-verified, verbatim transcription available in JSON format.

    Transcription Highlights:
    Speaker-segmented dialogues
    Time-coded utterances
    Non-speech elements (pauses, laughter, etc.)
    High transcription accuracy, achieved through double QA pass, average WER < 5%

    These transcriptions are production-ready, enabling seamless integration into ASR model pipelines or conversational AI workflows.

    Metadata

    The dataset comes with granular metadata for both speakers and recordings:

    Speaker Metadata: Age, gender, accent, dialect, state/province, and participant ID.
    Recording Metadata: Topic, duration, audio format, device type, and sample rate.

    Such metadata helps developers fine-tune model training and supports use-case-specific filtering or demographic analysis.

    Usage and Applications

    This dataset is a versatile resource for multiple Spanish speech and language AI applications:

    ASR Development: Train accurate speech-to-text systems for Argentinians Spanish.
    Voice Assistants: Build smart assistants capable of understanding natural Argentinians conversations.
    <div style="margin-top:10px; margin-bottom: 10px; padding-left:

  13. F

    Mexican Spanish Call Center Data for Telecom AI

    • futurebeeai.com
    wav
    Updated Aug 1, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FutureBee AI (2022). Mexican Spanish Call Center Data for Telecom AI [Dataset]. https://www.futurebeeai.com/dataset/speech-dataset/telecom-call-center-conversation-spanish-mexico
    Explore at:
    wavAvailable download formats
    Dataset updated
    Aug 1, 2022
    Dataset provided by
    FutureBeeAI
    Authors
    FutureBee AI
    License

    https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement

    Dataset funded by
    FutureBeeAI
    Description

    Introduction

    This Mexican Spanish Call Center Speech Dataset for the Telecom industry is purpose-built to accelerate the development of speech recognition, spoken language understanding, and conversational AI systems tailored for Spanish-speaking telecom customers. Featuring over 30 hours of real-world, unscripted audio, it delivers authentic customer-agent interactions across key telecom support scenarios to help train robust ASR models.

    Curated by FutureBeeAI, this dataset empowers voice AI engineers, telecom automation teams, and NLP researchers to build high-accuracy, production-ready models for telecom-specific use cases.

    Speech Data

    The dataset contains 30 hours of dual-channel call center recordings between native Mexican Spanish speakers. Captured in realistic customer support settings, these conversations span a wide range of telecom topics from network complaints to billing issues, offering a strong foundation for training and evaluating telecom voice AI solutions.

    Participant Diversity:
    Speakers: 60 native Mexican Spanish speakers from our verified contributor pool.
    Regions: Representing multiple provinces across Mexico to ensure coverage of various accents and dialects.
    Participant Profile: Balanced gender mix (60% male, 40% female) with age distribution from 18 to 70 years.
    Recording Details:
    Conversation Nature: Naturally flowing, unscripted interactions between agents and customers.
    Call Duration: Ranges from 5 to 15 minutes.
    Audio Format: Stereo WAV files, 16-bit depth, at 8kHz and 16kHz sample rates.
    Recording Environment: Captured in clean conditions with no echo or background noise.

    Topic Diversity

    This speech corpus includes both inbound and outbound calls with varied conversational outcomes like positive, negative, and neutral ensuring broad scenario coverage for telecom AI development.

    Inbound Calls:
    Phone Number Porting
    Network Connectivity Issues
    Billing and Payments
    Technical Support
    Service Activation
    International Roaming Enquiry
    Refund Requests and Billing Adjustments
    Emergency Service Access, and others
    Outbound Calls:
    Welcome Calls & Onboarding
    Payment Reminders
    Customer Satisfaction Surveys
    Technical Updates
    Service Usage Reviews
    Network Complaint Status Calls, and more

    This variety helps train telecom-specific models to manage real-world customer interactions and understand context-specific voice patterns.

    Transcription

    All audio files are accompanied by manually curated, time-coded verbatim transcriptions in JSON format.

    Transcription Includes:
    Speaker-Segmented Dialogues
    Time-coded Segments
    Non-speech Tags (e.g., pauses, coughs)
    High transcription accuracy with word error rate < 5% thanks to dual-layered quality checks.

    These transcriptions are production-ready, allowing for faster development of ASR and conversational AI systems in the Telecom domain.

    Metadata

    Rich metadata is available for each participant and conversation:

    Participant Metadata: ID, age, gender, accent, dialect, and location.
    <div style="margin-top:10px; margin-bottom: 10px; padding-left: 30px; display: flex; gap: 16px;

  14. F

    Colombian Spanish Call Center Data for Realestate AI

    • futurebeeai.com
    wav
    Updated Aug 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FutureBee AI (2022). Colombian Spanish Call Center Data for Realestate AI [Dataset]. https://www.futurebeeai.com/dataset/speech-dataset/realestate-call-center-conversation-spanish-colombia
    Explore at:
    wavAvailable download formats
    Dataset updated
    Aug 1, 2022
    Dataset provided by
    FutureBeeAI
    Authors
    FutureBee AI
    License

    https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement

    Area covered
    Colombia
    Dataset funded by
    FutureBeeAI
    Description

    Introduction

    This Colombian Spanish Call Center Speech Dataset for the Real Estate industry is purpose-built to accelerate the development of speech recognition, spoken language understanding, and conversational AI systems tailored for Spanish -speaking Real Estate customers. With over 30 hours of unscripted, real-world audio, this dataset captures authentic conversations between customers and real estate agents ideal for building robust ASR models.

    Curated by FutureBeeAI, this dataset equips voice AI developers, real estate tech platforms, and NLP researchers with the data needed to create high-accuracy, production-ready models for property-focused use cases.

    Speech Data

    The dataset features 30 hours of dual-channel call center recordings between native Colombian Spanish speakers. Captured in realistic real estate consultation and support contexts, these conversations span a wide array of property-related topics from inquiries to investment advice offering deep domain coverage for AI model development.

    Participant Diversity:
    Speakers: 60 native Colombian Spanish speakers from our verified contributor community.
    Regions: Representing different provinces across Colombia to ensure accent and dialect variation.
    Participant Profile: Balanced gender mix (60% male, 40% female) and age range from 18 to 70.
    Recording Details:
    Conversation Nature: Naturally flowing, unscripted agent-customer discussions.
    Call Duration: Average 5–15 minutes per call.
    Audio Format: Stereo WAV, 16-bit, recorded at 8kHz and 16kHz.
    Recording Environment: Captured in noise-free and echo-free conditions.

    Topic Diversity

    This speech corpus includes both inbound and outbound calls, featuring positive, neutral, and negative outcomes across a wide range of real estate scenarios.

    Inbound Calls:
    Property Inquiries
    Rental Availability
    Renovation Consultation
    Property Features & Amenities
    Investment Property Evaluation
    Ownership History & Legal Info, and more
    Outbound Calls:
    New Listing Notifications
    Post-Purchase Follow-ups
    Property Recommendations
    Value Updates
    Customer Satisfaction Surveys, and others

    Such domain-rich variety ensures model generalization across common real estate support conversations.

    Transcription

    All recordings are accompanied by precise, manually verified transcriptions in JSON format.

    Transcription Includes:
    Speaker-Segmented Dialogues
    Time-coded Segments
    Non-speech Tags (e.g., background noise, pauses)
    High transcription accuracy with word error rate below 5% via dual-layer human review.

    These transcriptions streamline ASR and NLP development for Spanish real estate voice applications.

    Metadata

    Detailed metadata accompanies each participant and conversation:

    Participant Metadata: ID, age, gender, location, accent, and dialect.
    Conversation Metadata: Topic, call type, sentiment, sample rate, and technical details.

    This enables smart filtering, dialect-focused model training, and structured dataset exploration.

    Usage and Applications

    This dataset is ideal for voice AI and NLP systems built for the real estate sector:

    <div style="margin-top:10px; margin-bottom: 10px; padding-left: 30px; display: flex; gap: 16px;

  15. f

    By levels, descriptive of the quantitative variables.

    • figshare.com
    • plos.figshare.com
    xls
    Updated Jun 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Isabel Gómez-Soria; Chelo Ferreira; Bárbara Oliván Blazquez; Rosa Mª Magallón Botaya; Estela Calatayud (2023). By levels, descriptive of the quantitative variables. [Dataset]. http://doi.org/10.1371/journal.pone.0261313.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 8, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Isabel Gómez-Soria; Chelo Ferreira; Bárbara Oliván Blazquez; Rosa Mª Magallón Botaya; Estela Calatayud
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    By levels, descriptive of the quantitative variables.

  16. F

    US Spanish Call Center Data for BFSI AI

    • futurebeeai.com
    wav
    Updated Aug 1, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FutureBee AI (2022). US Spanish Call Center Data for BFSI AI [Dataset]. https://www.futurebeeai.com/dataset/speech-dataset/bfsi-call-center-conversation-spanish-usa
    Explore at:
    wavAvailable download formats
    Dataset updated
    Aug 1, 2022
    Dataset provided by
    FutureBeeAI
    Authors
    FutureBee AI
    License

    https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement

    Area covered
    United States
    Dataset funded by
    FutureBeeAI
    Description

    Introduction

    This US Spanish Call Center Speech Dataset for the BFSI (Banking, Financial Services, and Insurance) sector is purpose-built to accelerate the development of speech recognition, spoken language understanding, and conversational AI systems tailored for Spanish-speaking customers. Featuring over 30 hours of real-world, unscripted audio, it offers authentic customer-agent interactions across a range of BFSI services to train robust and domain-aware ASR models.

    Curated by FutureBeeAI, this dataset empowers voice AI developers, financial technology teams, and NLP researchers to build high-accuracy, production-ready models across BFSI customer service scenarios.

    Speech Data

    The dataset contains 30 hours of dual-channel call center recordings between native US Spanish speakers. Captured in realistic financial support settings, these conversations span diverse BFSI topics from loan enquiries and card disputes to insurance claims and investment options, providing deep contextual coverage for model training and evaluation.

    Participant Diversity:
    Speakers: 60 native US Spanish speakers from our verified contributor pool.
    Regions: Representing multiple provinces across USA to ensure coverage of various accents and dialects.
    Participant Profile: Balanced gender mix (60% male, 40% female) with age distribution from 18 to 70 years.
    Recording Details:
    Conversation Nature: Naturally flowing, unscripted interactions between agents and customers.
    Call Duration: Ranges from 5 to 15 minutes.
    Audio Format: Stereo WAV files, 16-bit depth, at 8kHz and 16kHz sample rates.
    Recording Environment: Captured in clean conditions with no echo or background noise.

    Topic Diversity

    This speech corpus includes both inbound and outbound calls with varied conversational outcomes like positive, negative, and neutral, ensuring real-world BFSI voice coverage.

    Inbound Calls:
    Debit Card Block Request
    Transaction Disputes
    Loan Enquiries
    Credit Card Billing Issues
    Account Closure & Claims
    Policy Renewals & Cancellations
    Retirement & Tax Planning
    Investment Risk Queries, and more
    Outbound Calls:
    Loan & Credit Card Offers
    Customer Surveys
    EMI Reminders
    Policy Upgrades
    Insurance Follow-ups
    Investment Opportunity Calls
    Retirement Planning Reviews, and more

    This variety ensures models trained on the dataset are equipped to handle complex financial dialogues with contextual accuracy.

    Transcription

    All audio files are accompanied by manually curated, time-coded verbatim transcriptions in JSON format.

    Transcription Includes:
    Speaker-Segmented Dialogues
    30 hours-coded Segments
    Non-speech Tags (e.g., pauses, background noise)
    High transcription accuracy with word error rate < 5% due to double-layered quality checks.

    These transcriptions are production-ready, making financial domain model training faster and more accurate.

    Metadata

    Rich metadata is available for each participant and conversation:

    Participant Metadata: ID, age, gender, accent, dialect, and

  17. F

    Argentine Spanish Call Center Data for Realestate AI

    • futurebeeai.com
    wav
    Updated Aug 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FutureBee AI (2022). Argentine Spanish Call Center Data for Realestate AI [Dataset]. https://www.futurebeeai.com/dataset/speech-dataset/realestate-call-center-conversation-spanish-argentina
    Explore at:
    wavAvailable download formats
    Dataset updated
    Aug 1, 2022
    Dataset provided by
    FutureBeeAI
    Authors
    FutureBee AI
    License

    https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement

    Dataset funded by
    FutureBeeAI
    Description

    Introduction

    This Argentinians Spanish Call Center Speech Dataset for the Real Estate industry is purpose-built to accelerate the development of speech recognition, spoken language understanding, and conversational AI systems tailored for Spanish -speaking Real Estate customers. With over 30 hours of unscripted, real-world audio, this dataset captures authentic conversations between customers and real estate agents ideal for building robust ASR models.

    Curated by FutureBeeAI, this dataset equips voice AI developers, real estate tech platforms, and NLP researchers with the data needed to create high-accuracy, production-ready models for property-focused use cases.

    Speech Data

    The dataset features 30 hours of dual-channel call center recordings between native Argentinians Spanish speakers. Captured in realistic real estate consultation and support contexts, these conversations span a wide array of property-related topics from inquiries to investment advice offering deep domain coverage for AI model development.

    Participant Diversity:
    Speakers: 60 native Argentinians Spanish speakers from our verified contributor community.
    Regions: Representing different provinces across Argentina to ensure accent and dialect variation.
    Participant Profile: Balanced gender mix (60% male, 40% female) and age range from 18 to 70.
    Recording Details:
    Conversation Nature: Naturally flowing, unscripted agent-customer discussions.
    Call Duration: Average 5–15 minutes per call.
    Audio Format: Stereo WAV, 16-bit, recorded at 8kHz and 16kHz.
    Recording Environment: Captured in noise-free and echo-free conditions.

    Topic Diversity

    This speech corpus includes both inbound and outbound calls, featuring positive, neutral, and negative outcomes across a wide range of real estate scenarios.

    Inbound Calls:
    Property Inquiries
    Rental Availability
    Renovation Consultation
    Property Features & Amenities
    Investment Property Evaluation
    Ownership History & Legal Info, and more
    Outbound Calls:
    New Listing Notifications
    Post-Purchase Follow-ups
    Property Recommendations
    Value Updates
    Customer Satisfaction Surveys, and others

    Such domain-rich variety ensures model generalization across common real estate support conversations.

    Transcription

    All recordings are accompanied by precise, manually verified transcriptions in JSON format.

    Transcription Includes:
    Speaker-Segmented Dialogues
    Time-coded Segments
    Non-speech Tags (e.g., background noise, pauses)
    High transcription accuracy with word error rate below 5% via dual-layer human review.

    These transcriptions streamline ASR and NLP development for Spanish real estate voice applications.

    Metadata

    Detailed metadata accompanies each participant and conversation:

    Participant Metadata: ID, age, gender, location, accent, and dialect.
    Conversation Metadata: Topic, call type, sentiment, sample rate, and technical details.

    This enables smart filtering, dialect-focused model training, and structured dataset exploration.

    Usage and Applications

    This dataset is ideal for voice AI and NLP systems built for the real estate sector:

    <div style="margin-top:10px; margin-bottom: 10px; padding-left: 30px; display: flex; gap:

  18. F

    US Spanish Call Center Data for Travel AI

    • futurebeeai.com
    wav
    Updated Aug 1, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FutureBee AI (2022). US Spanish Call Center Data for Travel AI [Dataset]. https://www.futurebeeai.com/dataset/speech-dataset/travel-call-center-conversation-spanish-usa
    Explore at:
    wavAvailable download formats
    Dataset updated
    Aug 1, 2022
    Dataset provided by
    FutureBeeAI
    Authors
    FutureBee AI
    License

    https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement

    Area covered
    United States
    Dataset funded by
    FutureBeeAI
    Description

    Introduction

    This US Spanish Call Center Speech Dataset for the Travel industry is purpose-built to power the next generation of voice AI applications for travel booking, customer support, and itinerary assistance. With over 30 hours of unscripted, real-world conversations, the dataset enables the development of highly accurate speech recognition and natural language understanding models tailored for Spanish -speaking travelers.

    Created by FutureBeeAI, this dataset supports researchers, data scientists, and conversational AI teams in building voice technologies for airlines, travel portals, and hospitality platforms.

    Speech Data

    The dataset includes 30 hours of dual-channel audio recordings between native US Spanish speakers engaged in real travel-related customer service conversations. These audio files reflect a wide variety of topics, accents, and scenarios found across the travel and tourism industry.

    Participant Diversity:
    Speakers: 60 native US Spanish contributors from our verified pool.
    Regions: Covering multiple USA provinces to capture accent and dialectal variation.
    Participant Profile: Balanced representation of age (18–70) and gender (60% male, 40% female).
    Recording Details:
    Conversation Nature: Naturally flowing, spontaneous customer-agent calls.
    Call Duration: Between 5 and 15 minutes per session.
    Audio Format: Stereo WAV, 16-bit depth, at 8kHz and 16kHz.
    Recording Environment: Captured in controlled, noise-free, echo-free settings.

    Topic Diversity

    Inbound and outbound conversations span a wide range of real-world travel support situations with varied outcomes (positive, neutral, negative).

    Inbound Calls:
    Booking Assistance
    Destination Information
    Flight Delays or Cancellations
    Support for Disabled Passengers
    Health and Safety Travel Inquiries
    Lost or Delayed Luggage, and more
    Outbound Calls:
    Promotional Travel Offers
    Customer Feedback Surveys
    Booking Confirmations
    Flight Rescheduling Alerts
    Visa Expiry Notifications, and others

    These scenarios help models understand and respond to diverse traveler needs in real-time.

    Transcription

    Each call is accompanied by manually curated, high-accuracy transcriptions in JSON format.

    Transcription Includes:
    Speaker-Segmented Dialogues
    Time-Stamped Segments
    Non-speech Markers (e.g., pauses, coughs)
    High transcription accuracy by dual-layered transcription review ensures word error rate under 5%.

    Metadata

    Extensive metadata enriches each call and speaker for better filtering and AI training:

    Participant Metadata: ID, age, gender, region, accent, and dialect.
    Conversation Metadata: Topic, domain, call type, sentiment, and audio specs.

    Usage and Applications

    This dataset is ideal for a variety of AI use cases in the travel and tourism space:

    ASR Systems: Train Spanish speech-to-text engines for travel platforms.
    <div style="margin-top:10px; margin-bottom: 10px; padding-left: 30px; display:

  19. F

    Argentine Spanish Call Center Data for Healthcare AI

    • futurebeeai.com
    wav
    Updated Aug 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FutureBee AI (2022). Argentine Spanish Call Center Data for Healthcare AI [Dataset]. https://www.futurebeeai.com/dataset/speech-dataset/healthcare-call-center-conversation-spanish-argentina
    Explore at:
    wavAvailable download formats
    Dataset updated
    Aug 1, 2022
    Dataset provided by
    FutureBeeAI
    Authors
    FutureBee AI
    License

    https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement

    Dataset funded by
    FutureBeeAI
    Description

    Introduction

    This Argentinians Spanish Call Center Speech Dataset for the Healthcare industry is purpose-built to accelerate the development of Spanish speech recognition, spoken language understanding, and conversational AI systems. With 30 Hours of unscripted, real-world conversations, it delivers the linguistic and contextual depth needed to build high-performance ASR models for medical and wellness-related customer service.

    Created by FutureBeeAI, this dataset empowers voice AI teams, NLP researchers, and data scientists to develop domain-specific models for hospitals, clinics, insurance providers, and telemedicine platforms.

    Speech Data

    The dataset features 30 Hours of dual-channel call center conversations between native Argentinians Spanish speakers. These recordings cover a variety of healthcare support topics, enabling the development of speech technologies that are contextually aware and linguistically rich.

    Participant Diversity:
    Speakers: 60 verified native Argentinians Spanish speakers from our contributor community.
    Regions: Diverse provinces across Argentina to ensure broad dialectal representation.
    Participant Profile: Age range of 18–70 with a gender mix of 60% male and 40% female.
    RecordingDetails:
    Conversation Nature: Naturally flowing, unscripted conversations.
    Call Duration: Each session ranges between 5 to 15 minutes.
    Audio Format: WAV format, stereo, 16-bit depth at 8kHz and 16kHz sample rates.
    Recording Environment: Captured in clear conditions without background noise or echo.

    Topic Diversity

    The dataset spans inbound and outbound calls, capturing a broad range of healthcare-specific interactions and sentiment types (positive, neutral, negative).

    Inbound Calls:
    Appointment Scheduling
    New Patient Registration
    Surgical Consultation
    Dietary Advice and Consultations
    Insurance Coverage Inquiries
    Follow-up Treatment Requests, and more
    OutboundCalls:
    Appointment Reminders
    Preventive Care Campaigns
    Test Results & Lab Reports
    Health Risk Assessment Calls
    Vaccination Updates
    Wellness Subscription Outreach, and more

    These real-world interactions help build speech models that understand healthcare domain nuances and user intent.

    Transcription

    Every audio file is accompanied by high-quality, manually created transcriptions in JSON format.

    Transcription Includes:
    Speaker-identified Dialogues
    Time-coded Segments
    Non-speech Annotations (e.g., silence, cough)
    High transcription accuracy with word error rate is below 5%, backed by dual-layer QA checks.

    Metadata

    Each conversation and speaker includes detailed metadata to support fine-tuned training and analysis.

    Participant Metadata: ID, gender, age, region, accent, and dialect.
    Conversation Metadata: Topic, sentiment, call type, sample rate, and technical specs.

    Usage and Applications

    This dataset can be used across a range of healthcare and voice AI use cases:

  20. F

    Mexican Spanish Call Center Data for Travel AI

    • futurebeeai.com
    wav
    Updated Aug 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FutureBee AI (2022). Mexican Spanish Call Center Data for Travel AI [Dataset]. https://www.futurebeeai.com/dataset/speech-dataset/travel-call-center-conversation-spanish-mexico
    Explore at:
    wavAvailable download formats
    Dataset updated
    Aug 1, 2022
    Dataset provided by
    FutureBeeAI
    Authors
    FutureBee AI
    License

    https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement

    Area covered
    Mexico
    Dataset funded by
    FutureBeeAI
    Description

    Introduction

    This Mexican Spanish Call Center Speech Dataset for the Travel industry is purpose-built to power the next generation of voice AI applications for travel booking, customer support, and itinerary assistance. With over 30 hours of unscripted, real-world conversations, the dataset enables the development of highly accurate speech recognition and natural language understanding models tailored for Spanish -speaking travelers.

    Created by FutureBeeAI, this dataset supports researchers, data scientists, and conversational AI teams in building voice technologies for airlines, travel portals, and hospitality platforms.

    Speech Data

    The dataset includes 30 hours of dual-channel audio recordings between native Mexican Spanish speakers engaged in real travel-related customer service conversations. These audio files reflect a wide variety of topics, accents, and scenarios found across the travel and tourism industry.

    Participant Diversity:
    Speakers: 60 native Mexican Spanish contributors from our verified pool.
    Regions: Covering multiple Mexico provinces to capture accent and dialectal variation.
    Participant Profile: Balanced representation of age (18–70) and gender (60% male, 40% female).
    Recording Details:
    Conversation Nature: Naturally flowing, spontaneous customer-agent calls.
    Call Duration: Between 5 and 15 minutes per session.
    Audio Format: Stereo WAV, 16-bit depth, at 8kHz and 16kHz.
    Recording Environment: Captured in controlled, noise-free, echo-free settings.

    Topic Diversity

    Inbound and outbound conversations span a wide range of real-world travel support situations with varied outcomes (positive, neutral, negative).

    Inbound Calls:
    Booking Assistance
    Destination Information
    Flight Delays or Cancellations
    Support for Disabled Passengers
    Health and Safety Travel Inquiries
    Lost or Delayed Luggage, and more
    Outbound Calls:
    Promotional Travel Offers
    Customer Feedback Surveys
    Booking Confirmations
    Flight Rescheduling Alerts
    Visa Expiry Notifications, and others

    These scenarios help models understand and respond to diverse traveler needs in real-time.

    Transcription

    Each call is accompanied by manually curated, high-accuracy transcriptions in JSON format.

    Transcription Includes:
    Speaker-Segmented Dialogues
    Time-Stamped Segments
    Non-speech Markers (e.g., pauses, coughs)
    High transcription accuracy by dual-layered transcription review ensures word error rate under 5%.

    Metadata

    Extensive metadata enriches each call and speaker for better filtering and AI training:

    Participant Metadata: ID, age, gender, region, accent, and dialect.
    Conversation Metadata: Topic, domain, call type, sentiment, and audio specs.

    Usage and Applications

    This dataset is ideal for a variety of AI use cases in the travel and tourism space:

    ASR Systems: Train Spanish speech-to-text engines for travel platforms.
    <div style="margin-top:10px; margin-bottom: 10px;

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
FutureBee AI (2022). Mexican Spanish Call Center Data for Realestate AI [Dataset]. https://www.futurebeeai.com/dataset/speech-dataset/realestate-call-center-conversation-spanish-mexico

Mexican Spanish Call Center Data for Realestate AI

Mexican Spanish call center speech corpus in realestate industry

Explore at:
wavAvailable download formats
Dataset updated
Aug 1, 2022
Dataset provided by
FutureBeeAI
Authors
FutureBee AI
License

https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement

Area covered
Mexico
Dataset funded by
FutureBeeAI
Description

Introduction

This Mexican Spanish Call Center Speech Dataset for the Real Estate industry is purpose-built to accelerate the development of speech recognition, spoken language understanding, and conversational AI systems tailored for Spanish -speaking Real Estate customers. With over 30 hours of unscripted, real-world audio, this dataset captures authentic conversations between customers and real estate agents ideal for building robust ASR models.

Curated by FutureBeeAI, this dataset equips voice AI developers, real estate tech platforms, and NLP researchers with the data needed to create high-accuracy, production-ready models for property-focused use cases.

Speech Data

The dataset features 30 hours of dual-channel call center recordings between native Mexican Spanish speakers. Captured in realistic real estate consultation and support contexts, these conversations span a wide array of property-related topics from inquiries to investment advice offering deep domain coverage for AI model development.

Participant Diversity:
Speakers: 60 native Mexican Spanish speakers from our verified contributor community.
Regions: Representing different provinces across Mexico to ensure accent and dialect variation.
Participant Profile: Balanced gender mix (60% male, 40% female) and age range from 18 to 70.
Recording Details:
Conversation Nature: Naturally flowing, unscripted agent-customer discussions.
Call Duration: Average 5–15 minutes per call.
Audio Format: Stereo WAV, 16-bit, recorded at 8kHz and 16kHz.
Recording Environment: Captured in noise-free and echo-free conditions.

Topic Diversity

This speech corpus includes both inbound and outbound calls, featuring positive, neutral, and negative outcomes across a wide range of real estate scenarios.

Inbound Calls:
Property Inquiries
Rental Availability
Renovation Consultation
Property Features & Amenities
Investment Property Evaluation
Ownership History & Legal Info, and more
Outbound Calls:
New Listing Notifications
Post-Purchase Follow-ups
Property Recommendations
Value Updates
Customer Satisfaction Surveys, and others

Such domain-rich variety ensures model generalization across common real estate support conversations.

Transcription

All recordings are accompanied by precise, manually verified transcriptions in JSON format.

Transcription Includes:
Speaker-Segmented Dialogues
Time-coded Segments
Non-speech Tags (e.g., background noise, pauses)
High transcription accuracy with word error rate below 5% via dual-layer human review.

These transcriptions streamline ASR and NLP development for Spanish real estate voice applications.

Metadata

Detailed metadata accompanies each participant and conversation:

Participant Metadata: ID, age, gender, location, accent, and dialect.
Conversation Metadata: Topic, call type, sentiment, sample rate, and technical details.

This enables smart filtering, dialect-focused model training, and structured dataset exploration.

Usage and Applications

This dataset is ideal for voice AI and NLP systems built for the real estate sector:

<div style="margin-top:10px; margin-bottom: 10px; padding-left: 30px; display: flex; gap: 16px; align-items:

Search
Clear search
Close search
Google apps
Main menu