Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Land area (sq. km) in United States was reported at 9147420 sq. Km in 2022, according to the World Bank collection of development indicators, compiled from officially recognized sources. United States - Land area (sq. km) - actual values, historical data, forecasts and projections were sourced from the World Bank on June of 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Land Area data was reported at 9,147,420.000 sq km in 2017. This stayed constant from the previous number of 9,147,420.000 sq km for 2016. United States US: Land Area data is updated yearly, averaging 9,158,960.000 sq km from Dec 1961 (Median) to 2017, with 57 observations. The data reached an all-time high of 9,161,920.000 sq km in 2007 and a record low of 9,147,420.000 sq km in 2017. United States US: Land Area data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Land Use, Protected Areas and National Wealth. Land area is a country's total area, excluding area under inland water bodies, national claims to continental shelf, and exclusive economic zones. In most cases the definition of inland water bodies includes major rivers and lakes.; ; Food and Agriculture Organization, electronic files and web site.; Sum;
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Population density (people per sq. km of land area) in United States was reported at 36.43 sq. Km in 2022, according to the World Bank collection of development indicators, compiled from officially recognized sources. United States - Population density (people per sq. km) - actual values, historical data, forecasts and projections were sourced from the World Bank on June of 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Population Density: People per Square Km data was reported at 35.608 Person/sq km in 2017. This records an increase from the previous number of 35.355 Person/sq km for 2016. United States US: Population Density: People per Square Km data is updated yearly, averaging 26.948 Person/sq km from Dec 1961 (Median) to 2017, with 57 observations. The data reached an all-time high of 35.608 Person/sq km in 2017 and a record low of 20.056 Person/sq km in 1961. United States US: Population Density: People per Square Km data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Population and Urbanization Statistics. Population density is midyear population divided by land area in square kilometers. Population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship--except for refugees not permanently settled in the country of asylum, who are generally considered part of the population of their country of origin. Land area is a country's total area, excluding area under inland water bodies, national claims to continental shelf, and exclusive economic zones. In most cases the definition of inland water bodies includes major rivers and lakes.; ; Food and Agriculture Organization and World Bank population estimates.; Weighted average;
This dataset represents the road density within individual, local NHDPlusV2 catchments and upstream, contributing watersheds. Attributes of the landscape layer were calculated for every local NHDPlusV2 catchment and accumulated to provide watershed-level metrics. This data set is derived from TIGER/Line Files of roads in the conterminous United States. Road density describes how many kilometers of road exist in a square kilometer. A raster was produced using the ArcGIS Line Density Tool to form the landscape layer for analysis. The (kilometer of road/square kilometer) was summarized by local catchment and by watershed to produce local catchment-level and watershed-level metrics as a continuous data type.
USA county areas in square kilometers. Counties are identified by state number and county number.
U.S. Geological Survey scientists, funded by the Climate and Land Use Change Research and Development Program, developed a dataset of 2006 and 2011 land use and land cover (LULC) information for selected 100-km2 sample blocks within 29 EPA Level 3 ecoregions across the conterminous United States. The data was collected for validation of new and existing national scale LULC datasets developed from remotely sensed data sources. The data can also be used with the previously published Land Cover Trends Dataset: 1973-2000 (http:// http://pubs.usgs.gov/ds/844/), to assess land-use/land-cover change in selected ecoregions over a 37-year study period. LULC data for 2006 and 2011 was manually delineated using the same sample block classification procedures as the previous Land Cover Trends project. The methodology is based on a statistical sampling approach, manual classification of land use and land cover, and post-classification comparisons of land cover across different dates. Landsat Thematic Mapper, and Enhanced Thematic Mapper Plus imagery was interpreted using a modified Anderson Level I classification scheme. Landsat data was acquired from the National Land Cover Database (NLCD) collection of images. For the 2006 and 2011 update, ecoregion specific alterations in the sampling density were made to expedite the completion of manual block interpretations. The data collection process started with the 2000 date from the previous assessment and any needed corrections were made before interpreting the next two dates of 2006 and 2011 imagery. The 2000 land cover was copied and any changes seen in the 2006 Landsat images were digitized into a new 2006 land cover image. Similarly, the 2011 land cover image was created after completing the 2006 delineation. Results from analysis of these data include ecoregion based statistical estimates of the amount of LULC change per time period, ranking of the most common types of conversions, rates of change, and percent composition. Overall estimated amount of change per ecoregion from 2001 to 2011 ranged from a low of 370 km2 in the Northern Basin and Range Ecoregion to a high of 78,782 km2 in the Southeastern Plains Ecoregion. The Southeastern Plains Ecoregion continues to encompass the most intense forest harvesting and regrowth in the country. Forest harvesting and regrowth rates in the southeastern U.S. and Pacific Northwest continued at late 20th century levels. The land use and land cover data collected by this study is ideally suited for training, validation, and regional assessments of land use and land cover change in the U.S. because it is collected using manual interpretation techniques of Landsat data aided by high resolution photography. The 2001-2011 Land Cover Trends Dataset is provided in an Albers Conical Equal Area projection using the NAD 1983 datum. The sample blocks have a 30-meter resolution and file names follow a specific naming convention that includes the number of the ecoregion containing the block, the block number, and the Landsat image date. The data files are organized by ecoregion, and are available in the ERDAS Imagine (.img) format. U.S. Geological Survey scientists, funded by the Climate and Land Use Change Research and Development Program, developed a dataset of 2006 and 2011 land use and land cover (LULC) information for selected 100-km2 sample blocks within 29 EPA Level 3 ecoregions across the conterminous United States. The data was collected for validation of new and existing national scale LULC datasets developed from remotely sensed data sources. The data can also be used with the previously published Land Cover Trends Dataset: 1973-2000 (http:// http://pubs.usgs.gov/ds/844/), to assess land-use/land-cover change in selected ecoregions over a 37-year study period. LULC data for 2006 and 2011 was manually delineated using the same sample block classification procedures as the previous Land Cover Trends project. The methodology is based on a statistical sampling approach, manual classification of land use and land cover, and post-classification comparisons of land cover across different dates. Landsat Thematic Mapper, and Enhanced Thematic Mapper Plus imagery was interpreted using a modified Anderson Level I classification scheme. Landsat data was acquired from the National Land Cover Database (NLCD) collection of images. For the 2006 and 2011 update, ecoregion specific alterations in the sampling density were made to expedite the completion of manual block interpretations. The data collection process started with the 2000 date from the previous assessment and any needed corrections were made before interpreting the next two dates of 2006 and 2011 imagery. The 2000 land cover was copied and any changes seen in the 2006 Landsat images were digitized into a new 2006 land cover image. Similarly, the 2011 land cover image was created after completing the 2006 delineation. Results from analysis of these data include ecoregion based statistical estimates of the amount of LULC change per time period, ranking of the most common types of conversions, rates of change, and percent composition. Overall estimated amount of change per ecoregion from 2001 to 2011 ranged from a low of 370 square km in the Northern Basin and Range Ecoregion to a high of 78,782 square km in the Southeastern Plains Ecoregion. The Southeastern Plains Ecoregion continues to encompass the most intense forest harvesting and regrowth in the country. Forest harvesting and regrowth rates in the southeastern U.S. and Pacific Northwest continued at late 20th century levels. The land use and land cover data collected by this study is ideally suited for training, validation, and regional assessments of land use and land cover change in the U.S. because it’s collected using manual interpretation techniques of Landsat data aided by high resolution photography. The 2001-2011 Land Cover Trends Dataset is provided in an Albers Conical Equal Area projection using the NAD 1983 datum. The sample blocks have a 30-meter resolution and file names follow a specific naming convention that includes the number of the ecoregion containing the block, the block number, and the Landsat image date. The data files are organized by ecoregion, and are available in the ERDAS Imagine (.img) format.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Agricultural land (sq. km) in United States was reported at 4058104 sq. Km in 2021, according to the World Bank collection of development indicators, compiled from officially recognized sources. United States - Agricultural land (sq. km) - actual values, historical data, forecasts and projections were sourced from the World Bank on June of 2025.
This map shows population density of the United States. Areas in darker magenta have much higher population per square mile than areas in orange or yellow. Data is from the U.S. Census Bureau’s 2020 Census Demographic and Housing Characteristics. The map's layers contain total population counts by sex, age, and race groups for Nation, State, County, Census Tract, and Block Group in the United States and Puerto Rico. From the Census:"Population density allows for broad comparison of settlement intensity across geographic areas. In the U.S., population density is typically expressed as the number of people per square mile of land area. The U.S. value is calculated by dividing the total U.S. population (316 million in 2013) by the total U.S. land area (3.5 million square miles).When comparing population density values for different geographic areas, then, it is helpful to keep in mind that the values are most useful for small areas, such as neighborhoods. For larger areas (especially at the state or country scale), overall population density values are less likely to provide a meaningful measure of the density levels at which people actually live, but can be useful for comparing settlement intensity across geographies of similar scale." SourceAbout the dataYou can use this map as is and you can also modify it to use other attributes included in its layers. This map's layers contain total population counts by sex, age, and race groups data from the 2020 Census Demographic and Housing Characteristics. This is shown by Nation, State, County, Census Tract, Block Group boundaries. Each geography layer contains a common set of Census counts based on available attributes from the U.S. Census Bureau. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis.Vintage of boundaries and attributes: 2020 Demographic and Housing Characteristics Table(s): P1, H1, H3, P2, P3, P5, P12, P13, P17, PCT12 (Not all lines of these DHC tables are available in this feature layer.)Data downloaded from: U.S. Census Bureau’s data.census.gov siteDate the Data was Downloaded: May 25, 2023Geography Levels included: Nation, State, County, Census Tract, Block GroupNational Figures: included in Nation layer The United States Census Bureau Demographic and Housing Characteristics: 2020 Census Results 2020 Census Data Quality Geography & 2020 Census Technical Documentation Data Table Guide: includes the final list of tables, lowest level of geography by table and table shells for the Demographic Profile and Demographic and Housing Characteristics.News & Updates This map is ready to be used in ArcGIS Pro, ArcGIS Online and its configurable apps, Story Maps, dashboards, Notebooks, Python, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the U.S. Census Bureau when using this data. Data Processing Notes: These 2020 Census boundaries come from the US Census TIGER geodatabases. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For Census tracts and block groups, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract and block group boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2020 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are unchanged and available as attributes within the data table (units are square meters). The layer contains all US states, Washington D.C., and Puerto Rico. Census tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99). Block groups that fall within the same criteria (Block Group denoted as 0 with no area land) have also been removed.Percentages and derived counts, are calculated values (that can be identified by the "_calc_" stub in the field name). Field alias names were created based on the Table Shells file available from the Data Table Guide for the Demographic Profile and Demographic and Housing Characteristics. Not all lines of all tables listed above are included in this layer. Duplicative counts were dropped. For example, P0030001 was dropped, as it is duplicative of P0010001.To protect the privacy and confidentiality of respondents, their data has been protected using differential privacy techniques by the U.S. Census Bureau.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Urban Land Area data was reported at 802,053.592 sq km in 2010. This stayed constant from the previous number of 802,053.592 sq km for 2000. United States US: Urban Land Area data is updated yearly, averaging 802,053.592 sq km from Dec 1990 (Median) to 2010, with 3 observations. The data reached an all-time high of 802,053.592 sq km in 2010 and a record low of 802,053.592 sq km in 2010. United States US: Urban Land Area data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s USA – Table US.World Bank: Land Use, Protected Areas and National Wealth. Urban land area in square kilometers, based on a combination of population counts (persons), settlement points, and the presence of Nighttime Lights. Areas are defined as urban where contiguous lighted cells from the Nighttime Lights or approximated urban extents based on buffered settlement points for which the total population is greater than 5,000 persons.; ; Center for International Earth Science Information Network (CIESIN)/Columbia University. 2013. Urban-Rural Population and Land Area Estimates Version 2. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). http://sedac.ciesin.columbia.edu/data/set/lecz-urban-rural-population-land-area-estimates-v2.; Sum;
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Surface area (sq. km) in United States was reported at 9831510 sq. Km in 2022, according to the World Bank collection of development indicators, compiled from officially recognized sources. United States - Surface area (sq. km) - actual values, historical data, forecasts and projections were sourced from the World Bank on June of 2025.
This dataset of 40 square kilometer (sq. km) hexagons was created by the U.S. EPA's Environmental Monitoring and Assessment Program (EMAP) and is being released by the U.S. Geological Survey for public use. The 40 sq. km hexagons were derived from a grid consisting of a triangular array of points that cover the United States and neighboring Canada and Mexico. The base grid of points had a companion areal structure called a tessellation. The base tessellation hexagons constituted this tessellation. In other words, surrounding each grid point was a hexagon that defines the area within which all points are closer to this grid point than to any other, and the set of hexagons defined this way completely and -mutually exclusively covers the space of the grid. The grid had a base density of approximately 648 sq. km per point with a spacing of approximately 27 km between points. The original 40 sq. km hexagons (which do not form a tessellation) were centered about the randomized grid points and are exactly 1/16th the size of the tessellation hexagons (and therefore slightly more than 40 sq. km). Hexagon boundaries are distributed in geodetic coordinates based on the Clarke 1866 model of the Earth, meaning that the coordinates are latitude and longitude on the ellipsoid used by most North American geodetic coordinate systems. Distribution can also be made in GRS 80 coordinates if desired. The precision of the coordinates is to millionths of a degree (i.e., to 6 decimal places of a degree). This corresponds to about 0.1 meter on the surface of the Earth. The point grid was constructed in the plane of a special version of the Lambert azimuthal equal area projection; for subsequent use they may be projected using other map projections. When other projections are used, the geometry of the point grid will not be perfectly triangular nor will the hexagons surrounding the points be perfect, since sizes and/or shapes and/or distances will necessarily be distorted in another projection relative to the one used to construct the grid. This 40 sq. km hexagon tessellation was created by two successive enhancements of the 648 sq. km tessellation by factors of four. See White et al. 1992 in references.
The U.S. Population Grids (Summary File 1), 2000: Alabama, Louisiana, Mississippi and Texas, Alpha Version data set contains an ARC/INFO Workspace with grids of demographic data from the year 2000 census. The grids have a resolution of 30 arc-seconds (0.0083 decimal degrees), or approximately 1 square km. The gridded variables are based on census block geography from Census 2000 TIGER/Line Files and census variables (population, households, and housing variables). This data set is produced by the Columbia University Center for International Earth Science Information Network (CIESIN).
The U.S. Census Grids (Summary File 3), 2000 data set contains grids of demographic and socioeconomic data from the year 2000 U.S. census in ASCII and GeoTIFF formats. The grids have a resolution of 30 arc-seconds (0.0083 decimal degrees), or approximately 1 square km. The gridded variables are based on census block geography from Census 2000 TIGER/Line Files and census variables (population, households, and housing variables). This data set is produced by the Columbia University Center for International Earth Science Information Network (CIESIN).
The data included in this publication depict components of wildfire risk specifically for populated areas in the United States. These datasets represent where people live in the United States and the in situ risk from wildfire, i.e., the risk at the location where the adverse effects take place.National wildfire hazard datasets of annual burn probability and fire intensity, generated by the USDA Forest Service, Rocky Mountain Research Station and Pyrologix LLC, form the foundation of the Wildfire Risk to Communities data. Vegetation and wildland fuels data from LANDFIRE 2020 (version 2.2.0) were used as input to two different but related geospatial fire simulation systems. Annual burn probability was produced with the USFS geospatial fire simulator (FSim) at a relatively coarse cell size of 270 meters (m). To bring the burn probability raster data down to a finer resolution more useful for assessing hazard and risk to communities, we upsampled them to the native 30 m resolution of the LANDFIRE fuel and vegetation data. In this upsampling process, we also spread values of modeled burn probability into developed areas represented in LANDFIRE fuels data as non-burnable. Burn probability rasters represent landscape conditions as of the end of 2020. Fire intensity characteristics were modeled at 30 m resolution using a process that performs a comprehensive set of FlamMap runs spanning the full range of weather-related characteristics that occur during a fire season and then integrates those runs into a variety of results based on the likelihood of those weather types occurring. Before the fire intensity modeling, the LANDFIRE 2020 data were updated to reflect fuels disturbances occurring in 2021 and 2022. As such, the fire intensity datasets represent landscape conditions as of the end of 2022. The data products in this publication that represent where people live, reflect 2021 estimates of housing unit and population counts from the U.S. Census Bureau, combined with building footprint data from Onegeo and USA Structures, both reflecting 2022 conditions.The specific raster datasets included in this publication include:Building Count: Building Count is a 30-m raster representing the count of buildings in the building footprint dataset located within each 30-m pixel.Building Density: Building Density is a 30-m raster representing the density of buildings in the building footprint dataset (buildings per square kilometer [km²]).Building Coverage: Building Coverage is a 30-m raster depicting the percentage of habitable land area covered by building footprints.Population Count (PopCount): PopCount is a 30-m raster with pixel values representing residential population count (persons) in each pixel.Population Density (PopDen): PopDen is a 30-m raster of residential population density (people/km²).Housing Unit Count (HUCount): HUCount is a 30-m raster representing the number of housing units in each pixel.Housing Unit Density (HUDen): HUDen is a 30-m raster of housing-unit density (housing units/km²).Housing Unit Exposure (HUExposure): HUExposure is a 30-m raster that represents the expected number of housing units within a pixel potentially exposed to wildfire in a year. This is a long-term annual average and not intended to represent the actual number of housing units exposed in any specific year.Housing Unit Impact (HUImpact): HUImpact is a 30-m raster that represents the relative potential impact of fire to housing units at any pixel, if a fire were to occur. It is an index that incorporates the general consequences of fire on a home as a function of fire intensity and uses flame length probabilities from wildfire modeling to capture likely intensity of fire.Housing Unit Risk (HURisk): HURisk is a 30-m raster that integrates all four primary elements of wildfire risk - likelihood, intensity, susceptibility, and exposure - on pixels where housing unit density is greater than zero.Additional methodology documentation is provided with the data publication download. Metadata and Downloads.Note: Pixel values in this image service have been altered from the original raster dataset due to data requirements in web services. The service is intended primarily for data visualization. Relative values and spatial patterns have been largely preserved in the service, but users are encouraged to download the source data for quantitative analysis.
Attribution-NoDerivs 4.0 (CC BY-ND 4.0)https://creativecommons.org/licenses/by-nd/4.0/
License information was derived automatically
PerCapita_CO2_Footprint_InDioceses_FULLBurhans, Molly A., Cheney, David M., Gerlt, R.. . “PerCapita_CO2_Footprint_InDioceses_FULL”. Scale not given. Version 1.0. MO and CT, USA: GoodLands Inc., Environmental Systems Research Institute, Inc., 2019.MethodologyThis is the first global Carbon footprint of the Catholic population. We will continue to improve and develop these data with our research partners over the coming years. While it is helpful, it should also be viewed and used as a "beta" prototype that we and our research partners will build from and improve. The years of carbon data are (2010) and (2015 - SHOWN). The year of Catholic data is 2018. The year of population data is 2016. Care should be taken during future developments to harmonize the years used for catholic, population, and CO2 data.1. Zonal Statistics: Esri Population Data and Dioceses --> Population per dioceses, non Vatican based numbers2. Zonal Statistics: FFDAS and Dioceses and Population dataset --> Mean CO2 per Diocese3. Field Calculation: Population per Diocese and Mean CO2 per diocese --> CO2 per Capita4. Field Calculation: CO2 per Capita * Catholic Population --> Catholic Carbon FootprintAssumption: PerCapita CO2Deriving per-capita CO2 from mean CO2 in a geography assumes that people's footprint accounts for their personal lifestyle and involvement in local business and industries that are contribute CO2. Catholic CO2Assumes that Catholics and non-Catholic have similar CO2 footprints from their lifestyles.Derived from:A multiyear, global gridded fossil fuel CO2 emission data product: Evaluation and analysis of resultshttp://ffdas.rc.nau.edu/About.htmlRayner et al., JGR, 2010 - The is the first FFDAS paper describing the version 1.0 methods and results published in the Journal of Geophysical Research.Asefi et al., 2014 - This is the paper describing the methods and results of the FFDAS version 2.0 published in the Journal of Geophysical Research.Readme version 2.2 - A simple readme file to assist in using the 10 km x 10 km, hourly gridded Vulcan version 2.2 results.Liu et al., 2017 - A paper exploring the carbon cycle response to the 2015-2016 El Nino through the use of carbon cycle data assimilation with FFDAS as the boundary condition for FFCO2."S. Asefi‐Najafabady P. J. Rayner K. R. Gurney A. McRobert Y. Song K. Coltin J. Huang C. Elvidge K. BaughFirst published: 10 September 2014 https://doi.org/10.1002/2013JD021296 Cited by: 30Link to FFDAS data retrieval and visualization: http://hpcg.purdue.edu/FFDAS/index.phpAbstractHigh‐resolution, global quantification of fossil fuel CO2 emissions is emerging as a critical need in carbon cycle science and climate policy. We build upon a previously developed fossil fuel data assimilation system (FFDAS) for estimating global high‐resolution fossil fuel CO2 emissions. We have improved the underlying observationally based data sources, expanded the approach through treatment of separate emitting sectors including a new pointwise database of global power plants, and extended the results to cover a 1997 to 2010 time series at a spatial resolution of 0.1°. Long‐term trend analysis of the resulting global emissions shows subnational spatial structure in large active economies such as the United States, China, and India. These three countries, in particular, show different long‐term trends and exploration of the trends in nighttime lights, and population reveal a decoupling of population and emissions at the subnational level. Analysis of shorter‐term variations reveals the impact of the 2008–2009 global financial crisis with widespread negative emission anomalies across the U.S. and Europe. We have used a center of mass (CM) calculation as a compact metric to express the time evolution of spatial patterns in fossil fuel CO2 emissions. The global emission CM has moved toward the east and somewhat south between 1997 and 2010, driven by the increase in emissions in China and South Asia over this time period. Analysis at the level of individual countries reveals per capita CO2 emission migration in both Russia and India. The per capita emission CM holds potential as a way to succinctly analyze subnational shifts in carbon intensity over time. Uncertainties are generally lower than the previous version of FFDAS due mainly to an improved nightlight data set."Global Diocesan Boundaries:Burhans, M., Bell, J., Burhans, D., Carmichael, R., Cheney, D., Deaton, M., Emge, T. Gerlt, B., Grayson, J., Herries, J., Keegan, H., Skinner, A., Smith, M., Sousa, C., Trubetskoy, S. “Diocesean Boundaries of the Catholic Church” [Feature Layer]. Scale not given. Version 1.2. Redlands, CA, USA: GoodLands Inc., Environmental Systems Research Institute, Inc., 2016.Using: ArcGIS. 10.4. Version 10.0. Redlands, CA: Environmental Systems Research Institute, Inc., 2016.Boundary ProvenanceStatistics and Leadership DataCheney, D.M. “Catholic Hierarchy of the World” [Database]. Date Updated: August 2019. Catholic Hierarchy. Using: Paradox. Retrieved from Original Source.Catholic HierarchyAnnuario Pontificio per l’Anno .. Città del Vaticano :Tipografia Poliglotta Vaticana, Multiple Years.The data for these maps was extracted from the gold standard of Church data, the Annuario Pontificio, published yearly by the Vatican. The collection and data development of the Vatican Statistics Office are unknown. GoodLands is not responsible for errors within this data. We encourage people to document and report errant information to us at data@good-lands.org or directly to the Vatican.Additional information about regular changes in bishops and sees comes from a variety of public diocesan and news announcements.GoodLands’ polygon data layers, version 2.0 for global ecclesiastical boundaries of the Roman Catholic Church:Although care has been taken to ensure the accuracy, completeness and reliability of the information provided, due to this being the first developed dataset of global ecclesiastical boundaries curated from many sources it may have a higher margin of error than established geopolitical administrative boundary maps. Boundaries need to be verified with appropriate Ecclesiastical Leadership. The current information is subject to change without notice. No parties involved with the creation of this data are liable for indirect, special or incidental damage resulting from, arising out of or in connection with the use of the information. We referenced 1960 sources to build our global datasets of ecclesiastical jurisdictions. Often, they were isolated images of dioceses, historical documents and information about parishes that were cross checked. These sources can be viewed here:https://docs.google.com/spreadsheets/d/11ANlH1S_aYJOyz4TtG0HHgz0OLxnOvXLHMt4FVOS85Q/edit#gid=0To learn more or contact us please visit: https://good-lands.org/Esri Gridded Population Data 2016DescriptionThis layer is a global estimate of human population for 2016. Esri created this estimate by modeling a footprint of where people live as a dasymetric settlement likelihood surface, and then assigned 2016 population estimates stored on polygons of the finest level of geography available onto the settlement surface. Where people live means where their homes are, as in where people sleep most of the time, and this is opposed to where they work. Another way to think of this estimate is a night-time estimate, as opposed to a day-time estimate.Knowledge of population distribution helps us understand how humans affect the natural world and how natural events such as storms and earthquakes, and other phenomena affect humans. This layer represents the footprint of where people live, and how many people live there.Dataset SummaryEach cell in this layer has an integer value with the estimated number of people likely to live in the geographic region represented by that cell. Esri additionally produced several additional layers World Population Estimate Confidence 2016: the confidence level (1-5) per cell for the probability of people being located and estimated correctly. World Population Density Estimate 2016: this layer is represented as population density in units of persons per square kilometer.World Settlement Score 2016: the dasymetric likelihood surface used to create this layer by apportioning population from census polygons to the settlement score raster.To use this layer in analysis, there are several properties or geoprocessing environment settings that should be used:Coordinate system: WGS_1984. This service and its underlying data are WGS_1984. We do this because projecting population count data actually will change the populations due to resampling and either collapsing or splitting cells to fit into another coordinate system. Cell Size: 0.0013474728 degrees (approximately 150-meters) at the equator. No Data: -1Bit Depth: 32-bit signedThis layer has query, identify, pixel, and export image functions enabled, and is restricted to a maximum analysis size of 30,000 x 30,000 pixels - an area about the size of Africa.Frye, C. et al., (2018). Using Classified and Unclassified Land Cover Data to Estimate the Footprint of Human Settlement. Data Science Journal. 17, p.20. DOI: http://doi.org/10.5334/dsj-2018-020.What can you do with this layer?This layer is unsuitable for mapping or cartographic use, and thus it does not include a convenient legend. Instead, this layer is useful for analysis, particularly for estimating counts of people living within watersheds, coastal areas, and other areas that do not have standard boundaries. Esri recommends using the Zonal Statistics tool or the Zonal Statistics to Table tool where you provide input zones as either polygons, or raster data, and the tool will summarize the count of population within those zones. https://www.esri.com/arcgis-blog/products/arcgis-living-atlas/data-management/2016-world-population-estimate-services-are-now-available/
https://choosealicense.com/licenses/other/https://choosealicense.com/licenses/other/
Dataset Card for Map It Anywhere (MIA)
The Map It Anywhere (MIA) dataset contains map-prediction-ready data curated from public datasets.
Dataset Details
Dataset Description
The Map It Anywhere (MIA) dataset contains 1.2 million high quality first-person-view (FPV) and bird's eye view (BEV) map pairs covering 470 squared km, thereby facilitating future map prediction research on generalizability and robustness. The dataset is curated using the MIA data engine… See the full description on the dataset page: https://huggingface.co/datasets/cherieho/mia_dataset.
Surface ocean velocities estimated from HF-Radar are representative of the upper 0.3 - 2.5 meters of the ocean. The main objective of near-real time processing is to produce the best product from available data at the time of processing. Radial velocity measurements are obtained from individual radar sites through the U.S. HF-Radar Network. Hourly radial data are processed by unweighted least-squares on a 1 km resolution grid of the U.S. West Coast to produce near real-time surface current maps.Surface ocean velocities estimated from HF-Radar are representative of the upper 0.3 - 2.5 meters of the ocean. The main objective of near-real time processing is to produce the best product from available data at the time of processing. Radial velocity measurements are obtained from individual radar sites through the U.S. HF-Radar Network. Hourly radial data are processed by unweighted least-squares on a 1 km resolution grid of the U.S. West Coast to produce near real-time surface current maps.Surface ocean velocities estimated from HF-Radar are representative of the upper 0.3 - 2.5 meters of the ocean. The main objective of near-real time processing is to produce the best product from available data at the time of processing. Radial velocity measurements are obtained from individual radar sites through the U.S. HF-Radar Network. Hourly radial data are processed by unweighted least-squares on a 1 km resolution grid of the U.S. West Coast to produce near real-time surface current maps.Surface ocean velocities estimated from HF-Radar are representative of the upper 0.3 - 2.5 meters of the ocean. The main objective of near-real time processing is to produce the best product from available data at the time of processing. Radial velocity measurements are obtained from individual radar sites through the U.S. HF-Radar Network. Hourly radial data are processed by unweighted least-squares on a 1 km resolution grid of the U.S. West Coast to produce near real-time surface current maps.Surface ocean velocities estimated from HF-Radar are representative of the upper 0.3 - 2.5 meters of the ocean. The main objective of near-real time processing is to produce the best product from available data at the time of processing. Radial velocity measurements are obtained from individual radar sites through the U.S. HF-Radar Network. Hourly radial data are processed by unweighted least-squares on a 1 km resolution grid of the U.S. West Coast to produce near real-time surface current maps.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This dataset represents the road density within individual, local NHDPlusV2 catchments and upstream, contributing watersheds riparian buffers. Attributes of the landscape layer were calculated for every local NHDPlusV2 catchment and accumulated to provide watershed-level metrics. (See Supplementary Info for Glossary of Terms) This data set is derived from TIGER/Line Files of roads in the conterminous United States. Road density describes how many kilometers of road exist in a square kilometer. A raster was produced using the ArcGIS Line Density Tool to form the landscape layer for analysis. (see Data Sources for links to NHDPlusV2 data and Census Data) The (kilometer of road/square kilometer) was summarized by local catchment and by watershed to produce local catchment-level and watershed-level metrics as a continuous data type (see Data Structure and Attribute Information for a description).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Land area (sq. km) in United States was reported at 9147420 sq. Km in 2022, according to the World Bank collection of development indicators, compiled from officially recognized sources. United States - Land area (sq. km) - actual values, historical data, forecasts and projections were sourced from the World Bank on June of 2025.