100+ datasets found
  1. g

    Coronavirus (Covid-19) Data in the United States

    • github.com
    • openicpsr.org
    • +3more
    csv
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New York Times, Coronavirus (Covid-19) Data in the United States [Dataset]. https://github.com/nytimes/covid-19-data
    Explore at:
    csvAvailable download formats
    Dataset provided by
    New York Times
    License

    https://github.com/nytimes/covid-19-data/blob/master/LICENSEhttps://github.com/nytimes/covid-19-data/blob/master/LICENSE

    Description

    The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.

    Since the first reported coronavirus case in Washington State on Jan. 21, 2020, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.

    We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.

    The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.

  2. Social media users in the United States 2020-2029

    • statista.com
    Updated Dec 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Social media users in the United States 2020-2029 [Dataset]. https://www.statista.com/statistics/278409/number-of-social-network-users-in-the-united-states/
    Explore at:
    Dataset updated
    Dec 12, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    The number of social media users in the United States was forecast to continuously increase between 2024 and 2029 by in total 26 million users (+8.55 percent). After the ninth consecutive increasing year, the social media user base is estimated to reach 330.07 million users and therefore a new peak in 2029. Notably, the number of social media users of was continuously increasing over the past years.The shown figures regarding social media users have been derived from survey data that has been processed to estimate missing demographics.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).

  3. USA 2020 Census Population Characteristics - Place Geographies

    • hub.arcgis.com
    • data-isdh.opendata.arcgis.com
    Updated Jun 1, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2023). USA 2020 Census Population Characteristics - Place Geographies [Dataset]. https://hub.arcgis.com/maps/9c84c24c55a04c3b8317f37e536e6a8a
    Explore at:
    Dataset updated
    Jun 1, 2023
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer shows total population counts by sex, age, and race groups data from the 2020 Census Demographic and Housing Characteristics. This is shown by Nation, Consolidated City, Census Designated Place, Incorporated Place boundaries. Each geography layer contains a common set of Census counts based on available attributes from the U.S. Census Bureau. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis.   To see the full list of attributes available in this service, go to the "Data" tab above, and then choose "Fields" at the top right. Each attribute contains definitions, additional details, and the formula for calculated fields in the field description.Vintage of boundaries and attributes: 2020 Demographic and Housing Characteristics Table(s): P1, H1, H3, P2, P3, P5, P12, P13, P17, PCT12 (Not all lines of these DHC tables are available in this feature layer.)Data downloaded from: U.S. Census Bureau’s data.census.gov siteDate the Data was Downloaded: May 25, 2023Geography Levels included: Nation, Consolidated City, Census Designated Place, Incorporated PlaceNational Figures: included in Nation layer The United States Census Bureau Demographic and Housing Characteristics: 2020 Census Results 2020 Census Data Quality Geography & 2020 Census Technical Documentation Data Table Guide: includes the final list of tables, lowest level of geography by table and table shells for the Demographic Profile and Demographic and Housing Characteristics.News & Updates This layer is ready to be used in ArcGIS Pro, ArcGIS Online and its configurable apps, Story Maps, dashboards, Notebooks, Python, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the U.S. Census Bureau when using this data. Data Processing Notes: These 2020 Census boundaries come from the US Census TIGER geodatabases. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For Census tracts and block groups, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract and block group boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2020 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are unchanged and available as attributes within the data table (units are square meters).  The layer contains all US states, Washington D.C., and Puerto Rico. Census tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99). Block groups that fall within the same criteria (Block Group denoted as 0 with no area land) have also been removed.Percentages and derived counts, are calculated values (that can be identified by the "_calc_" stub in the field name). Field alias names were created based on the Table Shells file available from the Data Table Guide for the Demographic Profile and Demographic and Housing Characteristics. Not all lines of all tables listed above are included in this layer. Duplicative counts were dropped. For example, P0030001 was dropped, as it is duplicative of P0010001.To protect the privacy and confidentiality of respondents, their data has been protected using differential privacy techniques by the U.S. Census Bureau.

  4. 2020 Cartographic Boundary File (SHP), 2020 Census Voting District (VTD) for...

    • catalog.data.gov
    • s.cnmilf.com
    Updated Dec 14, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Commerce, U.S. Census Bureau, Geography Division, Customer Engagement Branch (Point of Contact) (2023). 2020 Cartographic Boundary File (SHP), 2020 Census Voting District (VTD) for United States, 1:500,000 [Dataset]. https://catalog.data.gov/dataset/2020-cartographic-boundary-file-shp-2020-census-voting-district-vtd-for-united-states-1-500000
    Explore at:
    Dataset updated
    Dec 14, 2023
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    United States Department of Commercehttp://commerce.gov/
    Area covered
    United States
    Description

    The 2020 cartographic boundary shapefiles are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. Voting district is the generic name for geographic entities such as precincts, wards, and election districts established by State governments for the purpose of conducting elections. States participating in the 2020 Census Redistricting Data Program as part of Public Law 94-171 (1975) provided the Census Bureau with boundaries, codes, and names for their VTDs. Each VTD is identified by a 1- to 6-character alphanumeric census code that is unique within county.

  5. Share of electoral and popular votes by each United States president...

    • statista.com
    Updated Jul 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Share of electoral and popular votes by each United States president 1789-2020 [Dataset]. https://www.statista.com/statistics/1034688/share-electoral-popular-votes-each-president-since-1789/
    Explore at:
    Dataset updated
    Jul 4, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    Every four years in the United States, the electoral college system is used to determine the winner of the presidential election. In this system, each state has a fixed number of electors based on their population size, and (generally speaking) these electors then vote for their candidate with the most popular votes within their state or district. Since 1964, there have been 538 electoral votes available for presidential candidates, who need a minimum of 270 votes to win the election. Because of this system, candidates do not have to win over fifty percent of the popular votes across the country, but just win in enough states to receive a total of 270 electoral college votes. The use of this system is a source of debate in the U.S.; those in favor claim that it prevents candidates from focusing on the interests of urban populations, and must also appeal to smaller and less-populous states, and they say that this system preserves federalism and the two-party system. However, critics argue that this system does not represent the will of the majority of American voters, and that it encourages candidates to disproportionally focus on winning in swing states, where the outcome is more difficult to predict. Popular results From 1789 until 1820, there was no popular vote, and the President was then chosen only by the electors from each state. George Washington was unanimously voted for by the electorate, receiving one hundred percent of the votes in both elections. From 1824, the popular vote has been conducted among American citizens, to help electors decide who to vote for (although the 1824 winner was chosen by the House of Representatives, as no candidate received over fifty percent of electoral votes). Since 1924, the difference in the share of both votes has varied, with several candidates receiving over ninety percent of the electoral votes while only receiving between fifty and sixty percent of the popular vote. The highest difference was for Ronald Reagan in 1980, where he received just 50.4 percent of the popular vote, but 90.9 percent of the electoral votes. Unpopular winners Since 1824, there have been 49 elections, and in 18 of these the winner did not receive over fifty percent of the popular vote. In the majority of these cases, the winner did receive a plurality of the votes, however there have been five instances where the winner of the electoral college vote lost the popular vote to another candidate. The most recent examples of this were in 2000, when George W. Bush received roughly half a million fewer votes than Al Gore, and in 2016, where Hillary Clinton won approximately three million more votes than Donald Trump.

  6. d

    U.S. State and Territorial Orders Closing and Reopening Bars Issued from...

    • catalog.data.gov
    • data.virginia.gov
    • +2more
    Updated Jan 31, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2024). U.S. State and Territorial Orders Closing and Reopening Bars Issued from March 11, 2020 through May 31, 2021 by County by Day [Dataset]. https://catalog.data.gov/dataset/u-s-state-and-territorial-orders-closing-and-reopening-bars-issued-from-march-11-2020-thro-e2512
    Explore at:
    Dataset updated
    Jan 31, 2024
    Dataset provided by
    Centers for Disease Control and Prevention
    Area covered
    United States
    Description

    State and territorial executive orders, administrative orders, resolutions, and proclamations are collected from government websites and cataloged and coded using Microsoft Excel by one coder with one or more additional coders conducting quality assurance. Data were collected to determine when bars in states and territories were subject to closing and reopening requirements through executive orders, administrative orders, resolutions, and proclamations for COVID-19. Data can be used to determine when bars in states and territories were subject to closing and reopening requirements through executive orders, administrative orders, resolutions, and proclamations for COVID-19. Data consists exclusively of state and territorial orders, many of which apply to specific counties within their respective state or territory; therefore, data is broken down to the county level. These data are derived from publicly available state and territorial executive orders, administrative orders, resolutions, and proclamations (“orders”) for COVID-19 that expressly close or reopen bars found by the CDC, COVID-19 Community Intervention & Critical Populations Task Force, Monitoring & Evaluation Team, Mitigation Policy Analysis Unit, and the CDC, Center for State, Tribal, Local, and Territorial Support, Public Health Law Program from March 11, 2020 through May 31, 2021. These data will be updated as new orders are collected. Any orders not available through publicly accessible websites are not included in these data. Only official copies of the documents or, where official copies were unavailable, official press releases from government websites describing requirements were coded; news media reports on restrictions were excluded. Recommendations not included in an order are not included in these data. Effective and expiration dates were coded using only the date provided; no distinction was made based on the specific time of the day the order became effective or expired. These data do not necessarily represent an official position of the Centers for Disease Control and Prevention.

  7. 2020 Cartographic Boundary File (SHP), American Indian Tribal Subdivision...

    • catalog.data.gov
    • s.cnmilf.com
    Updated Dec 14, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Commerce, U.S. Census Bureau, Geography Division, Customer Engagement Branch (Point of Contact) (2023). 2020 Cartographic Boundary File (SHP), American Indian Tribal Subdivision (AITS) for United States, 1:500,000 [Dataset]. https://catalog.data.gov/dataset/2020-cartographic-boundary-file-shp-american-indian-tribal-subdivision-aits-for-united-states-1
    Explore at:
    Dataset updated
    Dec 14, 2023
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Area covered
    United States
    Description

    The 2020 cartographic boundary shapefiles are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. American Indian tribal subdivisions are administrative subdivisions of federally recognized American Indian reservations/off-reservation trust lands or Oklahoma tribal statistical areas (OTSAs). These entities are internal units of self-government and/or administration that serve social, cultural, and/or economic purposes for the American Indian tribe or tribes on the reservations/off-reservation trust lands or OTSAs. The Census Bureau obtains the boundary and attribute information for tribal subdivisions on federally recognized American Indian reservations and off-reservation trust lands from federally recognized tribal governments through the Census Bureau's Boundary and Annexation Survey (BAS). For the 2020 Census, the boundaries for tribal subdivisions on OTSAs were also obtained from federally recognized tribal governments through the Participant Statistical Areas Program (PSAP). Note that tribal subdivisions do not exist on all reservations/off-reservation trust lands or OTSAs, rather only where they were submitted to the Census Bureau by the federally recognized tribal government for that area. The generalized American Indian tribal subdivision boundaries in this file are based on those as of January 1, 2020, as reported by the federally recognized tribal governments through the Census Bureau's Boundary and Annexation Survey (BAS). The generalized boundaries for tribal subdivisions on OTSAs in this file are based on those reported as of January 1, 2020 through PSAP.

  8. Population of the United States 1610-2020

    • statista.com
    Updated Aug 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Population of the United States 1610-2020 [Dataset]. https://www.statista.com/statistics/1067138/population-united-states-historical/
    Explore at:
    Dataset updated
    Aug 12, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In the past four centuries, the population of the United States has grown from a recorded 350 people around the Jamestown colony of Virginia in 1610, to an estimated 331 million people in 2020. The pre-colonization populations of the indigenous peoples of the Americas have proven difficult for historians to estimate, as their numbers decreased rapidly following the introduction of European diseases (namely smallpox, plague and influenza). Native Americans were also omitted from most censuses conducted before the twentieth century, therefore the actual population of what we now know as the United States would have been much higher than the official census data from before 1800, but it is unclear by how much. Population growth in the colonies throughout the eighteenth century has primarily been attributed to migration from the British Isles and the Transatlantic slave trade; however it is also difficult to assert the ethnic-makeup of the population in these years as accurate migration records were not kept until after the 1820s, at which point the importation of slaves had also been illegalized. Nineteenth century In the year 1800, it is estimated that the population across the present-day United States was around six million people, with the population in the 16 admitted states numbering at 5.3 million. Migration to the United States began to happen on a large scale in the mid-nineteenth century, with the first major waves coming from Ireland, Britain and Germany. In some aspects, this wave of mass migration balanced out the demographic impacts of the American Civil War, which was the deadliest war in U.S. history with approximately 620 thousand fatalities between 1861 and 1865. The civil war also resulted in the emancipation of around four million slaves across the south; many of whose ancestors would take part in the Great Northern Migration in the early 1900s, which saw around six million black Americans migrate away from the south in one of the largest demographic shifts in U.S. history. By the end of the nineteenth century, improvements in transport technology and increasing economic opportunities saw migration to the United States increase further, particularly from southern and Eastern Europe, and in the first decade of the 1900s the number of migrants to the U.S. exceeded one million people in some years. Twentieth and twenty-first century The U.S. population has grown steadily throughout the past 120 years, reaching one hundred million in the 1910s, two hundred million in the 1960s, and three hundred million in 2007. In the past century, the U.S. established itself as a global superpower, with the world's largest economy (by nominal GDP) and most powerful military. Involvement in foreign wars has resulted in over 620,000 further U.S. fatalities since the Civil War, and migration fell drastically during the World Wars and Great Depression; however the population continuously grew in these years as the total fertility rate remained above two births per woman, and life expectancy increased (except during the Spanish Flu pandemic of 1918).

    Since the Second World War, Latin America has replaced Europe as the most common point of origin for migrants, with Hispanic populations growing rapidly across the south and border states. Because of this, the proportion of non-Hispanic whites, which has been the most dominant ethnicity in the U.S. since records began, has dropped more rapidly in recent decades. Ethnic minorities also have a much higher birth rate than non-Hispanic whites, further contributing to this decline, and the share of non-Hispanic whites is expected to fall below fifty percent of the U.S. population by the mid-2000s. In 2020, the United States has the third-largest population in the world (after China and India), and the population is expected to reach four hundred million in the 2050s.

  9. Internet users in the United States 2020-2029

    • statista.com
    Updated Dec 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Internet users in the United States 2020-2029 [Dataset]. https://www.statista.com/statistics/325645/usa-number-of-internet-users/
    Explore at:
    Dataset updated
    Dec 12, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    The number of internet users in the United States was forecast to continuously increase between 2024 and 2029 by in total 13.5 million users (+4.16 percent). After the ninth consecutive increasing year, the number of users is estimated to reach 337.67 million users and therefore a new peak in 2029. Notably, the number of internet users of was continuously increasing over the past years.Depicted is the estimated number of individuals in the country or region at hand, that use the internet. As the datasource clarifies, connection quality and usage frequency are distinct aspects, not taken into account here.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).

  10. Coronavirus (Covid-19) Data of United States (USA)

    • kaggle.com
    zip
    Updated Nov 5, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Joel Hanson (2020). Coronavirus (Covid-19) Data of United States (USA) [Dataset]. https://www.kaggle.com/joelhanson/coronavirus-covid19-data-in-the-united-states
    Explore at:
    zip(7506633 bytes)Available download formats
    Dataset updated
    Nov 5, 2020
    Authors
    Joel Hanson
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    Coronavirus (COVID-19) Data in the United States

    [ U.S. State-Level Data (Raw CSV) | U.S. County-Level Data (Raw CSV) ]

    The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.

    Since late January, The Times has tracked cases of coronavirus in real-time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.

    We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists, and government officials who would like access to the data to better understand the outbreak.

    The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.

    United States Data

    Data on cumulative coronavirus cases and deaths can be found in two files for states and counties.

    Each row of data reports cumulative counts based on our best reporting up to the moment we publish an update. We do our best to revise earlier entries in the data when we receive new information.

    Both files contain FIPS codes, a standard geographic identifier, to make it easier for an analyst to combine this data with other data sets like a map file or population data.

    Download all the data or clone this repository by clicking the green "Clone or download" button above.

    State-Level Data

    State-level data can be found in the states.csv file. (Raw CSV file here.)

    date,state,fips,cases,deaths
    2020-01-21,Washington,53,1,0
    ...
    

    County-Level Data

    County-level data can be found in the counties.csv file. (Raw CSV file here.)

    date,county,state,fips,cases,deaths
    2020-01-21,Snohomish,Washington,53061,1,0
    ...
    

    In some cases, the geographies where cases are reported do not map to standard county boundaries. See the list of geographic exceptions for more detail on these.

    Methodology and Definitions

    The data is the product of dozens of journalists working across several time zones to monitor news conferences, analyze data releases and seek clarification from public officials on how they categorize cases.

    It is also a response to a fragmented American public health system in which overwhelmed public servants at the state, county and territorial levels have sometimes struggled to report information accurately, consistently and speedily. On several occasions, officials have corrected information hours or days after first reporting it. At times, cases have disappeared from a local government database, or officials have moved a patient first identified in one state or county to another, often with no explanation. In those instances, which have become more common as the number of cases has grown, our team has made every effort to update the data to reflect the most current, accurate information while ensuring that every known case is counted.

    When the information is available, we count patients where they are being treated, not necessarily where they live.

    In most instances, the process of recording cases has been straightforward. But because of the patchwork of reporting methods for this data across more than 50 state and territorial governments and hundreds of local health departments, our journalists sometimes had to make difficult interpretations about how to count and record cases.

    For those reasons, our data will in some cases not exactly match the information reported by states and counties. Those differences include these cases: When the federal government arranged flights to the United States for Americans exposed to the coronavirus in China and Japan, our team recorded those cases in the states where the patients subsequently were treated, even though local health departments generally did not. When a resident of Florida died in Los Angeles, we recorded her death as having occurred in California rather than Florida, though officials in Florida counted her case in their records. And when officials in some states reported new cases without immediately identifying where the patients were being treated, we attempted to add information about their locations later, once it became available.

    • Confirmed Cases

    Confirmed cases are patients who test positive for the coronavirus. We consider a case confirmed when it is reported by a federal, state, territorial or local government agency.

    • Dates

    For each date, we show the cumulative number of confirmed cases and deaths as reported that day in that county or state. All cases and deaths are counted on the date they are first announced.

    • Counties

    In some instances, we report data from multiple counties or other non-county geographies as a single county. For instance, we report a single value for New York City, comprising the cases for New York, Kings, Queens, Bronx and Richmond Counties. In these instances, the FIPS code field will be empty. (We may assign FIPS codes to these geographies in the future.) See the list of geographic exceptions.

    Cities like St. Louis and Baltimore that are administered separately from an adjacent county of the same name are counted separately.

    • “Unknown” Counties

    Many state health departments choose to report cases separately when the patient’s county of residence is unknown or pending determination. In these instances, we record the county name as “Unknown.” As more information about these cases becomes available, the cumulative number of cases in “Unknown” counties may fluctuate.

    Sometimes, cases are first reported in one county and then moved to another county. As a result, the cumulative number of cases may change for a given county.

    Geographic Exceptions

    • New York City

    All cases for the five boroughs of New York City (New York, Kings, Queens, Bronx and Richmond counties) are assigned to a single area called New York City.

    • Kansas City, Mo.

    Four counties (Cass, Clay, Jackson, and Platte) overlap the municipality of Kansas City, Mo. The cases and deaths that we show for these four counties are only for the portions exclusive of Kansas City. Cases and deaths for Kansas City are reported as their line.

    • Alameda, Calif.

    Counts for Alameda County include cases and deaths from Berkeley and the Grand Princess cruise ship.

    • Chicago

    All cases and deaths for Chicago are reported as part of Cook County.

    License and Attribution

    In general, we are making this data publicly available for broad, noncommercial public use including by medical and public health researchers, policymakers, analysts and local news media.

    If you use this data, you must attribute it to “The New York Times” in any publication. If you would like a more expanded description of the data, you could say “Data from The New York Times, based on reports from state and local health agencies.”

    If you use it in an online presentation, we would appreciate it if you would link to our U.S. tracking page at https://www.nytimes.com/interactive/2020/us/coronavirus-us-cases.html.

    If you use this data, please let us know at covid-data@nytimes.com and indicate if you would be willing to talk to a reporter about your research.

    See our LICENSE for the full terms of use for this data.

    This license is co-extensive with the Creative Commons Attribution-NonCommercial 4.0 International license, and licensees should refer to that license (CC BY-NC) if they have questions about the scope of the license.

    Contact Us

    If you have questions about the data or licensing conditions, please contact us at:

    covid-data@nytimes.com

    Contributors

    Mitch Smith, Karen Yourish, Sarah Almukhtar, Keith Collins, Danielle Ivory, and Amy Harmon have been leading our U.S. data collection efforts.

    Data has also been compiled by Jordan Allen, Jeff Arnold, Aliza Aufrichtig, Mike Baker, Robin Berjon, Matthew Bloch, Nicholas Bogel-Burroughs, Maddie Burakoff, Christopher Calabrese, Andrew Chavez, Robert Chiarito, Carmen Cincotti, Alastair Coote, Matt Craig, John Eligon, Tiff Fehr, Andrew Fischer, Matt Furber, Rich Harris, Lauryn Higgins, Jake Holland, Will Houp, Jon Huang, Danya Issawi, Jacob LaGesse, Hugh Mandeville, Patricia Mazzei, Allison McCann, Jesse McKinley, Miles McKinley, Sarah Mervosh, Andrea Michelson, Blacki Migliozzi, Steven Moity, Richard A. Oppel Jr., Jugal K. Patel, Nina Pavlich, Azi Paybarah, Sean Plambeck, Carrie Price, Scott Reinhard, Thomas Rivas, Michael Robles, Alison Saldanha, Alex Schwartz, Libby Seline, Shelly Seroussi, Rachel Shorey, Anjali Singhvi, Charlie Smart, Ben Smithgall, Steven Speicher, Michael Strickland, Albert Sun, Thu Trinh, Tracey Tully, Maura Turcotte, Miles Watkins, Jeremy White, Josh Williams, and Jin Wu.

    Context

    There's a story behind every dataset and here's your opportunity to share yours.# Coronavirus (Covid-19) Data in the United States

    [ U.S. State-Level Data ([Raw

  11. USA Census Tract Boundaries

    • atlas.eia.gov
    • visionzero.geohub.lacity.org
    • +5more
    Updated May 9, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). USA Census Tract Boundaries [Dataset]. https://atlas.eia.gov/datasets/esri::usa-census-tract-boundaries-1/about
    Explore at:
    Dataset updated
    May 9, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer presents the 2020 U.S. Census Tract boundaries of the United States in the 50 states and the District of Columbia. This layer is updated annually. The geography is sourced from U.S. Census Bureau 2020 TIGER FGDB (National Sub-State) and edited using TIGER Hydrography to add a detailed coastline for cartographic purposes. Attribute fields include 2020 total population from the U.S. Census Public Law 94 data.This ready-to-use layer can be used in ArcGIS Pro and in ArcGIS Online and its configurable apps, dashboards, StoryMaps, custom apps, and mobile apps. The data can also be exported for offline workflows. Cite the 'U.S. Census Bureau' when using this data.

  12. d

    Johns Hopkins COVID-19 Case Tracker

    • data.world
    csv, zip
    Updated Mar 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Associated Press (2025). Johns Hopkins COVID-19 Case Tracker [Dataset]. https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Mar 25, 2025
    Authors
    The Associated Press
    Time period covered
    Jan 22, 2020 - Mar 9, 2023
    Area covered
    Description

    Updates

    • Notice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.

    • April 9, 2020

      • The population estimate data for New York County, NY has been updated to include all five New York City counties (Kings County, Queens County, Bronx County, Richmond County and New York County). This has been done to match the Johns Hopkins COVID-19 data, which aggregates counts for the five New York City counties to New York County.
    • April 20, 2020

      • Johns Hopkins death totals in the US now include confirmed and probable deaths in accordance with CDC guidelines as of April 14. One significant result of this change was an increase of more than 3,700 deaths in the New York City count. This change will likely result in increases for death counts elsewhere as well. The AP does not alter the Johns Hopkins source data, so probable deaths are included in this dataset as well.
    • April 29, 2020

      • The AP is now providing timeseries data for counts of COVID-19 cases and deaths. The raw counts are provided here unaltered, along with a population column with Census ACS-5 estimates and calculated daily case and death rates per 100,000 people. Please read the updated caveats section for more information.
    • September 1st, 2020

      • Johns Hopkins is now providing counts for the five New York City counties individually.
    • February 12, 2021

      • The Ohio Department of Health recently announced that as many as 4,000 COVID-19 deaths may have been underreported through the state’s reporting system, and that the "daily reported death counts will be high for a two to three-day period."
      • Because deaths data will be anomalous for consecutive days, we have chosen to freeze Ohio's rolling average for daily deaths at the last valid measure until Johns Hopkins is able to back-distribute the data. The raw daily death counts, as reported by Johns Hopkins and including the backlogged death data, will still be present in the new_deaths column.
    • February 16, 2021

      - Johns Hopkins has reconciled Ohio's historical deaths data with the state.

      Overview

    The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.

    The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.

    This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.

    The AP is updating this dataset hourly at 45 minutes past the hour.

    To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.

    Queries

    Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic

    Interactive

    The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.

    @(https://datawrapper.dwcdn.net/nRyaf/15/)

    Interactive Embed Code

    <iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>
    

    Caveats

    • This data represents the number of cases and deaths reported by each state and has been collected by Johns Hopkins from a number of sources cited on their website.
    • In some cases, deaths or cases of people who've crossed state lines -- either to receive treatment or because they became sick and couldn't return home while traveling -- are reported in a state they aren't currently in, because of state reporting rules.
    • In some states, there are a number of cases not assigned to a specific county -- for those cases, the county name is "unassigned to a single county"
    • This data should be credited to Johns Hopkins University's COVID-19 tracking project. The AP is simply making it available here for ease of use for reporters and members.
    • Caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
    • Population estimates at the county level are drawn from 2014-18 5-year estimates from the American Community Survey.
    • The Urban/Rural classification scheme is from the Center for Disease Control and Preventions's National Center for Health Statistics. It puts each county into one of six categories -- from Large Central Metro to Non-Core -- according to population and other characteristics. More details about the classifications can be found here.

    Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here

    Attribution

    This data should be credited to Johns Hopkins University COVID-19 tracking project

  13. D

    Monthly Provisional Counts of Deaths by Select Causes, 2020-2023

    • data.cdc.gov
    • data.virginia.gov
    • +3more
    application/rdfxml +5
    Updated Sep 27, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NCHS/DVS (2023). Monthly Provisional Counts of Deaths by Select Causes, 2020-2023 [Dataset]. https://data.cdc.gov/NCHS/Monthly-Provisional-Counts-of-Deaths-by-Select-Cau/9dzk-mvmi
    Explore at:
    csv, tsv, json, application/rssxml, xml, application/rdfxmlAvailable download formats
    Dataset updated
    Sep 27, 2023
    Dataset authored and provided by
    NCHS/DVS
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Description

    Effective September 27, 2023, this dataset will no longer be updated. Similar data are accessible from wonder.cdc.gov.

    Provisional counts of deaths by the month the death occurred and by select causes of death for 2020-2023.

  14. U.S. State and Territorial Gathering Bans: March 11, 2020-August 15, 2021 by...

    • data.cdc.gov
    • data.virginia.gov
    • +3more
    application/rdfxml +5
    Updated Sep 10, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mara Howard-Williams, Public Health Law Program, Center for State, Tribal, Local, and Territorial Support, Centers for Disease Control and Prevention (2021). U.S. State and Territorial Gathering Bans: March 11, 2020-August 15, 2021 by County by Day [Dataset]. https://data.cdc.gov/Policy-Surveillance/U-S-State-and-Territorial-Gathering-Bans-March-11-/7xvh-y5vh
    Explore at:
    json, csv, xml, application/rdfxml, tsv, application/rssxmlAvailable download formats
    Dataset updated
    Sep 10, 2021
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Authors
    Mara Howard-Williams, Public Health Law Program, Center for State, Tribal, Local, and Territorial Support, Centers for Disease Control and Prevention
    Area covered
    United States
    Description

    State and territorial executive orders, administrative orders, resolutions, proclamations, and other official publicly available government communications are collected from government websites and cataloged and coded using Microsoft Excel by one or more coders with one or more additional coders conducting quality assurance.

    Data were collected to determine when individuals in states and territories were subject to executive orders, administrative orders, resolutions, proclamations, and other official publicly available government communications related to COVID-19 banning gatherings of various sizes either (1) generally, or specified that the gathering limit applied only when social distancing was not possible, or (2) even if participants practiced social distancing.

    These data are derived from on the publicly available state and territorial executive orders, administrative orders, resolutions, and proclamations (“orders”) for COVID-19 that expressly ban gatherings found by the CDC, COVID-19 Community Intervention and Critical Populations Task Force, Monitoring and Evaluation Team & CDC, Center for State, Tribal, Local, and Territorial Support, Public Health Law Program from March 11, 2020 through August 15, 2021. These data will be updated as new orders are collected. Any orders not available through publicly accessible websites are not included in these data. Only official copies of the documents or, where official copies were unavailable, official press releases from government websites describing requirements were coded, as well as official government communications such as announcements that counties have progressed through new phases of reopening pursuant to an executive order, directive, or other executive branch action, and posted to government websites; news media reports on restrictions were excluded. Recommendations and guidance documents not included or adopted by reference in an order are not included in these data. These data do not include mandatory business closures, curfews, or requirements/recommendations for people to stay in their homes. Due to limitations of the National Environmental Public Health Tracking Network Data Explorer, these data do not include tribes or cities, nor was a distinction made between county orders that applied county-wide versus those that were limited to unincorporated areas of the county. Effective and expiration dates were coded using only the date provided; no distinction was made based on the specific time of the day the order became effective or expired. These data do not necessarily represent an official position of the Centers for Disease Control and Prevention.

  15. c

    Voter Participation

    • data.ccrpc.org
    csv
    Updated Oct 10, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Champaign County Regional Planning Commission (2024). Voter Participation [Dataset]. https://data.ccrpc.org/dataset/voter-participation
    Explore at:
    csv(1677)Available download formats
    Dataset updated
    Oct 10, 2024
    Dataset provided by
    Champaign County Regional Planning Commission
    Description

    The Voter Participation indicator presents voter turnout in Champaign County as a percentage, calculated using two different methods.

    In the first method, the voter turnout percentage is calculated using the number of ballots cast compared to the total population in the county that is eligible to vote. In the second method, the voter turnout percentage is calculated using the number of ballots cast compared to the number of registered voters in the county.

    Since both methods are in use by other agencies, and since there are real differences in the figures that both methods return, we have provided the voter participation rate for Champaign County using each method.

    Voter participation is a solid illustration of a community’s engagement in the political process at the federal and state levels. One can infer a high level of political engagement from high voter participation rates.

    The voter participation rate calculated using the total eligible population is consistently lower than the voter participation rate calculated using the number of registered voters, since the number of registered voters is smaller than the total eligible population.

    There are consistent trends in both sets of data: the voter participation rate, no matter how it is calculated, shows large spikes in presidential election years (e.g., 2008, 2012, 2016, 2020) and smaller spikes in intermediary even years (e.g., 2010, 2014, 2018, 2022). The lowest levels of voter participation can be seen in odd years (e.g., 2015, 2017, 2019, 2021, 2023).

    This data primarily comes from the election results resources on the Champaign County Clerk website. Election results resources from Champaign County include the number of ballots cast and the number of registered voters. The results are published frequently, following each election.

    Data on the total eligible population for Champaign County was sourced from the U.S. Census Bureau, using American Community Survey (ACS) 1-Year Estimates for each year starting in 2005, when the American Community Survey was created. The estimates are released annually by the Census Bureau.

    Due to the impact of the COVID-19 pandemic, instead of providing the standard 1-year data products, the Census Bureau released experimental estimates from the 1-year data in 2020. This includes a limited number of data tables for the nation, states, and the District of Columbia. The Census Bureau states that the 2020 ACS 1-year experimental tables use an experimental estimation methodology and should not be compared with other ACS data. For these reasons, and because this data is not available for Champaign County, the eligible voting population for 2020 is not included in this Indicator.

    For interested data users, the 2020 ACS 1-Year Experimental data release includes datasets on Population by Sex and Population Under 18 Years by Age.

    Sources: Champaign County Clerk Historical Election Data; U.S. Census Bureau; American Community Survey, 2023 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using data.census.gov; (10 October 2024).; U.S. Census Bureau; American Community Survey, 2022 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using data.census.gov; (5 October 2023).; Champaign County Clerk Historical Election Data; U.S. Census Bureau; American Community Survey, 2021 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using data.census.gov; (7 October 2022).; U.S. Census Bureau; American Community Survey, 2019 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using data.census.gov; (8 June 2021).; U.S. Census Bureau; American Community Survey, 2018 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using data.census.gov; (8 June 2021).; Champaign County Clerk Election History; U.S. Census Bureau; American Community Survey, 2017 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using American FactFinder; (13 May 2019).; U.S. Census Bureau; American Community Survey, 2016 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using American FactFinder; (13 May 2019).; U.S. Census Bureau; American Community Survey, American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using American FactFinder; (6 March 2017).; U.S. Census Bureau; American Community Survey, 2014 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using American FactFinder; (15 March 2016).; U.S. Census Bureau; American Community Survey, U.S. Census Bureau; American Community Survey, 2013 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using American FactFinder; (15 March 2016).; U.S. Census Bureau; American Community Survey 2012 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using American FactFinder; (15 March 2016).; U.S. Census Bureau; American Community Survey, 2011 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using American FactFinder; (15 March 2016).; U.S. Census Bureau; American Community Survey, 2010 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using American FactFinder; (15 March 2016).; U.S. Census Bureau; American Community Survey, 2009 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using American FactFinder; (15 March 2016).; U.S. Census Bureau; American Community Survey, 2008 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using American FactFinder; (15 March 2016).; U.S. Census Bureau; American Community Survey, 2007 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using American FactFinder; (15 March 2016).; U.S. Census Bureau; American Community Survey, 2006 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using American FactFinder; (15 March 2016).; U.S. Census Bureau; American Community Survey, 2005 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using American FactFinder; (15 March 2016).

  16. Current voting streak by each state in U.S. presidential elections 1964-2020...

    • statista.com
    Updated Jul 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Current voting streak by each state in U.S. presidential elections 1964-2020 [Dataset]. https://www.statista.com/statistics/1135833/us-presidential-elections-current-streak-by-state/
    Explore at:
    Dataset updated
    Jul 4, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    The Twenty-third Amendment to the U.S. Constitution granted citizens of the District of Columbia the right to vote in U.S. presidential elections; since this came into effect in 1964, the nation's capital has voted for the Democratic Party's nominee in every election, making this the longest ongoing streak in U.S. presidential elections. The record for the longest ever streak in the history of U.S. presidential elections belongs to Vermont (Republican) and Georgia (Democrat), who each voted for the same party's candidate in 27 consecutive elections between 1852 and 1960. The south and west prove loyal There are nine states, mostly across the West and Midwest, that have voted for the Republican candidate in all U.S. presidential elections since Richard Nixon's first victory in 1968. A number of other Republican streaks began in the south with Ronald Reagan's landslide victory in 1980, after briefly turning Democrat for Georgia's Jimmy Carter in 1976; historically the south had been a Democratic stronghold for more than a century, however the Republican Party's "Southern strategy" in the 1960s established them as the dominant party in the region during the civil rights era. Along with the District of Columbia, the only state not won by Reagan in 1984 was Minnesota, as Walter Mondale carried his home state by a very narrow margin. Minnesota's streak is the second-longest for the Democratic Party, while most of the other ongoing Democratic streaks began in either 1988 or 1992.

    Recent swing states In the 2016 election, there were six states (with 99 electoral votes combined) that had been won by Barack Obama in 2012, but turned red in 2016. In the 2020 election, Democratic nominee, Joe Biden, managed to win back three of these states, as well as ending a six election Republican streak in Georgia and a five election streak in Arizona. In contrast, Donald Trump failed to flip any further Democratic strongholds, but repeated his victories in Florida, Iowa and Ohio. Going into this election, pollsters had predicted that the races in both Texas and Florida would be tight, with a combined total of 67 electoral votes, however the incumbent president won the popular votes in these states with margins of roughly six and 3.5 percent respectively.

  17. o

    United States Governors 1775-2020

    • openicpsr.org
    Updated Mar 16, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jacob Kaplan (2018). United States Governors 1775-2020 [Dataset]. http://doi.org/10.3886/E102000V3
    Explore at:
    Dataset updated
    Mar 16, 2018
    Dataset provided by
    University of Pennsylvania
    Authors
    Jacob Kaplan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    1775 - 2020
    Area covered
    United States
    Description

    Version 3 release notes:Changes release notes description, does not change data.Version 2 Release Notes:Adds 2019 and 2020 (current) governor data.Adds data as R and Stata formats.This data contains the governor of every state or territory from 1775 to 2020. The governor's political party is included. Some governors were in multiple political parties during their lives so this variable may have multiple values for a single governor. Parties prior to 1950 are completely unchanged. For parties in years 1950-2018 I standardized spelling of some parties (e.g. "Democratic" to "Democrat") and if a governor was reported to be in multiple parties, set the party for a given year to the party that governor was in during that year. All data comes from the National Governors Association website. https://www.nga.org/cms/home

  18. 2020 Cartographic Boundary File (SHP), Current Elementary School District...

    • catalog.data.gov
    • datasets.ai
    Updated Dec 14, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Commerce, U.S. Census Bureau, Geography Division, Customer Engagement Branch (Point of Contact) (2023). 2020 Cartographic Boundary File (SHP), Current Elementary School District for United States, 1:500,000 [Dataset]. https://catalog.data.gov/dataset/2020-cartographic-boundary-file-shp-current-elementary-school-district-for-united-states-1-5000
    Explore at:
    Dataset updated
    Dec 14, 2023
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Area covered
    United States
    Description

    The 2020 cartographic boundary shapefiles are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. School Districts are single-purpose administrative units within which local officials provide public educational services for the area's residents. The Census Bureau obtains the boundaries, names, local education agency codes, grade ranges, and school district levels for school districts from state officials for the primary purpose of providing the U.S. Department of Education with estimates of the number of children in poverty within each school district. This information serves as the basis for the Department of Education to determine the annual allocation of Title I funding to states and school districts. The cartographic boundary files include separate files for elementary, secondary and unified school districts. The generalized school district boundaries in this file are based on those in effect for the 2019-2020 school year, i.e., in operation as of January 1, 2020.

  19. Population density in the U.S. 2023, by state

    • statista.com
    Updated Dec 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Population density in the U.S. 2023, by state [Dataset]. https://www.statista.com/statistics/183588/population-density-in-the-federal-states-of-the-us/
    Explore at:
    Dataset updated
    Dec 3, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    United States
    Description

    In 2023, Washington, D.C. had the highest population density in the United States, with 11,130.69 people per square mile. As a whole, there were about 94.83 residents per square mile in the U.S., and Alaska was the state with the lowest population density, with 1.29 residents per square mile. The problem of population density Simply put, population density is the population of a country divided by the area of the country. While this can be an interesting measure of how many people live in a country and how large the country is, it does not account for the degree of urbanization, or the share of people who live in urban centers. For example, Russia is the largest country in the world and has a comparatively low population, so its population density is very low. However, much of the country is uninhabited, so cities in Russia are much more densely populated than the rest of the country. Urbanization in the United States While the United States is not very densely populated compared to other countries, its population density has increased significantly over the past few decades. The degree of urbanization has also increased, and well over half of the population lives in urban centers.

  20. U

    United States Months of Supply: Multi-Family: West Virginia

    • ceicdata.com
    Updated Feb 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). United States Months of Supply: Multi-Family: West Virginia [Dataset]. https://www.ceicdata.com/en/united-states/months-of-supply-by-states/months-of-supply-multifamily-west-virginia
    Explore at:
    Dataset updated
    Feb 15, 2025
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jun 1, 2018 - Jun 1, 2020
    Area covered
    United States
    Description

    United States Months of Supply: Multi-Family: West Virginia data was reported at 3.300 Month in Jun 2020. This records a decrease from the previous number of 10.000 Month for May 2020. United States Months of Supply: Multi-Family: West Virginia data is updated monthly, averaging 5.000 Month from May 2012 (Median) to Jun 2020, with 28 observations. The data reached an all-time high of 16.000 Month in Aug 2016 and a record low of 1.400 Month in May 2012. United States Months of Supply: Multi-Family: West Virginia data remains active status in CEIC and is reported by Redfin. The data is categorized under Global Database’s United States – Table US.EB028: Months of Supply: by States.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
New York Times, Coronavirus (Covid-19) Data in the United States [Dataset]. https://github.com/nytimes/covid-19-data

Coronavirus (Covid-19) Data in the United States

Explore at:
csvAvailable download formats
Dataset provided by
New York Times
License

https://github.com/nytimes/covid-19-data/blob/master/LICENSEhttps://github.com/nytimes/covid-19-data/blob/master/LICENSE

Description

The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.

Since the first reported coronavirus case in Washington State on Jan. 21, 2020, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.

We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.

The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.

Search
Clear search
Close search
Google apps
Main menu