6 datasets found
  1. N

    Income Bracket Analysis by Age Group Dataset: Age-Wise Distribution of...

    • neilsberg.com
    csv, json
    Updated Feb 25, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Income Bracket Analysis by Age Group Dataset: Age-Wise Distribution of Orange County, CA Household Incomes Across 16 Income Brackets // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/f363f501-f353-11ef-8577-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 25, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    California, Orange County
    Variables measured
    Number of households with income $200,000 or more, Number of households with income less than $10,000, Number of households with income between $15,000 - $19,999, Number of households with income between $20,000 - $24,999, Number of households with income between $25,000 - $29,999, Number of households with income between $30,000 - $34,999, Number of households with income between $35,000 - $39,999, Number of households with income between $40,000 - $44,999, Number of households with income between $45,000 - $49,999, Number of households with income between $50,000 - $59,999, and 6 more
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It delineates income distributions across 16 income brackets (mentioned above) following an initial analysis and categorization. Using this dataset, you can find out the total number of households within a specific income bracket along with how many households with that income bracket for each of the 4 age cohorts (Under 25 years, 25-44 years, 45-64 years and 65 years and over). For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the the household distribution across 16 income brackets among four distinct age groups in Orange County: Under 25 years, 25-44 years, 45-64 years, and over 65 years. The dataset highlights the variation in household income, offering valuable insights into economic trends and disparities within different age categories, aiding in data analysis and decision-making..

    Key observations

    • Upon closer examination of the distribution of households among age brackets, it reveals that there are 26,583(2.47%) households where the householder is under 25 years old, 337,853(31.44%) households with a householder aged between 25 and 44 years, 435,535(40.53%) households with a householder aged between 45 and 64 years, and 274,683(25.56%) households where the householder is over 65 years old.
    • In Orange County, the age group of 45 to 64 years stands out with both the highest median income and the maximum share of households. This alignment suggests a financially stable demographic, indicating an established community with stable careers and higher incomes.
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Income brackets:

    • Less than $10,000
    • $10,000 to $14,999
    • $15,000 to $19,999
    • $20,000 to $24,999
    • $25,000 to $29,999
    • $30,000 to $34,999
    • $35,000 to $39,999
    • $40,000 to $44,999
    • $45,000 to $49,999
    • $50,000 to $59,999
    • $60,000 to $74,999
    • $75,000 to $99,999
    • $100,000 to $124,999
    • $125,000 to $149,999
    • $150,000 to $199,999
    • $200,000 or more

    Variables / Data Columns

    • Household Income: This column showcases 16 income brackets ranging from Under $10,000 to $200,000+ ( As mentioned above).
    • Under 25 years: The count of households led by a head of household under 25 years old with income within a specified income bracket.
    • 25 to 44 years: The count of households led by a head of household 25 to 44 years old with income within a specified income bracket.
    • 45 to 64 years: The count of households led by a head of household 45 to 64 years old with income within a specified income bracket.
    • 65 years and over: The count of households led by a head of household 65 years and over old with income within a specified income bracket.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Orange County median household income by age. You can refer the same here

  2. N

    Age-wise distribution of Orange County, CA household incomes: Comparative...

    • neilsberg.com
    csv, json
    Updated Jan 9, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Age-wise distribution of Orange County, CA household incomes: Comparative analysis across 16 income brackets [Dataset]. https://www.neilsberg.com/research/datasets/861ff2b3-8dec-11ee-9302-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Jan 9, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    California, Orange County
    Variables measured
    Number of households with income $200,000 or more, Number of households with income less than $10,000, Number of households with income between $15,000 - $19,999, Number of households with income between $20,000 - $24,999, Number of households with income between $25,000 - $29,999, Number of households with income between $30,000 - $34,999, Number of households with income between $35,000 - $39,999, Number of households with income between $40,000 - $44,999, Number of households with income between $45,000 - $49,999, Number of households with income between $50,000 - $59,999, and 6 more
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2022 1-Year Estimates. It delineates income distributions across 16 income brackets (mentioned above) following an initial analysis and categorization. Using this dataset, you can find out the total number of households within a specific income bracket along with how many households with that income bracket for each of the 4 age cohorts (Under 25 years, 25-44 years, 45-64 years and 65 years and over). For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the the household distribution across 16 income brackets among four distinct age groups in Orange County: Under 25 years, 25-44 years, 45-64 years, and over 65 years. The dataset highlights the variation in household income, offering valuable insights into economic trends and disparities within different age categories, aiding in data analysis and decision-making..

    Key observations

    • Upon closer examination of the distribution of households among age brackets, it reveals that there are 28,084(2.59%) households where the householder is under 25 years old, 337,408(31.09%) households with a householder aged between 25 and 44 years, 431,476(39.76%) households with a householder aged between 45 and 64 years, and 288,257(26.56%) households where the householder is over 65 years old.
    • In Orange County, the age group of 45 to 64 years stands out with both the highest median income and the maximum share of households. This alignment suggests a financially stable demographic, indicating an established community with stable careers and higher incomes.
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2022 1-Year Estimates.

    Income brackets:

    • Less than $10,000
    • $10,000 to $14,999
    • $15,000 to $19,999
    • $20,000 to $24,999
    • $25,000 to $29,999
    • $30,000 to $34,999
    • $35,000 to $39,999
    • $40,000 to $44,999
    • $45,000 to $49,999
    • $50,000 to $59,999
    • $60,000 to $74,999
    • $75,000 to $99,999
    • $100,000 to $124,999
    • $125,000 to $149,999
    • $150,000 to $199,999
    • $200,000 or more

    Variables / Data Columns

    • Household Income: This column showcases 16 income brackets ranging from Under $10,000 to $200,000+ ( As mentioned above).
    • Under 25 years: The count of households led by a head of household under 25 years old with income within a specified income bracket.
    • 25 to 44 years: The count of households led by a head of household 25 to 44 years old with income within a specified income bracket.
    • 45 to 64 years: The count of households led by a head of household 45 to 64 years old with income within a specified income bracket.
    • 65 years and over: The count of households led by a head of household 65 years and over old with income within a specified income bracket.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Orange County median household income by age. You can refer the same here

  3. N

    Orange County, CA median household income breakdown by race betwen 2013 and...

    • neilsberg.com
    csv, json
    Updated Mar 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Orange County, CA median household income breakdown by race betwen 2013 and 2023 [Dataset]. https://www.neilsberg.com/research/datasets/ed2cbca1-f665-11ef-a994-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Mar 1, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    California, Orange County
    Variables measured
    Median Household Income Trends for Asian Population, Median Household Income Trends for Black Population, Median Household Income Trends for White Population, Median Household Income Trends for Some other race Population, Median Household Income Trends for Two or more races Population, Median Household Income Trends for American Indian and Alaska Native Population, Median Household Income Trends for Native Hawaiian and Other Pacific Islander Population
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To portray the median household income within each racial category idetified by the US Census Bureau, we conducted an initial analysis and categorization of the data from 2013 to 2023. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series via current methods (R-CPI-U-RS). It is important to note that the median household income estimates exclusively represent the identified racial categories and do not incorporate any ethnicity classifications. Households are categorized, and median incomes are reported based on the self-identified race of the head of the household. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the median household incomes over the past decade across various racial categories identified by the U.S. Census Bureau in Orange County. It portrays the median household income of the head of household across racial categories (excluding ethnicity) as identified by the Census Bureau. It also showcases the annual income trends, between 2013 and 2023, providing insights into the economic shifts within diverse racial communities.The dataset can be utilized to gain insights into income disparities and variations across racial categories, aiding in data analysis and decision-making..

    Key observations

    • White: In Orange County, the median household income for the households where the householder is White increased by $17,286(16.64%), between 2013 and 2023. The median household income, in 2023 inflation-adjusted dollars, was $103,905 in 2013 and $121,191 in 2023.
    • Black or African American: In Orange County, the median household income for the households where the householder is Black or African American increased by $15,311(18.02%), between 2013 and 2023. The median household income, in 2023 inflation-adjusted dollars, was $84,944 in 2013 and $100,255 in 2023.
    • Refer to the research insights for more key observations on American Indian and Alaska Native, Asian, Native Hawaiian and Other Pacific Islander, Some other race and Two or more races (multiracial) households
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Racial categories include:

    • White
    • Black or African American
    • American Indian and Alaska Native
    • Asian
    • Native Hawaiian and Other Pacific Islander
    • Some other race
    • Two or more races (multiracial)

    Variables / Data Columns

    • Race of the head of household: This column presents the self-identified race of the household head, encompassing all relevant racial categories (excluding ethnicity) applicable in Orange County.
    • 2010: 2010 median household income
    • 2011: 2011 median household income
    • 2012: 2012 median household income
    • 2013: 2013 median household income
    • 2014: 2014 median household income
    • 2015: 2015 median household income
    • 2016: 2016 median household income
    • 2017: 2017 median household income
    • 2018: 2018 median household income
    • 2019: 2019 median household income
    • 2020: 2020 median household income
    • 2021: 2021 median household income
    • 2022: 2022 median household income
    • 2023: 2023 median household income
    • Please note: All incomes have been adjusted for inflation and are presented in 2023-inflation-adjusted dollars.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Orange County median household income by race. You can refer the same here

  4. d

    Data from: Three-Dimensional Chronostratigraphic Model and supporting well...

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Nov 25, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Three-Dimensional Chronostratigraphic Model and supporting well data for the Los Angeles Coastal Plain, Los Angeles and Orange Counties, California [Dataset]. https://catalog.data.gov/dataset/three-dimensional-chronostratigraphic-model-and-supporting-well-data-for-the-los-angeles-c
    Explore at:
    Dataset updated
    Nov 25, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    California, Los Angeles, Orange County
    Description

    This data release contains a digital geospatial dataset generated by the U.S. Geological Survey under a cooperative agreement with the Water Replenishment District of Southern California to characterize the three-dimensional hydrogeology of the Los Angeles Coastal Plain. The geospatial dataset covers about 580 square miles of the largest coastal plain of southern California and contains the unit tops and extents of the three-dimensional chronostratigraphic model (3D CM) and supporting well data. The 3D CM was constructed in EarthVision using methods described in Development of a Groundwater-Simulation Model in the Los Angeles Coastal Plain, Los Angeles County, California; Chapter B (Ponti and Martin, 2021). Specifically, the geospatial database contains (1) a shapefile (point feature class) for the altitude of the top of each chronostratigraphic unit where it exists on a spatial grid in the 3D CM; and (2) a shapefile (point feature class) of wells used to construct the 3D CM including their corresponding name, location, source of well data, and depths of stratigraphic picks.

  5. a

    2019 Annual Land Use (Download in file-GDB format only)

    • hub.arcgis.com
    • hub.scag.ca.gov
    Updated Feb 10, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    rdpgisadmin (2022). 2019 Annual Land Use (Download in file-GDB format only) [Dataset]. https://hub.arcgis.com/maps/ea9fda878c1947d2afac5142fd5cb658_0/about
    Explore at:
    Dataset updated
    Feb 10, 2022
    Dataset authored and provided by
    rdpgisadmin
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    "Due to the size of this dataset, both Shapefile and Spreadsheet download options will not work as expected. The File Geodatabase is an alternative option for this data download"This is SCAG's 2019 Annual Land Use (ALU v. 2019.1) at the parcel-level, updated as of February 2021. This dataset has been modified to include additional attributes in order to feed SCAG's Housing Element Parcel Tool (HELPR), version 2.0. The dataset will be further reviewed and updated as additional information is released. Please refer to the tables below for data dictionary and SCAG’s land use classification.Field NameData TypeField DescriptionPID19Text2019 SCAG’s parcel unique IDAPN19Text2019 Assessor’s parcel numberCOUNTYTextCounty name (based on 2016 county boundary)COUNTY_IDDoubleCounty FIPS code (based on 2016 county boundary)CITYTextCity name (based on 2016 city boundary)CITY_IDDoubleCity FIPS code (based on 2016 city boundary)MULTIPARTShort IntegerMultipart feature (the number of multiple polygons; '1' = singlepart feature)STACKLong IntegerDuplicate geometry (the number of duplicate polygons; '0' = no duplicate polygons)ACRESDoubleParcel area (in acreage)GEOID20Text2020 Census Block Group GEOIDSLOPEShort IntegerSlope information1APN_DUPLong IntegerDuplicate APN (the number of multiple tax roll property records; '0' = no duplicate APN)IL_RATIODoubleRatio of improvement assessed value to land assessed valueLU19Text2019 existing land useLU19_SRCTextSource of 2019 existing land use2SCAGUID16Text2016 SCAG’s parcel unique IDAPNText2016 Assessor’s parcel numberCITY_GP_COText2016 Jurisdiction’s general plan land use designationSCAG_GP_COText2016 SCAG general plan land use codeSP_INDEXShort IntegerSpecific plan index ('0' = outside specific plan area; '1' = inside specific plan area)CITY_SP_COText2016 Jurisdiction’s specific plan land use designationSCAG_SP_COText2016 SCAG specific plan land use codeCITY_ZN_COText2016 Jurisdiction’s zoning codeSCAG_ZN_COText2016 SCAG zoning codeLU16Text2016 existing land useYEARLong IntegerDataset yearPUB_OWNShort IntegerPublic-owned land index ('1' = owned by public agency)PUB_NAMETextName of public agencyPUB_TYPETextType of public agency3BF_SQFTDoubleBuilding footprint area (in square feet)4BSF_NAMETextName of brownfield/superfund site5BSF_TYPETextType of brownfield/superfund site5FIREShort IntegerParcel intersects CalFire Very High Hazard Local Responsibility Areas or State Responsibility Areas (November 2020 version) (CalFIRE)SEARISE36Short IntegerParcel intersects with USGS Coastal Storm Modeling System (CoSMos)1 Meter Sea Level Rise inundation areas for Southern California (v3.0, Phase 2; 2018)SEARISE72Short IntegerParcel intersects with USGS Coastal Storm Modeling System (CoSMos)2 Meter Sea Level Rise inundation areas for Southern California (v3.0, Phase 2; 2018)FLOODShort IntegerParcel intersects with a FEMA 100 Year Flood Plain data from the Digital Flood Insurance Rate Map (DFIRM), obtained from Federal Emergency Management Agency (FEMA) in August 10, 2017EQUAKEShort IntegerParcel intersects with an Alquist-Priolo Earthquake Fault Zone (California Geological Survey; 2018)LIQUAFAShort IntegerParcel intersects with a Liquefaction Susceptibility Zone (California Geological Survey; 2016)LANDSLIDEShort IntegerParcel intersects with a Landslide Hazard Zone (California Geological Survey; 2016)CPADShort IntegerParcel intersects with a protected area from the California Protected Areas Database(CPAD) – www.calands.org (accessed April 2021)RIPARIANShort IntegerParcel centroid falls within Active River Areas(2010)or parcel intersects with a Wetland Area in the National Wetland Inventory(Version 2)WILDLIFEShort IntegerParcel intersects with wildlife habitat (US Fish & Wildlife ServiceCritical Habitat, Southern California Missing Linkages, Natural Lands & Habitat Corridors from Connect SoCal, CEHC Essential Connectivity Areas,Critical Coastal Habitats)CNDDBShort IntegerThe California Natural Diversity Database (CNDDB)includes the status and locations of rare plants and animals in California. Parcels that overlap locations of rare plants and animals in California from the California Natural Diversity Database (CNDDB)have a greater likelihood of encountering special status plants and animals on the property, potentially leading to further legal requirements to allow development (California Department of Fish and Wildlife). Data accessed in October 2020.HCPRAShort IntegerParcel intersects Natural Community & Habitat Conservation Plans Reserve Designs from the Western Riverside MHSCP, Coachella Valley MHSCP, and the Orange County Central Coastal NCCP/HCP, as accessed in October 2020WETLANDShort IntegerParcel intersects a wetland or deepwater habitat as defined by the US Fish & Wildlife Service National Wetlands Inventory, Version 2.UAZShort IntegerParcel centroid lies within a Caltrans Adjusted Urbanized AreasUNBUILT_SFDoubleDifference between parcel area and building footprint area expressed in square feet.6GRCRY_1MIShort IntegerThe number of grocery stores within a 1-mile drive7HEALTH_1MIShort IntegerThe number of healthcare facilities within a 1-mile drive7OPENSP_1MIShort IntegerQuantity of open space (roughly corresponding to city blocks’ worth) within a 1-mile drive7TCAC_2021TextThe opportunity level based on the 2021 CA HCD/TCAC opportunity scores.HQTA45Short IntegerField takes a value of 1 if parcel centroid lies within a 2045 High-Quality Transit Area (HQTA)JOB_CTRShort IntegerField takes a value of 1 if parcel centroid lies within a job centerNMAShort IntegerField takes a value of 1 if parcel centroid lies within a neighborhood mobility area.ABS_CONSTRShort IntegerField takes a value of 1 if parcel centroid lies within an absolute constraint area. See the Sustainable Communities Strategy Technical Reportfor details.VAR_CONSTRShort IntegerField takes a value of 1 if parcel centroid lies within a variable constraint area. See the Sustainable Communities Strategy Technical Reportfor details.EJAShort IntegerField takes a value of 1 if parcel centroid lies within an Environmental Justice Area. See the Environmental Justice Technical Reportfor details.SB535Short IntegerField takes a value of 1 if parcel centroid lies within an SB535 Disadvantaged Community area. See the Environmental Justice Technical Reportfor details.COCShort IntegerField takes a value of 1 if parcel centroid lies within a Community of Concern See the Environmental Justice Technical Reportfor details.STATEShort IntegerThis field is a rudimentary estimate of which parcels have adequate physical space to accommodate a typical detached Accessory Dwelling Unit (ADU)8.SBShort IntegerIndex of ADU eligibility according to the setback reduction policy scenario (from 4 to 2 feet) (1 = ADU eligible parcel, Null = Not ADU eligible parcel)SMShort IntegerIndex of ADU eligibility according to the small ADU policy scenario (from 800 to 600 square feet ADU) (1 = ADU eligible parcel, Null = Not ADU eligible parcel)PKShort IntegerIndex of ADU eligibility according to parking space exemption (200 square feet) policy scenario (1 = ADU eligible parcel, Null = Not ADU eligible parcel)SB_SMShort IntegerIndex of ADU eligibility according to both the setback reduction and small ADU policy scenarios (1 = ADU eligible parcel, Null = Not ADU eligible parcel)SB_PKShort IntegerIndex of ADU eligibility according to both the setback reduction and parking space exemption scenarios (1 = ADU eligible parcel, Null = Not ADU eligible parcel)SM_PKShort IntegerIndex of ADU eligibility according to both the small ADU policy and parking space exemption scenarios (1 = ADU eligible parcel, Null = Not ADU eligible parcel)SB_SM_PKShort IntegerIndex of ADU eligibility according to the setback reduction, small ADU, and parking space exemption scenarios (1 = ADU eligible parcel, Null = Not ADU eligible parcel)1. Slope: '0' - 0~4 percent; '5' - 5~9 percent; '10' - 10~14 percent; '15' = 15~19 percent; '20' - 20~24 percent; '25' = 25 percent or greater.2. Source of 2019 existing land use: SCAG_REF- SCAG's regional geospatial datasets;ASSESSOR- Assessor's 2019 tax roll records; CPAD- California Protected Areas Database (version 2020a; accessed in September 2020); CSCD- California School Campus Database (version 2018; accessed in September 2020); FMMP- Farmland Mapping and Monitoring Program's Important Farmland GIS data (accessed in September 2020); MIRTA- U.S. Department of Defense's Military Installations, Ranges, and Training Areas GIS data (accessed in September 2020)3. Type of public agency includes federal, state, county, city, special district, school district, college/university, military.4. Based on 2019 building footprint data obtained from BuildingFootprintUSA (except that 2014 building footprint data was used for Imperial County). Please note that 2019 building footprint data does not cover the entire SCAG region (overlapped with 83% of parcels in the SCAG Region).5. Includes brownfield/superfund site whose address information are matched by SCAG rooftop address locator. Brownfield data was obtained from EPA's Assessment, Cleanup and Redevelopment Exchange System (ACRES) database, Cleanups in my community (CIMC), DTSC brownfield Memorandum of Agreement (MOA). Superfund site data was obtained from EPA's Superfund Enterprise Management System (SEMS) database.6. Parcels with a zero value for building footprint area are marked as NULL to indicate this field is not reliable.7. These values are intended as a rudimentary indicator of accessibility developed by SCAG using 2016 InfoUSA business establishment data and 2017 California Protected Areas data. See documentation for details.8. A detailed study conducted by Cal Poly Pomona (CPP) and available hereconducted an extensive review of state and local requirements and development trends for ADUs in the SCAG region and developed a baseline set of assumptions for estimating how many of a jurisdiction’s parcels

  6. a

    Land Use 2019

    • santa-monica-mountains-defensible-space-uscssi.hub.arcgis.com
    Updated Apr 18, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Spatial Sciences Institute (2022). Land Use 2019 [Dataset]. https://santa-monica-mountains-defensible-space-uscssi.hub.arcgis.com/datasets/land-use-2019
    Explore at:
    Dataset updated
    Apr 18, 2022
    Dataset authored and provided by
    Spatial Sciences Institute
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    This is SCAG's 2019 Annual Land Use (ALU v. 2019.1) at the parcel-level, updated as of February 2021. This dataset has been modified to include additional attributes in order to feed SCAG's Housing Element Parcel Tool (HELPR), version 2.0. The dataset will be further reviewed and updated as additional information is released. Please refer to the tables below for data dictionary and SCAG’s land use classification. Field Name Data TypeField DescriptionPID19Text2019 SCAG’s parcel unique IDAPN19Text2019 Assessor’s parcel numberCOUNTYTextCounty name (based on 2016 county boundary)COUNTY_IDDoubleCounty FIPS code (based on 2016 county boundary)CITYTextCity name (based on 2016 city boundary)CITY_IDDoubleCity FIPS code (based on 2016 city boundary)MULTIPARTShort IntegerMultipart feature (the number of multiple polygons; '1' = singlepart feature)STACKLong IntegerDuplicate geometry (the number of duplicate polygons; '0' = no duplicate polygons)ACRESDoubleParcel area (in acreage)GEOID20Text2020 Census Block Group GEOIDSLOPEShort IntegerSlope information1APN_DUPLong IntegerDuplicate APN (the number of multiple tax roll property records; '0' = no duplicate APN)IL_RATIODoubleRatio of improvement assessed value to land assessed valueLU19Text2019 existing land useLU19_SRCTextSource of 2019 existing land use2SCAGUID16Text2016 SCAG’s parcel unique IDAPNText2016 Assessor’s parcel numberCITY_GP_COText2016 Jurisdiction’s general plan land use designationSCAG_GP_COText2016 SCAG general plan land use codeSP_INDEXShort IntegerSpecific plan index ('0' = outside specific plan area; '1' = inside specific plan area)CITY_SP_COText2016 Jurisdiction’s specific plan land use designationSCAG_SP_COText2016 SCAG specific plan land use codeCITY_ZN_COText2016 Jurisdiction’s zoning codeSCAG_ZN_COText2016 SCAG zoning codeLU16Text2016 existing land useYEARLong IntegerDataset yearPUB_OWNShort IntegerPublic-owned land index ('1' = owned by public agency)PUB_NAMETextName of public agencyPUB_TYPETextType of public agency3BF_SQFTDoubleBuilding footprint area (in square feet)4BSF_NAMETextName of brownfield/superfund site5BSF_TYPETextType of brownfield/superfund site5FIREShort IntegerParcel intersects CalFire Very High Hazard Local Responsibility Areas or State Responsibility Areas (November 2020 version) (CalFIRE)SEARISE36Short IntegerParcel intersects with USGS Coastal Storm Modeling System (CoSMos)1 Meter Sea Level Rise inundation areas for Southern California (v3.0, Phase 2; 2018)SEARISE72Short IntegerParcel intersects with USGS Coastal Storm Modeling System (CoSMos)2 Meter Sea Level Rise inundation areas for Southern California (v3.0, Phase 2; 2018)FLOODShort IntegerParcel intersects with a FEMA 100 Year Flood Plain data from the Digital Flood Insurance Rate Map (DFIRM), obtained from Federal Emergency Management Agency (FEMA) in August 10, 2017EQUAKEShort IntegerParcel intersects with an Alquist-Priolo Earthquake Fault Zone (California Geological Survey; 2018) LIQUAFAShort IntegerParcel intersects with a Liquefaction Susceptibility Zone (California Geological Survey; 2016)LANDSLIDEShort IntegerParcel intersects with a Landslide Hazard Zone (California Geological Survey; 2016)CPADShort IntegerParcel intersects with a protected area from the California Protected Areas Database(CPAD) – www.calands.org (accessed April 2021)RIPARIANShort IntegerParcel centroid falls within Active River Areas(2010)or parcel intersects with a Wetland Area in the National Wetland Inventory(Version 2)WILDLIFEShort IntegerParcel intersects with wildlife habitat (US Fish & Wildlife ServiceCritical Habitat, Southern California Missing Linkages, Natural Lands & Habitat Corridors from Connect SoCal, CEHC Essential Connectivity Areas,Critical Coastal Habitats)CNDDBShort IntegerThe California Natural Diversity Database (CNDDB)includes the status and locations of rare plants and animals in California. Parcels that overlap locations of rare plants and animals in California from the California Natural Diversity Database (CNDDB)have a greater likelihood of encountering special status plants and animals on the property, potentially leading to further legal requirements to allow development (California Department of Fish and Wildlife). Data accessed in October 2020. HCPRAShort IntegerParcel intersects Natural Community & Habitat Conservation Plans Reserve Designs from the Western Riverside MHSCP, Coachella Valley MHSCP, and the Orange County Central Coastal NCCP/HCP, as accessed in October 2020WETLANDShort IntegerParcel intersects a wetland or deepwater habitat as defined by the US Fish & Wildlife Service National Wetlands Inventory, Version 2. UAZShort IntegerParcel centroid lies within a Caltrans Adjusted Urbanized AreasUNBUILT_SFDoubleDifference between parcel area and building footprint area expressed in square feet.6GRCRY_1MIShort IntegerThe number of grocery stores within a 1-mile drive7HEALTH_1MIShort IntegerThe number of healthcare facilities within a 1-mile drive7OPENSP_1MIShort IntegerQuantity of open space (roughly corresponding to city blocks’ worth) within a 1-mile drive7TCAC_2021TextThe opportunity level based on the 2021 CA HCD/TCAC opportunity scores.HQTA45Short IntegerField takes a value of 1 if parcel centroid lies within a 2045 High-Quality Transit Area (HQTA)JOB_CTRShort IntegerField takes a value of 1 if parcel centroid lies within a job centerNMAShort IntegerField takes a value of 1 if parcel centroid lies within a neighborhood mobility area. ABS_CONSTRShort IntegerField takes a value of 1 if parcel centroid lies within an absolute constraint area. See the Sustainable Communities Strategy Technical Reportfor details.VAR_CONSTRShort IntegerField takes a value of 1 if parcel centroid lies within a variable constraint area. See the Sustainable Communities Strategy Technical Reportfor details.EJAShort IntegerField takes a value of 1 if parcel centroid lies within an Environmental Justice Area. See the Environmental Justice Technical Reportfor details.SB535Short IntegerField takes a value of 1 if parcel centroid lies within an SB535 Disadvantaged Community area. See the Environmental Justice Technical Reportfor details.COCShort IntegerField takes a value of 1 if parcel centroid lies within a Community of Concern See the Environmental Justice Technical Reportfor details.STATEShort IntegerThis field is a rudimentary estimate of which parcels have adequate physical space to accommodate a typical detached Accessory Dwelling Unit (ADU)8. SBShort IntegerIndex of ADU eligibility according to the setback reduction policy scenario (from 4 to 2 feet) (1 = ADU eligible parcel, Null = Not ADU eligible parcel)SMShort IntegerIndex of ADU eligibility according to the small ADU policy scenario (from 800 to 600 square feet ADU) (1 = ADU eligible parcel, Null = Not ADU eligible parcel)PKShort IntegerIndex of ADU eligibility according to parking space exemption (200 square feet) policy scenario (1 = ADU eligible parcel, Null = Not ADU eligible parcel)SB_SMShort IntegerIndex of ADU eligibility according to both the setback reduction and small ADU policy scenarios (1 = ADU eligible parcel, Null = Not ADU eligible parcel)SB_PKShort IntegerIndex of ADU eligibility according to both the setback reduction and parking space exemption scenarios (1 = ADU eligible parcel, Null = Not ADU eligible parcel)SM_PKShort IntegerIndex of ADU eligibility according to both the small ADU policy and parking space exemption scenarios (1 = ADU eligible parcel, Null = Not ADU eligible parcel)SB_SM_PKShort IntegerIndex of ADU eligibility according to the setback reduction, small ADU, and parking space exemption scenarios (1 = ADU eligible parcel, Null = Not ADU eligible parcel)1. Slope: '0' - 0~4 percent; '5' - 5~9 percent; '10' - 10~14 percent; '15' = 15~19 percent; '20' - 20~24 percent; '25' = 25 percent or greater.2. Source of 2019 existing land use: SCAG_REF- SCAG's regional geospatial datasets;ASSESSOR- Assessor's 2019 tax roll records; CPAD- California Protected Areas Database (version 2020a; accessed in September 2020); CSCD- California School Campus Database (version 2018; accessed in September 2020); FMMP- Farmland Mapping and Monitoring Program's Important Farmland GIS data (accessed in September 2020); MIRTA- U.S. Department of Defense's Military Installations, Ranges, and Training Areas GIS data (accessed in September 2020)3. Type of public agency includes federal, state, county, city, special district, school district, college/university, military.4. Based on 2019 building footprint data obtained from BuildingFootprintUSA (except that 2014 building footprint data was used for Imperial County). Please note that 2019 building footprint data does not cover the entire SCAG region (overlapped with 83% of parcels in the SCAG Region).5. Includes brownfield/superfund site whose address information are matched by SCAG rooftop address locator. Brownfield data was obtained from EPA's Assessment, Cleanup and Redevelopment Exchange System (ACRES) database, Cleanups in my community (CIMC), DTSC brownfield Memorandum of Agreement (MOA). Superfund site data was obtained from EPA's Superfund Enterprise Management System (SEMS) database.6. Parcels with a zero value for building footprint area are marked as NULL to indicate this field is not reliable.7. These values are intended as a rudimentary indicator of accessibility developed by SCAG using 2016 InfoUSA business establishment data and 2017 California Protected Areas data. See documentation for details.8. A detailed study conducted by Cal Poly Pomona (CPP) and available hereconducted an extensive review of state and local requirements and development trends for ADUs in the SCAG region and developed a baseline set of assumptions for estimating how many of a jurisdiction’s parcels could accommodate a detached ADU. Please note that these estimates (1) do not include attached or other types of ADUs such as garage conversions or Junior ADUs, and (2)

  7. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Neilsberg Research (2025). Income Bracket Analysis by Age Group Dataset: Age-Wise Distribution of Orange County, CA Household Incomes Across 16 Income Brackets // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/f363f501-f353-11ef-8577-3860777c1fe6/

Income Bracket Analysis by Age Group Dataset: Age-Wise Distribution of Orange County, CA Household Incomes Across 16 Income Brackets // 2025 Edition

Explore at:
csv, jsonAvailable download formats
Dataset updated
Feb 25, 2025
Dataset authored and provided by
Neilsberg Research
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Area covered
California, Orange County
Variables measured
Number of households with income $200,000 or more, Number of households with income less than $10,000, Number of households with income between $15,000 - $19,999, Number of households with income between $20,000 - $24,999, Number of households with income between $25,000 - $29,999, Number of households with income between $30,000 - $34,999, Number of households with income between $35,000 - $39,999, Number of households with income between $40,000 - $44,999, Number of households with income between $45,000 - $49,999, Number of households with income between $50,000 - $59,999, and 6 more
Measurement technique
The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It delineates income distributions across 16 income brackets (mentioned above) following an initial analysis and categorization. Using this dataset, you can find out the total number of households within a specific income bracket along with how many households with that income bracket for each of the 4 age cohorts (Under 25 years, 25-44 years, 45-64 years and 65 years and over). For additional information about these estimations, please contact us via email at research@neilsberg.com
Dataset funded by
Neilsberg Research
Description
About this dataset

Context

The dataset presents the the household distribution across 16 income brackets among four distinct age groups in Orange County: Under 25 years, 25-44 years, 45-64 years, and over 65 years. The dataset highlights the variation in household income, offering valuable insights into economic trends and disparities within different age categories, aiding in data analysis and decision-making..

Key observations

  • Upon closer examination of the distribution of households among age brackets, it reveals that there are 26,583(2.47%) households where the householder is under 25 years old, 337,853(31.44%) households with a householder aged between 25 and 44 years, 435,535(40.53%) households with a householder aged between 45 and 64 years, and 274,683(25.56%) households where the householder is over 65 years old.
  • In Orange County, the age group of 45 to 64 years stands out with both the highest median income and the maximum share of households. This alignment suggests a financially stable demographic, indicating an established community with stable careers and higher incomes.
Content

When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

Income brackets:

  • Less than $10,000
  • $10,000 to $14,999
  • $15,000 to $19,999
  • $20,000 to $24,999
  • $25,000 to $29,999
  • $30,000 to $34,999
  • $35,000 to $39,999
  • $40,000 to $44,999
  • $45,000 to $49,999
  • $50,000 to $59,999
  • $60,000 to $74,999
  • $75,000 to $99,999
  • $100,000 to $124,999
  • $125,000 to $149,999
  • $150,000 to $199,999
  • $200,000 or more

Variables / Data Columns

  • Household Income: This column showcases 16 income brackets ranging from Under $10,000 to $200,000+ ( As mentioned above).
  • Under 25 years: The count of households led by a head of household under 25 years old with income within a specified income bracket.
  • 25 to 44 years: The count of households led by a head of household 25 to 44 years old with income within a specified income bracket.
  • 45 to 64 years: The count of households led by a head of household 45 to 64 years old with income within a specified income bracket.
  • 65 years and over: The count of households led by a head of household 65 years and over old with income within a specified income bracket.

Good to know

Margin of Error

Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

Custom data

If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

Inspiration

Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

Recommended for further research

This dataset is a part of the main dataset for Orange County median household income by age. You can refer the same here

Search
Clear search
Close search
Google apps
Main menu