79 datasets found
  1. F

    Dow Jones Industrial Average

    • fred.stlouisfed.org
    json
    Updated Jul 11, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Dow Jones Industrial Average [Dataset]. https://fred.stlouisfed.org/series/DJIA
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jul 11, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval

    Description

    Graph and download economic data for Dow Jones Industrial Average (DJIA) from 2015-07-13 to 2025-07-11 about stock market, average, industry, and USA.

  2. EOD data for all Dow Jones stocks

    • kaggle.com
    zip
    Updated Jun 12, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Timo Bozsolik (2019). EOD data for all Dow Jones stocks [Dataset]. https://www.kaggle.com/datasets/timoboz/stock-data-dow-jones
    Explore at:
    zip(1697460 bytes)Available download formats
    Dataset updated
    Jun 12, 2019
    Authors
    Timo Bozsolik
    Description

    Update

    Unfortunately, the API this dataset used to pull the stock data isn't free anymore. Instead of having this auto-updating, I dropped the last version of the data files in here, so at least the historic data is still usable.

    Content

    This dataset provides free end of day data for all stocks currently in the Dow Jones Industrial Average. For each of the 30 components of the index, there is one CSV file named by the stock's symbol (e.g. AAPL for Apple). Each file provides historically adjusted market-wide data (daily, max. 5 years back). See here for description of the columns: https://iextrading.com/developer/docs/#chart

    Since this dataset uses remote URLs as files, it is automatically updated daily by the Kaggle platform and automatically represents the latest data.

    Acknowledgements

    List of stocks and symbols as per https://en.wikipedia.org/wiki/Dow_Jones_Industrial_Average

    Thanks to https://iextrading.com for providing this data for free!

    Terms of Use

    Data provided for free by IEX. View IEX’s Terms of Use.

  3. F

    Dow-Jones Industrial Stock Price Index for United States

    • fred.stlouisfed.org
    json
    Updated Aug 15, 2012
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2012). Dow-Jones Industrial Stock Price Index for United States [Dataset]. https://fred.stlouisfed.org/series/M1109BUSM293NNBR
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Aug 15, 2012
    License

    https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required

    Area covered
    United States
    Description

    Graph and download economic data for Dow-Jones Industrial Stock Price Index for United States (M1109BUSM293NNBR) from Dec 1914 to Dec 1968 about stock market, industry, price index, indexes, price, and USA.

  4. h

    Dow30_stock_prediction

    • huggingface.co
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lei Z, Dow30_stock_prediction [Dataset]. https://huggingface.co/datasets/descartes100/Dow30_stock_prediction
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Authors
    Lei Z
    Description

    Dow30 Stock Prediction Dataset

      Overview
    

    Welcome to the Dow30 Stock Prediction dataset! This dataset is designed to assist in predicting stock returns for companies in the Dow Jones Industrial Average (Dow30). It includes essential information about each company, such as news from the last two weeks, basic financial data, and stock prices over the same period.

      Dataset Structure
    

    The dataset consists of the following columns:

    prompt: Information about the company… See the full description on the dataset page: https://huggingface.co/datasets/descartes100/Dow30_stock_prediction.

  5. Stock market predictions

    • kaggle.com
    Updated Feb 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tanishq dublish (2024). Stock market predictions [Dataset]. https://www.kaggle.com/datasets/tanishqdublish/stock-market-predictions
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 18, 2024
    Dataset provided by
    Kaggle
    Authors
    Tanishq dublish
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    Actually, I prepare this dataset for students on my Deep Learning and NLP course.

    But I am also very happy to see kagglers play around with it.

    Have fun!

    Description:

    There are two channels of data provided in this dataset:

    News data: I crawled historical news headlines from Reddit WorldNews Channel (/r/worldnews). They are ranked by reddit users' votes, and only the top 25 headlines are considered for a single date. (Range: 2008-06-08 to 2016-07-01)

    Stock data: Dow Jones Industrial Average (DJIA) is used to "prove the concept". (Range: 2008-08-08 to 2016-07-01)

    I provided three data files in .csv format:

    RedditNews.csv: two columns The first column is the "date", and second column is the "news headlines". All news are ranked from top to bottom based on how hot they are. Hence, there are 25 lines for each date.

    DJIA_table.csv: Downloaded directly from Yahoo Finance: check out the web page for more info.

    Combined_News_DJIA.csv: To make things easier for my students, I provide this combined dataset with 27 columns. The first column is "Date", the second is "Label", and the following ones are news headlines ranging from "Top1" to "Top25".

  6. k

    The Dow Jones Industrial Average (Forecast)

    • kappasignal.com
    Updated Mar 29, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). The Dow Jones Industrial Average (Forecast) [Dataset]. https://www.kappasignal.com/2023/03/the-dow-jones-industrial-average.html
    Explore at:
    Dataset updated
    Mar 29, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    The Dow Jones Industrial Average

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  7. F

    S&P 500

    • fred.stlouisfed.org
    json
    Updated Jul 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). S&P 500 [Dataset]. https://fred.stlouisfed.org/series/SP500
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jul 11, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval

    Description

    View data of the S&P 500, an index of the stocks of 500 leading companies in the US economy, which provides a gauge of the U.S. equity market.

  8. Dow Jones Industrial Average Index Target Price Prediction (Forecast)

    • kappasignal.com
    Updated Oct 25, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). Dow Jones Industrial Average Index Target Price Prediction (Forecast) [Dataset]. https://www.kappasignal.com/2022/10/dow-jones-industrial-average-index_25.html
    Explore at:
    Dataset updated
    Oct 25, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Dow Jones Industrial Average Index Target Price Prediction

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  9. T

    Japan Stock Market Index (JP225) Data

    • tradingeconomics.com
    • ko.tradingeconomics.com
    • +12more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Japan Stock Market Index (JP225) Data [Dataset]. https://tradingeconomics.com/japan/stock-market
    Explore at:
    excel, csv, xml, jsonAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 5, 1965 - Jul 14, 2025
    Area covered
    Japan
    Description

    Japan's main stock market index, the JP225, fell to 39432 points on July 14, 2025, losing 0.35% from the previous session. Over the past month, the index has climbed 2.93%, though it remains 4.47% lower than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from Japan. Japan Stock Market Index (JP225) - values, historical data, forecasts and news - updated on July of 2025.

  10. Dow Jones Industrial Average Index assigned short-term B1 & long-term Ba1...

    • kappasignal.com
    Updated Oct 24, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). Dow Jones Industrial Average Index assigned short-term B1 & long-term Ba1 forecasted stock rating. (Forecast) [Dataset]. https://www.kappasignal.com/2022/10/dow-jones-industrial-average-index.html
    Explore at:
    Dataset updated
    Oct 24, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Dow Jones Industrial Average Index assigned short-term B1 & long-term Ba1 forecasted stock rating.

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  11. Will the Dow Jones Industrial Average Index Soar or Sink? (Forecast)

    • kappasignal.com
    Updated Oct 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). Will the Dow Jones Industrial Average Index Soar or Sink? (Forecast) [Dataset]. https://www.kappasignal.com/2024/10/will-dow-jones-industrial-average-index.html
    Explore at:
    Dataset updated
    Oct 19, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Will the Dow Jones Industrial Average Index Soar or Sink?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  12. k

    Will the Dow Jones Industrial Average Index Maintain Its Momentum?...

    • kappasignal.com
    Updated Aug 27, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). Will the Dow Jones Industrial Average Index Maintain Its Momentum? (Forecast) [Dataset]. https://www.kappasignal.com/2024/08/will-dow-jones-industrial-average-index_27.html
    Explore at:
    Dataset updated
    Aug 27, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Will the Dow Jones Industrial Average Index Maintain Its Momentum?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  13. The data about the 30 DJIA companies.

    • plos.figshare.com
    xls
    Updated Jun 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Peter Gabrovšek; Darko Aleksovski; Igor Mozetič; Miha Grčar (2023). The data about the 30 DJIA companies. [Dataset]. http://doi.org/10.1371/journal.pone.0173151.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 8, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Peter Gabrovšek; Darko Aleksovski; Igor Mozetič; Miha Grčar
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The collected tweets and Earnings Announcements (EA) cover the period of three years, from June 1, 2013 to June 3, 2016. Companies are ordered by the total number of tweets collected. For each company, there is the sentiment distribution, market capitalization, and the prevailing timing of EAs with respect to the NYSE trading hours. Each company issues four EAs per year, therefore there is a total of 360 EAs (30 companies, three years, four EAs per year)1.

  14. d

    Yacodata: S&P 500 Companies Data (up-to-date intelligence on US largest 500...

    • datarade.ai
    .csv
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yacodata, Yacodata: S&P 500 Companies Data (up-to-date intelligence on US largest 500 companies) [Dataset]. https://datarade.ai/data-products/s-p500-companies-informations-up-to-date-yacodata
    Explore at:
    .csvAvailable download formats
    Dataset authored and provided by
    Yacodata
    Area covered
    United States
    Description

    The dataset consists of companies listed in the S&P500, stock market index that measures the stock performance of 500 large companies listed on stock exchanges in the United State.

    The S&P 500 stock market index, maintained by S&P Dow Jones Indices, comprises 505 common stocks issued by 500 large-cap companies and traded on American stock exchanges (including the 30 companies that compose the Dow Jones Industrial Average)

    The S&P500 or SPX is the most commonly followed equity index, it covers about 80 percent of the American equity market by capitalization.

    The index constituents and the constituent weights are updated regularly using rules published by S&P Dow Jones Indices. Although called the S&P 500, the index contains 505 stocks

  15. Will the Dow Jones Industrial Average Index Rise Today? (Forecast)

    • kappasignal.com
    Updated Aug 10, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). Will the Dow Jones Industrial Average Index Rise Today? (Forecast) [Dataset]. https://www.kappasignal.com/2024/08/will-dow-jones-industrial-average-index_10.html
    Explore at:
    Dataset updated
    Aug 10, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Will the Dow Jones Industrial Average Index Rise Today?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  16. United States New York Stock Exchange: Index: Dow Jones Composite Average

    • ceicdata.com
    Updated Mar 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2023). United States New York Stock Exchange: Index: Dow Jones Composite Average [Dataset]. https://www.ceicdata.com/en/united-states/new-york-stock-exchange-dow-jones-monthly/new-york-stock-exchange-index-dow-jones-composite-average
    Explore at:
    Dataset updated
    Mar 15, 2023
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 1, 2024 - Feb 1, 2025
    Area covered
    United States
    Description

    United States New York Stock Exchange: Index: Dow Jones Composite Average data was reported at 13,127.020 NA in Mar 2025. This records a decrease from the previous number of 13,711.750 NA for Feb 2025. United States New York Stock Exchange: Index: Dow Jones Composite Average data is updated monthly, averaging 8,567.610 NA from Jul 2013 (Median) to Mar 2025, with 141 observations. The data reached an all-time high of 14,367.530 NA in Nov 2024 and a record low of 5,021.600 NA in Aug 2013. United States New York Stock Exchange: Index: Dow Jones Composite Average data remains active status in CEIC and is reported by Exchange Data International Limited. The data is categorized under Global Database’s United States – Table US.EDI.SE: New York Stock Exchange: Dow Jones: Monthly.

  17. Z

    Data from: CNNpred: CNN-based stock market prediction using a diverse set of...

    • data.niaid.nih.gov
    • data.mendeley.com
    Updated Feb 4, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ehsan Hoseinzade (2020). CNNpred: CNN-based stock market prediction using a diverse set of variables [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_3634200
    Explore at:
    Dataset updated
    Feb 4, 2020
    Dataset authored and provided by
    Ehsan Hoseinzade
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset contains several daily features of S&P 500, NASDAQ Composite, Dow Jones Industrial Average, RUSSELL 2000, and NYSE Composite from 2010 to 2017. It covers features from various categories of technical indicators, futures contracts, price of commodities, important indices of markets around the world, price of major companies in the U.S. market, and treasury bill rates. Sources and thorough description of features have been mentioned in the paper of "CNNpred: CNN-based stock market prediction using a diverse set of variables".

  18. When to Sell and When to Hold Dow Jones Industrial Average Index Stock...

    • kappasignal.com
    Updated Nov 10, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). When to Sell and When to Hold Dow Jones Industrial Average Index Stock (Forecast) [Dataset]. https://www.kappasignal.com/2022/11/when-to-sell-and-when-to-hold-dow-jones.html
    Explore at:
    Dataset updated
    Nov 10, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    When to Sell and When to Hold Dow Jones Industrial Average Index Stock

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  19. T

    Indonesia Stock Market (JCI) Data

    • tradingeconomics.com
    • jp.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, Indonesia Stock Market (JCI) Data [Dataset]. https://tradingeconomics.com/indonesia/stock-market
    Explore at:
    csv, excel, json, xmlAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Apr 6, 1990 - Jul 11, 2025
    Area covered
    Indonesia
    Description

    Indonesia's main stock market index, the JCI, rose to 7047 points on July 11, 2025, gaining 0.60% from the previous session. Over the past month, the index has declined 2.18% and is down 3.82% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from Indonesia. Indonesia Stock Market (JCI) - values, historical data, forecasts and news - updated on July of 2025.

  20. Should You Buy Dow Jones Industrial Average Index Right Now? (Stock...

    • kappasignal.com
    Updated Sep 10, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). Should You Buy Dow Jones Industrial Average Index Right Now? (Stock Forecast) (Forecast) [Dataset]. https://www.kappasignal.com/2022/09/should-you-buy-dow-jones-industrial.html
    Explore at:
    Dataset updated
    Sep 10, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Should You Buy Dow Jones Industrial Average Index Right Now? (Stock Forecast)

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2025). Dow Jones Industrial Average [Dataset]. https://fred.stlouisfed.org/series/DJIA

Dow Jones Industrial Average

DJIA

Explore at:
29 scholarly articles cite this dataset (View in Google Scholar)
jsonAvailable download formats
Dataset updated
Jul 11, 2025
License

https://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval

Description

Graph and download economic data for Dow Jones Industrial Average (DJIA) from 2015-07-13 to 2025-07-11 about stock market, average, industry, and USA.

Search
Clear search
Close search
Google apps
Main menu