Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the United States population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for United States. The dataset can be utilized to understand the population distribution of United States by age. For example, using this dataset, we can identify the largest age group in United States.
Key observations
The largest age group in United States was for the group of age 30 to 34 years years with a population of 23.06 million (6.94%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in United States was the 80 to 84 years years with a population of 6.34 million (1.91%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for United States Population by Age. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of United States by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for United States. The dataset can be utilized to understand the population distribution of United States by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in United States. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for United States.
Key observations
Largest age group (population): Male # 30-34 years (11.65 million) | Female # 30-34 years (11.41 million). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for United States Population by Gender. You can refer the same here
In 2023, Washington, D.C. had the highest population density in the United States, with 11,130.69 people per square mile. As a whole, there were about 94.83 residents per square mile in the U.S., and Alaska was the state with the lowest population density, with 1.29 residents per square mile. The problem of population density Simply put, population density is the population of a country divided by the area of the country. While this can be an interesting measure of how many people live in a country and how large the country is, it does not account for the degree of urbanization, or the share of people who live in urban centers. For example, Russia is the largest country in the world and has a comparatively low population, so its population density is very low. However, much of the country is uninhabited, so cities in Russia are much more densely populated than the rest of the country. Urbanization in the United States While the United States is not very densely populated compared to other countries, its population density has increased significantly over the past few decades. The degree of urbanization has also increased, and well over half of the population lives in urban centers.
This web map displays data from the voter registration database as the percent of registered voters by census tract in King County, Washington. The data for this web map is compiled from King County Elections voter registration data for the years 2013-2019. The total number of registered voters is based on the geo-_location of the voter's registered address at the time of the general election for each year. The eligible voting population, age 18 and over, is based on the estimated population increase from the US Census Bureau and the Washington Office of Financial Management and was calculated as a projected 6 percent population increase for the years 2010-2013, 7 percent population increase for the years 2010-2014, 9 percent population increase for the years 2010-2015, 11 percent population increase for the years 2010-2016 & 2017, 14 percent population increase for the years 2010-2018 and 17 percent population increase for the years 2010-2019. The total population 18 and over in 2010 was 1,517,747 in King County, Washington. The percentage of registered voters represents the number of people who are registered to vote as compared to the eligible voting population, age 18 and over. The voter registration data by census tract was grouped into six percentage range estimates: 50% or below, 51-60%, 61-70%, 71-80%, 81-90% and 91% or above with an overall 84 percent registration rate. In the map the lighter colors represent a relatively low percentage range of voter registration and the darker colors represent a relatively high percentage range of voter registration. PDF maps of these data can be viewed at King County Elections downloadable voter registration maps. The 2019 General Election Voter Turnout layer is voter turnout data by historical precinct boundaries for the corresponding year. The data is grouped into six percentage ranges: 0-30%, 31-40%, 41-50% 51-60%, 61-70%, and 71-100%. The lighter colors represent lower turnout and the darker colors represent higher turnout. The King County Demographics Layer is census data for language, income, poverty, race and ethnicity at the census tract level and is based on the 2010-2014 American Community Survey 5 year Average provided by the United States Census Bureau. Since the data is based on a survey, they are considered to be estimates and should be used with that understanding. The demographic data sets were developed and are maintained by King County Staff to support the King County Equity and Social Justice program. Other data for this map is located in the King County GIS Spatial Data Catalog, where data is managed by the King County GIS Center, a multi-department enterprise GIS in King County, Washington. King County has nearly 1.3 million registered voters and is the largest jurisdiction in the United States to conduct all elections by mail. In the map you can view the percent of registered voters by census tract, compare registration within political districts, compare registration and demographic data, verify your voter registration or register to vote through a link to the VoteWA, Washington State Online Voter Registration web page.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
All cities with a population > 1000 or seats of adm div (ca 80.000)Sources and ContributionsSources : GeoNames is aggregating over hundred different data sources. Ambassadors : GeoNames Ambassadors help in many countries. Wiki : A wiki allows to view the data and quickly fix error and add missing places. Donations and Sponsoring : Costs for running GeoNames are covered by donations and sponsoring.Enrichment:add country name
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The purpose of this data set is to allow exploration between various types of data that is commonly collected by the US government across the states and the USA as a whole. The data set consists of three different types of data:
When creating the data set, I combined data from many different types of sources, all of which are cited below. I have also provided the fields included in the data set and what they represent below. I have not performed any research on the data yet, but am going to dive in soon. I am particularly interested in the relationships between various types of data (i.e. GDP or birth rate) in prediction algorithms. Given that I have compiled 5 years’ worth of data, this data set was primarily constructed with predictive algorithms in mind.
An additional note before you delve into the fields: * There could have been many more variables added across many different fields of metrics. I have stopped here, but it could potentially be beneficial to observe the interaction of these variables with others (i.e. the GDP of certain industries, the average age in a state, the male/female gender ratio, etc.) to attempt to find additional trends.
As noted from the census:
Net international migration for the United States includes the international migration of both native and foreign-born populations. Specifically, it includes: (a) the net international migration of the foreign born, (b) the net migration between the United States and Puerto Rico, (c) the net migration of natives to and from the United States, and (d) the net movement of the Armed Forces population between the United States and overseas. Net international migration for Puerto Rico includes the migration of native and foreign-born populations between the United States and Puerto Rico.
Codes for most of the data, information about the geographic terms and coditions, and more information about the methodology behind the population estimates can be found on the US Census website.
This metadata record describes a series of data sets of natural and anthropogenic landscape features linked to NHDPlus Version 2.1’s (NHDPlusV2) approximately 2.7 million stream segments, their associated catchments, and their upstream watersheds within the conterminous United States. The data were linked to four spatial components of NHDPlusV2: individual reach catchments, riparian buffer zones around individual reaches, reach catchments accumulated downstream through the river network, and riparian buffer zones accumulated downstream through the river network. All data can be linked to NHDPlus using the COMID field in these tables and the ComID in the flowline shapefiles or FEATUREID in the catchment ones in the NHDPlus data suite. The datasets were derived using a topologically reconditioned version of the NHDPlusv2 routing network (Schwarz and Wieczorek, 2018). This database is used for the routing of upstream watersheds only. No cartographic changes were made to the original NHDPlusv2 in either the flowline or reach catchment line work. These data are listed under 13 themes which include: 1) Best Management Practices, characteristics such as agricultural management practices and land in conservation practices. 2) Chemical, characteristics such as nitrogen application or toxicity weighted use. 3) Climate and Water Balance Model, characteristics such as model outputs of runoff, actual evapotranspiration or ground water storage. 4) Climate, characteristics such as mean precipitation, temperature, relative humidity, or evapotranspiration. 5) Geology, characteristics such as Hunt or Soller surficial geologies. 6) Hydrologic, characteristics such as base flow or infiltration excess overland flow.Hydrologic Modifications, characteristics such as dam storage or tile drains. 7) Hydrologic Modifications, characteristics such as dam storage or tile drains. 8) Landscape, characteristics such as NLCD, CDL or NWALT. 9) Population Infrastructure, characteristics such as population, housing, and road densities. 10) Regions, characteristics such as EcoRegions, Physiography or Hydrologic Landscapes. 11) Soils, characteristics such as STATSGO, soil salinity, and soil restrictive layer. 12) Topographic Characteristics, characteristics such as basin area, slope and elevation. 13) Water use, characteristics such as estimated freshwater withdrawls and estimated freshwater consumption by thermo-electric power plants These data allow researchers and managers to acquire landscape information for both catchments (for example, the nearby landscape flowing directly into streams) and full upstream watersheds of specific stream reaches anywhere in the within the conterminous United States without having to perform specialized geospatial processing. Aside from comma separated text files, parquet files with the same file structure were also added to each data file under each child item theme. This format will allow researchers to acquire all the information from this data release in an efficient and consistent manner by utilizing and thereby adhering to the FAIR guidelines outlined in Lightsom and others (USGS, 2022).
The report State of Land in the Mekong Region€ was launched today in Vientiane, Lao PDR. The first publication of its kind in the Mekong Region, it brings together key data and information on the current status of, and changes in, land resources, their social distribution, and the conditions of governance that shape them. The report stresses the need for urgent action towards transformational change. It was co-produced by the Centre for Development and Environment (CDE) of the University of Bern and the Mekong Region Land Governance Project (MRLG). Funding was provided by Switzerland, Germany, and Luxembourg. The Mekong region €“ Cambodia, Lao PDR, Myanmar, Thailand, and Vietnam €“ is in the midst of profound social and environmental change. Despite rapid urbanization, the region remains predominantly rural. More than 60 per cent of its population live in rural areas, and the vast majority of these people are engaged in agriculture. Due to rapid growth of its agricultural sector, the Mekong region has become a global centre of production and trade for commodities such as rubber, rice, cassava, wood, sugar cane, and palm oil. Between 1996 and 2015, overall agricultural land in the Mekong region grew by 20 per cent, or around 9 million hectares. Most of this expansion has occurred at the expense of the region’s natural capital €“ especially forests and other vegetation.
https://www.florida-demographics.com/terms_and_conditionshttps://www.florida-demographics.com/terms_and_conditions
A dataset listing Florida cities by population for 2024.
This site provides access to download an ArcGIS geodatabase or shapefiles for the 2017 Texas Address Database, compiled by the Center for Water and the Environment (CWE) at the University of Texas at Austin, with guidance and funding from the Texas Division of Emergency Management (TDEM). These addresses are used by TDEM to help anticipate potential impacts of serious weather and flooding events statewide. This is part of the Texas Water Model (TWM), a project to adapt the NOAA National Water Model [1] for use in Texas public safety. This database was compiled over the period from June 2016 to December 2017. A number of gaps remain (towns and cities missing address points), see Address Database Gaps spreadsheet below [4]. Additional datasets include administrative boundaries for Texas counties (including Federal and State disaster-declarations), Councils of Government, and Texas Dept of Public Safety Regions. An Esri ArcGIS Story Map [5] web app provides an interactive map-based portal to explore and access these data layers for download.
The address points in this database include their "height above nearest drainage" (HAND) as attributes in meters and feet. HAND is an elevation model developed through processing by the TauDEM method [2], built on USGS National Elevation Data (NED) with 10m horizontal resolution. The HAND elevation data and 10m NED for the continental United States are available for download from the Texas Advanced Computational Center (TACC) [3].
The complete statewide dataset contains about 9.28 million address points representing a population of about 28 million. The total file size is about 5GB in shapefile format. For better download performance, the shapefile version of this data is divided into 5 regions, based on groupings of major watersheds identified by their hydrologic unit codes (HUC). These are zipped by region, with no zipfile greater than 120mb: - North Tx: HUC1108-1114 (0.52 million address points) - DFW-East Tx: HUC1201-1203 (3.06 million address points) - Houston-SE Tx: HUC1204 (1.84 million address points) - Central Tx: HUC1205-1210 (2.96 million address points) - Rio Grande-SW Tx: HUC2111-1309 (2.96 million address points)
Additional state and county boundaries are included (Louisiana, Mississippi, Arkansas), as well as disaster-declaration status.
Compilation notes: The Texas Commission for State Emergency Communications (CSEC) provided the first 3 million address points received, in a single batch representing 213 of Texas' 254 counties. The remaining 41 counties were primarily urban areas comprising about 6.28 million addresses (totaling about 9.28 million addresses statewide). We reached the GIS data providers for these areas (see Contributors list below) through these emergency communications networks: Texas 9-1-1 Alliance, the Texas Emergency GIS Response Team (EGRT), and the Texas GIS 9-1-1 User Group. The address data was typically organized in groupings of counties called Councils of Governments (COG) or Regional Planning Commissions (RPC) or Development Councils (DC). Every county in Texas belongs to a COG, RPC or DC. We reconciled all counties' addresses to a common, very simple schema, and merged into a single geodatabase.
November 2023 updates: In 2019, TNRIS took over maintenance of the Texas Address Database, which is now a StratMap program updated annually [6]. In 2023, TNRIS also changed its name to the Texas Geographic Information Office (TxGIO). The datasets available for download below are not being updated, but are current as of the time of Hurricane Harvey.
References: [1] NOAA National Water Model [https://water.noaa.gov/map] [2] TauDEM Downloads [https://hydrology.usu.edu/taudem/taudem5/downloads.html] [3] NFIE Continental Flood Inundation Mapping - Data Repository [https://web.corral.tacc.utexas.edu/nfiedata/] [4] Address Database Gaps, Dec 2017 (download spreadsheet below) [5] Texas Address and Base Layers Story Map [https://www.hydroshare.org/resource/6d5c7dbe0762413fbe6d7a39e4ba1986/] [6] TNRIS/TxGIO StratMap Address Points data downloads [https://tnris.org/stratmap/address-points/]
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
Estimated number of persons by quarter of a year and by year, Canada, provinces and territories.
The Community Resilience Estimates (CRE) program provides an easily understood metric for how socially vulnerable every neighborhood in the United States is to the impacts of disasters.This ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census, CRE, and ACS when using this data.Overview:Community resilience is the capacity of individuals and households within a community to prepare, absorb, respond, and recover from a disaster. Local planners, policy makers, public health officials, emergency managers, and community stakeholders need a variety of estimates to help assess the potential resiliency and vulnerabilities of communities and their constituent populations to help prepare and plan mitigation, recovery, and response strategies. Community Resilience Estimates (CRE) focuses on developing a tool to identify socio-economic vulnerabilities within populations. The 2022 Community Resilience Estimates (CRE) are produced using information on individuals and households from the 2022 American Community Survey (ACS) and the Census Bureau’s Population Estimates Program (PEP). The CRE uses small area modeling techniques that can be used for a broad range of disaster related events (hurricanes, tornadoes, floods, economic shocks, etc.) to identify population concentrations likely to be relatively more impacted by and have greater difficulties overcoming disasters. The end result is a data product which measures vulnerability more accurately and timely. Data:The ACS is a nationally representative survey with data on the characteristics of the U.S. population. The sample is selected from all counties and county-equivalents and has a sample size of about 3.5 million housing units each year. It is the premier source for timely and detailed population and housing information about our nation and its communities. We also use auxiliary data from the PEP, the Census Bureau’s program that produces and publishes estimates of the population living at a given time within a geographic entity in the U.S. and Puerto Rico. We use population data from the PEP by age group, race and ethnicity, and sex. Since the PEP does not go down to the census tract level, the CRE uses the Public Law 94-171 summary files (PL94) and Demographic Housing Characteristics File (DHC) tables from the 2020 Decennial Census to help produce the population base estimates. Once the weighted estimates are tabulated, small area modeling techniques are used to create the estimates for the CRE. Components of Social Vulnerability (SV): Resilience to a disaster is partly determined by the components of social vulnerability exhibited within a community’s population. To measure these components and construct the community resilience estimates, we designed population estimates based on individual- and household-level components of social vulnerability. These components are binary indicators or variables that add up to a maximum of 10 possible components using data from the ACS. The specific ACS-defined measures we use are as follows: Components of Social Vulnerability (SV) for Households (HH) and Individuals (I):SV 1: Income-to-Poverty Ratio (IPR) < 130 percent (HH). SV 2: Single or zero caregiver household - only one or no individuals living in the household who are 18-64 (HH). SV 3: Unit-level crowding with >= 0.75 persons per room (HH). SV 4: Communication barrier defined as either: Limited English-speaking households1 (HH) orNo one in the household over the age of 16 with a high school diploma (HH). SV 5: No one in the household is employed full-time, year-round. The flag is not applied if all residents of the household are aged 65 years or older (HH). SV 6: Disability posing constraint to significant life activity. Persons who report having any one of the six disability types (I): hearing difficulty, vision difficulty, cognitive difficulty, ambulatory difficulty, self-care difficulty, and independent living difficulty. SV 7: No health insurance coverage (I). SV 8: Being aged 65 years or older (I). SV 9: No vehicle access (HH). SV 10: Households without broadband internet access (HH). Each individual is assigned a 0 or 1 for each of the components based upon their individual or household attributes listed above. It is important to note that SV 4 is not double flagged. An individual will be assigned a 1, if either of the characteristics is true for their household. For example, if a household is linguistically isolated and no one over the age of 16 has attained a high school diploma or more education, the household members are only flagged once. The result is an index that produces aggregate-level (tract, county, and state) small area estimates: the CRE. The CRE provide an estimate for the number of people with a specific number of social vulnerabilities. In its current data file layout form, the estimates are categorized into three groups: zero , one-two, or three plus social vulnerability components. Differences with CRE 2021:The number of census tracts have increased from 84,414 in CRE 2021 to 84,415 in CRE 2022. This is due to the boundary changes in Connecticut implemented in 2022 census data products. To accommodate the boundary change, Connecticut also now has nine planning regions instead of eight counties in CRE 2022.To avoid confusion, the modeled rates are now set to equal zero in CRE 2022 for geographic areas with zero population in universe. To improve the population base estimates, CRE 2022 uses more detailed decennial estimates from the 2020 DHC in addition to PL94, whereas CRE 2021 just used PL94 due to availability at the time. See “2022 Community Resilience Estimates: Detailed Technical Documentation” for more information. Data Processing Notes:Boundaries come from the Cartographic Boundaries via US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates, and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). This dataset does not contain values for Puerto Rico or Island Areas at any level of geography.Further Information:Community Resilience Estimates Program Website https://www.census.gov/programs-surveys/community-resilience-estimates.htmlCommunity Resilience Estimates Technical Documentation https://census.gov/programs-surveys/community-resilience-estimates/technical-documentation.htmlFor Data Questionssehsd.cre@census.gov
Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve. The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj. The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 . The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 . The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed. COVID-19 cases and associated deaths that have been reported among Connecticut residents, broken down by race and ethnicity. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Deaths reported to the either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the COVID-19 update. The following data show the number of COVID-19 cases and associated deaths per 100,000 population by race and ethnicity. Crude rates represent the total cases or deaths per 100,000 people. Age-adjusted rates consider the age of the person at diagnosis or death when estimating the rate and use a standardized population to provide a fair comparison between population groups with different age distributions. Age-adjustment is important in Connecticut as the median age of among the non-Hispanic white population is 47 years, whereas it is 34 years among non-Hispanic blacks, and 29 years among Hispanics. Because most non-Hispanic white residents who died were over 75 years of age, the age-adjusted rates are lower than the unadjusted rates. In contrast, Hispanic residents who died tend to be younger than 75 years of age which results in higher age-adjusted rates. The population data used to calculate rates is based on the CT DPH population statistics for 2019, which is available online here: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Population/Population-Statistics. Prior to 5/10/2021, the population estimates from 2018 were used. Rates are standardized to the 2000 US Millions Standard population (data available here: https://seer.cancer.gov/stdpopulations/). Standardization was done using 19 age groups (0, 1-4, 5-9, 10-14, ..., 80-84, 85 years and older). More information about direct standardization for age adjustment is available here: https://www.cdc.gov/nchs/data/statnt/statnt06rv.pdf Categories are mutually exclusive. The category “multiracial” includes people who answered ‘yes’ to more than one race category. Counts may not add up to total case counts as data on race and ethnicity may be missing. Age adjusted rates calculated only for groups with more than 20 deaths. Abbreviation: NH=Non-Hispanic. Data on Connecticut deaths were obtained from the Connecticut Deaths Registry maintained by the DPH Office of Vital Records. Cause of death was determined by a death certifier (e.g., physician, APRN, medical
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the California population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of California across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2024, the population of California was 39.43 million, a 0.59% increase year-by-year from 2023. Previously, in 2023, California population was 39.2 million, an increase of 0.14% compared to a population of 39.14 million in 2022. Over the last 20 plus years, between 2000 and 2024, population of California increased by 5.44 million. In this period, the peak population was 39.52 million in the year 2020. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for California Population by Year. You can refer the same here
The number of Twitter users in the United States was forecast to continuously increase between 2024 and 2028 by in total 4.3 million users (+5.32 percent). After the ninth consecutive increasing year, the Twitter user base is estimated to reach 85.08 million users and therefore a new peak in 2028. Notably, the number of Twitter users of was continuously increasing over the past years.User figures, shown here regarding the platform twitter, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of Twitter users in countries like Canada and Mexico.
The number of Reddit users in the United States was forecast to continuously increase between 2024 and 2028 by in total 10.3 million users (+5.21 percent). After the ninth consecutive increasing year, the Reddit user base is estimated to reach 208.12 million users and therefore a new peak in 2028. Notably, the number of Reddit users of was continuously increasing over the past years.User figures, shown here with regards to the platform reddit, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period and count multiple accounts by persons only once. Reddit users encompass both users that are logged in and those that are not.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of Reddit users in countries like Mexico and Canada.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The TIGER/Line Files are shapefiles and related database files (.dbf) that are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line File is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Block Groups (BGs) are defined before tabulation block delineation and numbering, but are clusters of blocks within the same census tract that have the same first digit of their 4-digit census block number from the same decennial census. For example, Census 2000 tabulation blocks 3001, 3002, 3003,.., 3999 within Census 2000 tract 1210.02 are also within BG 3 within that census tract. Census 2000 BGs generally contained between 600 and 3,000 people, with an optimum size of 1,500 people. Most BGs were delineated by local participants in the Census Bureau's Participant Statistical Areas Program (PSAP). The Census Bureau delineated BGs only where the PSAP participant declined to delineate BGs or where the Census Bureau could not identify any local PSAP participant. A BG usually covers a contiguous area. Each census tract contains at least one BG, and BGs are uniquely numbered within census tract. Within the standard census geographic hierarchy, BGs never cross county or census tract boundaries, but may cross the boundaries of other geographic entities like county subdivisions, places, urban areas, voting districts, congressional districts, and American Indian / Alaska Native / Native Hawaiian areas. BGs have a valid code range of 0 through 9. BGs coded 0 were intended to only include water area, no land area, and they are generally in territorial seas, coastal water, and Great Lakes water areas. For Census 2000, rather than extending a census tract boundary into the Great Lakes or out to the U.S. nautical three-mile limit, the Census Bureau delineated some census tract boundaries along the shoreline or just offshore. The Census Bureau assigned a default census tract number of 0 and BG of 0 to these offshore, water-only areas not included in regularly numbered census tract areas.
This table contains data on race, age, sex, and marital status from the American Community Survey 2006-2010 database for block groups. The American Community Survey (ACS) is a household survey conducted by the U.S. Census Bureau that currently has an annual sample size of about 3.5 million addresses. ACS estimates provides communities with the current information they need to plan investments and services. Information from the survey generates estimates that help determine how more than $400 billion in federal and state funds are distributed annually. Each year the survey produces data that cover the periods of 1-year, 3-year, and 5-year estimates for geographic areas in the United States and Puerto Rico, ranging from neighborhoods to Congressional districts to the entire nation. This table also has a companion table (Same table name with MOE Suffix) with the margin of error (MOE) values for each estimated element. MOE is expressed as a measure value for each estimated element. So a value of 25 and an MOE of 5 means 25 +/- 5 (or statistical certainty between 20 and 30). There are also special cases of MOE. An MOE of -1 means the associated estimates do not have a measured error. An MOE of 0 means that error calculation is not appropriate for the associated value. An MOE of 109 is set whenever an estimate value is 0. The MOEs of aggregated elements and percentages must be calculated. This process means using standard error calculations as described in "American Community Survey Multiyear Accuracy of the Data (3-year 2008-2010 and 5-year 2006-2010)". Also, following Census guidelines, aggregated MOEs do not use more than 1 0-element MOE (109) to prevent over estimation of the error. Due to the complexity of the calculations, some percentage MOEs cannot be calculated (these are set to null in the summary-level MOE tables).
The name for table 'ACS10POPBGMOE' was added as a prefix to all field names imported from that table. Be sure to turn off 'Show Field Aliases' to see complete field names in the Attribute Table of this feature layer. This can be done in the 'Table Options' drop-down menu in the Attribute Table or with key sequence '[CTRL]+[SHIFT]+N'. Due to database restrictions, the prefix may have been abbreviated if the field name exceded the maximum allowed characters.
Sweetpotato (Ipomoea batatas) plays a critical role in food security and is the most important root crop worldwide following potatoes and cassava. In the United States (US), it is valued at over $700 million USD. There are two sweetpotato germplasm collections (Plant Genetic Resources Conservation Unit and US Vegetable Laboratory) maintained by the USDA, ARS for sweetpotato crop improvement. To date, no genome-wide assessment of genetic diversity within these collections has been reported in the published literature. In our study, population structure and genetic diversity of 417 USDA sweetpotato accessions originating from 8 broad geographical regions (Africa, Australia, Caribbean, Central America, Far East, North America, Pacific Islands, and South America) were determined using single nucleotide polymorphisms (SNPs) identified with a genotyping-by-sequencing (GBS) protocol, GBSpoly, optimized for highly heterozygous and polyploid species. Population structure using Bayesian clustering analyses (STRUCTURE) with 32,784 segregating SNPs grouped the accessions into four genetic groups and indicated a high degree of mixed ancestry. A neighbor-joining cladogram and principal components analysis based on a pairwise genetic distance matrix of the accessions supported the population structure analysis. Pairwise FST values between broad geographical regions based on the origin of accessions ranged from 0.017 (Far East – Pacific Islands) to 0.110 (Australia – South America) and supported the clustering of accessions based on genetic distance. The markers developed for use with this collection of accessions provide an important genomic resource for the sweetpotato community, and contribute to our understanding of the genetic diversity present within the US sweetpotato collection and the species. Resources in this dataset:Resource Title: Supplementary Material. File Name: Web Page, url: https://www.frontiersin.org/articles/10.3389/fpls.2018.01166/full#supplementary-material FIGURE S1 | QC Boxplot showing distribution of quality scores of raw reads in a multiplexed library containing 96 Ipomoea batatas accessions. Buffer sequence lie within the first 8 base calls, while variable barcodes (6–9 bp) lie at position 14–17 bp. FIGURE S2 | Proportion raw reads matching both reference subgenomes (6x genotypes) and those specific to each of the subgenomes (4x and 2x genotypes derived Ipomoea trifida and I. triloba, respectively). FIGURE S3 | Boxplot shows relatively uniform read depth across individual samples and genomic loci after de-multiplexing pool samples. Only genotypes with 6 alleles/dose are shown here. FIGURE S4 | Bar plots of Bayesian assignment probabilities for each Ipomoea batatas accession analyzed with segregating 32,784 SNPs using the program STRUCTURE for K = 4. The x-axis indicates accession and the y-axis indicates the assignment probability of that accession to each of the four clusters. Each vertical line represents an individual’s probability of belonging to one of K clusters (represented by different colors) or a combination of if ancestry is mixed. The asterisk (∗) indicates the cultivar Porto Rico, which is a foundational line of the sweetpotato industry in the US. The plus sign (+) indicates that this accession was used as parental material in the mass selection populations developed by Jones et al. (1991). The USDA, ARS, US Vegetable Laboratory (USVL) W-lines and USVL-lines originate from the mass selection populations. Information for all accessions is found in Supplementary Table S1. FIGURE S5 | Linkage disequilibrium estimates (r2) of all genome-wide marker pairs plotted against corresponding interval between marker pairs. Curve (blue line) based on game smoothing method function shows distribution of all data points. Top and middle plot based on genotype data with allelic dosage information, while bottom plot is based on diploidized genotypes. TABLE S1 | Information of Ipomoea batatas accessions analyzed by GBSpoly. TABLE S2 | Pairwise genetic distance matrix between Ipomoea batatas accessions. TABLE S3 | Information for individual SNPs used for data analyses. DATASET S1 | Structure data file for Ipomoea batatas accessions.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the United States population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for United States. The dataset can be utilized to understand the population distribution of United States by age. For example, using this dataset, we can identify the largest age group in United States.
Key observations
The largest age group in United States was for the group of age 30 to 34 years years with a population of 23.06 million (6.94%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in United States was the 80 to 84 years years with a population of 6.34 million (1.91%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for United States Population by Age. You can refer the same here