90 datasets found
  1. Stock Portfolio Data with Prices and Indices

    • kaggle.com
    Updated Mar 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nikita Manaenkov (2025). Stock Portfolio Data with Prices and Indices [Dataset]. http://doi.org/10.34740/kaggle/dsv/11140976
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 23, 2025
    Dataset provided by
    Kaggle
    Authors
    Nikita Manaenkov
    License

    https://www.gnu.org/licenses/gpl-3.0.htmlhttps://www.gnu.org/licenses/gpl-3.0.html

    Description

    This dataset consists of five CSV files that provide detailed data on a stock portfolio and related market performance over the last 5 years. It includes portfolio positions, stock prices, and major U.S. market indices (NASDAQ, S&P 500, and Dow Jones). The data is essential for conducting portfolio analysis, financial modeling, and performance tracking.

    1. Portfolio

    This file contains the portfolio composition with details about individual stock positions, including the quantity of shares, sector, and their respective weights in the portfolio. The data also includes the stock's closing price.

    • Columns:
      • Ticker: The stock symbol (e.g., AAPL, TSLA)
      • Quantity: The number of shares in the portfolio
      • Sector: The sector the stock belongs to (e.g., Technology, Healthcare)
      • Close: The closing price of the stock
      • Weight: The weight of the stock in the portfolio (as a percentage of total portfolio)

    2. Portfolio Prices

    This file contains historical pricing data for the stocks in the portfolio. It includes daily open, high, low, close prices, adjusted close prices, returns, and volume of traded stocks.

    • Columns:
      • Date: The date of the data point
      • Ticker: The stock symbol
      • Open: The opening price of the stock on that day
      • High: The highest price reached on that day
      • Low: The lowest price reached on that day
      • Close: The closing price of the stock
      • Adjusted: The adjusted closing price after stock splits and dividends
      • Returns: Daily percentage return based on close prices
      • Volume: The volume of shares traded that day

    3. NASDAQ

    This file contains historical pricing data for the NASDAQ Composite index, providing similar data as in the Portfolio Prices file, but for the NASDAQ market index.

    • Columns:
      • Date: The date of the data point
      • Ticker: The stock symbol (for NASDAQ index, this will be "IXIC")
      • Open: The opening price of the index
      • High: The highest value reached on that day
      • Low: The lowest value reached on that day
      • Close: The closing value of the index
      • Adjusted: The adjusted closing value after any corporate actions
      • Returns: Daily percentage return based on close values
      • Volume: The volume of shares traded

    4. S&P 500

    This file contains similar historical pricing data, but for the S&P 500 index, providing insights into the performance of the top 500 U.S. companies.

    • Columns:
      • Date: The date of the data point
      • Ticker: The stock symbol (for S&P 500 index, this will be "SPX")
      • Open: The opening price of the index
      • High: The highest value reached on that day
      • Low: The lowest value reached on that day
      • Close: The closing value of the index
      • Adjusted: The adjusted closing value after any corporate actions
      • Returns: Daily percentage return based on close values
      • Volume: The volume of shares traded

    5. Dow Jones

    This file contains similar historical pricing data for the Dow Jones Industrial Average, providing insights into one of the most widely followed stock market indices in the world.

    • Columns:
      • Date: The date of the data point
      • Ticker: The stock symbol (for Dow Jones index, this will be "DJI")
      • Open: The opening price of the index
      • High: The highest value reached on that day
      • Low: The lowest value reached on that day
      • Close: The closing value of the index
      • Adjusted: The adjusted closing value after any corporate actions
      • Returns: Daily percentage return based on close values
      • Volume: The volume of shares traded

    Personal Portfolio Data

    This data is received using a custom framework that fetches real-time and historical stock data from Yahoo Finance. It provides the portfolio’s data based on user-specific stock holdings and performance, allowing for personalized analysis. The personal framework ensures the portfolio data is automatically retrieved and updated with the latest stock prices, returns, and performance metrics.

    This part of the dataset would typically involve data specific to a particular user’s stock positions, weights, and performance, which can be integrated with the other files for portfolio performance analysis.

  2. T

    United States Stock Market Index Data

    • tradingeconomics.com
    • ar.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated May 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Stock Market Index Data [Dataset]. https://tradingeconomics.com/united-states/stock-market
    Explore at:
    excel, xml, json, csvAvailable download formats
    Dataset updated
    May 15, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 3, 1928 - Jun 9, 2025
    Area covered
    United States
    Description

    The main stock market index of United States, the US500, rose to 6008 points on June 9, 2025, gaining 0.13% from the previous session. Over the past month, the index has climbed 2.80% and is up 12.07% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from United States. United States Stock Market Index - values, historical data, forecasts and news - updated on June of 2025.

  3. M

    Dow Jones - DJIA - 100 Years of Historical Data

    • macrotrends.net
    csv
    Updated May 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MACROTRENDS (2025). Dow Jones - DJIA - 100 Years of Historical Data [Dataset]. https://www.macrotrends.net/1319/dow-jones-100-year-historical-chart
    Explore at:
    csvAvailable download formats
    Dataset updated
    May 27, 2025
    Dataset authored and provided by
    MACROTRENDS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    World
    Description

    Historical dataset of the Dow Jones Industrial Average (DJIA) stock market index for the last 100 years. Historical data is inflation-adjusted using the headline CPI and each data point represents the month-end closing value. The current month is updated on an hourly basis with today's latest value.

  4. EOD data for all Dow Jones stocks

    • kaggle.com
    zip
    Updated Jun 12, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Timo Bozsolik (2019). EOD data for all Dow Jones stocks [Dataset]. https://www.kaggle.com/datasets/timoboz/stock-data-dow-jones
    Explore at:
    zip(1697460 bytes)Available download formats
    Dataset updated
    Jun 12, 2019
    Authors
    Timo Bozsolik
    Description

    Update

    Unfortunately, the API this dataset used to pull the stock data isn't free anymore. Instead of having this auto-updating, I dropped the last version of the data files in here, so at least the historic data is still usable.

    Content

    This dataset provides free end of day data for all stocks currently in the Dow Jones Industrial Average. For each of the 30 components of the index, there is one CSV file named by the stock's symbol (e.g. AAPL for Apple). Each file provides historically adjusted market-wide data (daily, max. 5 years back). See here for description of the columns: https://iextrading.com/developer/docs/#chart

    Since this dataset uses remote URLs as files, it is automatically updated daily by the Kaggle platform and automatically represents the latest data.

    Acknowledgements

    List of stocks and symbols as per https://en.wikipedia.org/wiki/Dow_Jones_Industrial_Average

    Thanks to https://iextrading.com for providing this data for free!

    Terms of Use

    Data provided for free by IEX. View IEX’s Terms of Use.

  5. M

    Dow Jones - 10 Years of Daily Historical Data

    • macrotrends.net
    csv
    Updated May 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MACROTRENDS (2025). Dow Jones - 10 Years of Daily Historical Data [Dataset]. https://www.macrotrends.net/1358/dow-jones-industrial-average-last-10-years
    Explore at:
    csvAvailable download formats
    Dataset updated
    May 27, 2025
    Dataset authored and provided by
    MACROTRENDS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    World
    Description

    Ten years of daily data for the Dow Jones Industrial Average (DJIA) market index. Each point of the dataset is represented by the daily closing price for the DJIA. Historical data can be downloaded via the red button on the upper right corner of the chart.

  6. F

    S&P 500

    • fred.stlouisfed.org
    json
    Updated Jun 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). S&P 500 [Dataset]. https://fred.stlouisfed.org/series/SP500
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jun 6, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval

    Description

    View data of the S&P 500, an index of the stocks of 500 leading companies in the US economy, which provides a gauge of the U.S. equity market.

  7. T

    United States Stock Market Index Data

    • tradingeconomics.com
    • jp.tradingeconomics.com
    • +4more
    csv, excel, json, xml
    Updated Mar 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2024). United States Stock Market Index Data [Dataset]. https://tradingeconomics.com/united-states/stock-market??sa=u&ei=ffhqvnvmn5dloatmoocabw&ved=0cjmbebywfq&usg=afqjcngzbcc8p0owixmdsdjcu_endviwgg
    Explore at:
    csv, json, excel, xmlAvailable download formats
    Dataset updated
    Mar 6, 2024
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 3, 1928 - Jun 6, 2025
    Area covered
    United States
    Description

    The main stock market index of United States, the US500, rose to 6000 points on June 6, 2025, gaining 1.03% from the previous session. Over the past month, the index has climbed 6.55% and is up 12.22% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from United States. United States Stock Market Index - values, historical data, forecasts and news - updated on June of 2025.

  8. F

    Dow Jones Industrial Average

    • fred.stlouisfed.org
    json
    Updated Jun 6, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Dow Jones Industrial Average [Dataset]. https://fred.stlouisfed.org/series/DJIA
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jun 6, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval

    Description

    Graph and download economic data for Dow Jones Industrial Average (DJIA) from 2015-06-08 to 2025-06-06 about stock market, average, industry, and USA.

  9. k

    The Dow Jones Industrial Average (Forecast)

    • kappasignal.com
    Updated Mar 29, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). The Dow Jones Industrial Average (Forecast) [Dataset]. https://www.kappasignal.com/2023/03/the-dow-jones-industrial-average.html
    Explore at:
    Dataset updated
    Mar 29, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    The Dow Jones Industrial Average

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  10. T

    United States Stock Market Index Data

    • tradingeconomics.com
    • pt.tradingeconomics.com
    • +4more
    csv, excel, json, xml
    Updated May 28, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Stock Market Index Data [Dataset]. https://tradingeconomics.com/united-states/stock-market??sa=u?ei=ffhqvnvmn5dloatmoocabw&ved=0cjmbebywfq&usg=afqjcngzbcc8p0owixmdsdjcu_endviwgg
    Explore at:
    csv, excel, xml, jsonAvailable download formats
    Dataset updated
    May 28, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 3, 1928 - May 28, 2025
    Area covered
    United States
    Description

    The main stock market index in the United States (US500) increased 31 points or 0.53% since the beginning of 2025, according to trading on a contract for difference (CFD) that tracks this benchmark index from United States. United States Stock Market Index - values, historical data, forecasts and news - updated on May of 2025.

  11. m

    U2VDow30 : Dow 30 Stocks tweets for proposing User2Vec approach

    • data.mendeley.com
    Updated Apr 4, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    pegah eslamieh (2022). U2VDow30 : Dow 30 Stocks tweets for proposing User2Vec approach [Dataset]. http://doi.org/10.17632/dc6gdcz7n9.2
    Explore at:
    Dataset updated
    Apr 4, 2022
    Authors
    pegah eslamieh
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This data set has been collected for "User2Vec: stock market prediction using deep learning with a novel representation of social network users" paper. Stock market prediction is an interesting and challenging problem for investors and financial analysts. Recently, recurrent neural networks like LSTM have shown good performance in the field of stock market prediction. Most current methods use historical market data and in some cases, the dominant direction of users and news for each day. In some cases, the opinions of social network members about the stocks are extracted to improve the prediction accuracy. Usually, the opinions of different users are treated in the same way and are given the same weights in these works. However, it is clear that these opinions have different values based on the accuracy of the prediction of the related user. In this study, the idea is to convert the opinion of each user about each stock into a vector (User2Vec) and then use these vectors to train a Recurrent Neural Network (RNN) and ultimately model the behavior of the users in the market. The proposed user representation is composed of the features extracted from the messages posted in a social network and the market data. Here, we consider the power of the user in predicting the future of the stock based on the social network metrics, e.g. the number of the followers of the user, and the accuracy of its previous predictions. This way, the number of training data is increased and the model is effectively learned. These data are then used to train a stacked bidirectional LSTM network used for aggregating the input data and providing the final prediction. Empirical studies of the proposed model on 30 stocks of 30 Dow Jones clearly shows the superiority of the proposed model over traditional representations. For example, the prediction accuracy is about 93% for the Apple stock which is much higher than the compared models.

  12. Stock market statistics, Canada and United States, Bank of Canada

    • open.canada.ca
    • www150.statcan.gc.ca
    • +3more
    csv, html, xml
    Updated Jan 17, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics Canada (2023). Stock market statistics, Canada and United States, Bank of Canada [Dataset]. https://open.canada.ca/data/en/dataset/e037b4dd-4c13-4cc2-b8c4-0262083dbbd0
    Explore at:
    csv, xml, htmlAvailable download formats
    Dataset updated
    Jan 17, 2023
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Area covered
    Canada, United States
    Description

    This table contains 14 series, with data starting from 1953 (not all combinations necessarily have data for all years). This table contains data described by the following dimensions (Not all combinations are available): Geography (1 items: Canada ...), Stock market statistics (14 items: Toronto Stock Exchange; value of shares traded; United States common stocks; Dow-Jones industrials; high; United States common stocks; Dow-Jones industrials; low; Toronto Stock Exchange; volume of shares traded ...).

  13. k

    Dow Chemical (DOW) Stock: A Material Shift in the Market? (Forecast)

    • kappasignal.com
    Updated Sep 13, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). Dow Chemical (DOW) Stock: A Material Shift in the Market? (Forecast) [Dataset]. https://www.kappasignal.com/2024/09/dow-chemical-dow-stock-material-shift.html
    Explore at:
    Dataset updated
    Sep 13, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Dow Chemical (DOW) Stock: A Material Shift in the Market?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  14. k

    Dow Jones Industrial Average Index Target Price Prediction (Forecast)

    • kappasignal.com
    Updated Oct 25, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). Dow Jones Industrial Average Index Target Price Prediction (Forecast) [Dataset]. https://www.kappasignal.com/2022/10/dow-jones-industrial-average-index_25.html
    Explore at:
    Dataset updated
    Oct 25, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Dow Jones Industrial Average Index Target Price Prediction

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  15. M

    S&P 500 Index - 100 Years of Historical Data

    • macrotrends.net
    csv
    Updated May 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MACROTRENDS (2025). S&P 500 Index - 100 Years of Historical Data [Dataset]. https://www.macrotrends.net/2324/sp-500-historical-chart-data
    Explore at:
    csvAvailable download formats
    Dataset updated
    May 27, 2025
    Dataset authored and provided by
    MACROTRENDS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    World
    Description

    Historical dataset for the S&P 500 stock market index since 1927. Historical data is inflation-adjusted using the headline CPI and each data point represents the month-end closing value. The current month is updated on an hourly basis with today's latest value.

  16. k

    Dow Jones Industrial Average Index assigned short-term B1 & long-term Ba1...

    • kappasignal.com
    Updated Oct 24, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). Dow Jones Industrial Average Index assigned short-term B1 & long-term Ba1 forecasted stock rating. (Forecast) [Dataset]. https://www.kappasignal.com/2022/10/dow-jones-industrial-average-index.html
    Explore at:
    Dataset updated
    Oct 24, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Dow Jones Industrial Average Index assigned short-term B1 & long-term Ba1 forecasted stock rating.

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  17. k

    Dow Jones U.S. Select Insurance Index: Poised for a Rebound? (Forecast)

    • kappasignal.com
    Updated Apr 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). Dow Jones U.S. Select Insurance Index: Poised for a Rebound? (Forecast) [Dataset]. https://www.kappasignal.com/2024/04/dow-jones-us-select-insurance-index.html
    Explore at:
    Dataset updated
    Apr 25, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Dow Jones U.S. Select Insurance Index: Poised for a Rebound?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  18. k

    Dow Jones U.S. Real Estate: A True Reflection of the Market? (Forecast)

    • kappasignal.com
    Updated Apr 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). Dow Jones U.S. Real Estate: A True Reflection of the Market? (Forecast) [Dataset]. https://www.kappasignal.com/2024/04/dow-jones-us-real-estate-true.html
    Explore at:
    Dataset updated
    Apr 20, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Dow Jones U.S. Real Estate: A True Reflection of the Market?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  19. T

    Russia Stock Market Index MOEX CFD Data

    • tradingeconomics.com
    • ko.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Apr 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Russia Stock Market Index MOEX CFD Data [Dataset]. https://tradingeconomics.com/russia/stock-market
    Explore at:
    json, csv, excel, xmlAvailable download formats
    Dataset updated
    Apr 15, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Sep 22, 1997 - Jun 6, 2025
    Area covered
    Russia
    Description

    Russia's main stock market index, the MOEX, fell to 2788 points on June 6, 2025, losing 2.39% from the previous session. Over the past month, the index has declined 1.58% and is down 13.76% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from Russia. Russia Stock Market Index MOEX CFD - values, historical data, forecasts and news - updated on June of 2025.

  20. k

    Dow Jones U.S. Financial Services Index: Strength or Weakness Ahead?...

    • kappasignal.com
    Updated Mar 27, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). Dow Jones U.S. Financial Services Index: Strength or Weakness Ahead? (Forecast) [Dataset]. https://www.kappasignal.com/2024/03/dow-jones-us-financial-services-index.html
    Explore at:
    Dataset updated
    Mar 27, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Dow Jones U.S. Financial Services Index: Strength or Weakness Ahead?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Nikita Manaenkov (2025). Stock Portfolio Data with Prices and Indices [Dataset]. http://doi.org/10.34740/kaggle/dsv/11140976
Organization logo

Stock Portfolio Data with Prices and Indices

Comprehensive Dataset of Stock Portfolio, Historical Prices, and Major US Market

Explore at:
2 scholarly articles cite this dataset (View in Google Scholar)
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Mar 23, 2025
Dataset provided by
Kaggle
Authors
Nikita Manaenkov
License

https://www.gnu.org/licenses/gpl-3.0.htmlhttps://www.gnu.org/licenses/gpl-3.0.html

Description

This dataset consists of five CSV files that provide detailed data on a stock portfolio and related market performance over the last 5 years. It includes portfolio positions, stock prices, and major U.S. market indices (NASDAQ, S&P 500, and Dow Jones). The data is essential for conducting portfolio analysis, financial modeling, and performance tracking.

1. Portfolio

This file contains the portfolio composition with details about individual stock positions, including the quantity of shares, sector, and their respective weights in the portfolio. The data also includes the stock's closing price.

  • Columns:
    • Ticker: The stock symbol (e.g., AAPL, TSLA)
    • Quantity: The number of shares in the portfolio
    • Sector: The sector the stock belongs to (e.g., Technology, Healthcare)
    • Close: The closing price of the stock
    • Weight: The weight of the stock in the portfolio (as a percentage of total portfolio)

2. Portfolio Prices

This file contains historical pricing data for the stocks in the portfolio. It includes daily open, high, low, close prices, adjusted close prices, returns, and volume of traded stocks.

  • Columns:
    • Date: The date of the data point
    • Ticker: The stock symbol
    • Open: The opening price of the stock on that day
    • High: The highest price reached on that day
    • Low: The lowest price reached on that day
    • Close: The closing price of the stock
    • Adjusted: The adjusted closing price after stock splits and dividends
    • Returns: Daily percentage return based on close prices
    • Volume: The volume of shares traded that day

3. NASDAQ

This file contains historical pricing data for the NASDAQ Composite index, providing similar data as in the Portfolio Prices file, but for the NASDAQ market index.

  • Columns:
    • Date: The date of the data point
    • Ticker: The stock symbol (for NASDAQ index, this will be "IXIC")
    • Open: The opening price of the index
    • High: The highest value reached on that day
    • Low: The lowest value reached on that day
    • Close: The closing value of the index
    • Adjusted: The adjusted closing value after any corporate actions
    • Returns: Daily percentage return based on close values
    • Volume: The volume of shares traded

4. S&P 500

This file contains similar historical pricing data, but for the S&P 500 index, providing insights into the performance of the top 500 U.S. companies.

  • Columns:
    • Date: The date of the data point
    • Ticker: The stock symbol (for S&P 500 index, this will be "SPX")
    • Open: The opening price of the index
    • High: The highest value reached on that day
    • Low: The lowest value reached on that day
    • Close: The closing value of the index
    • Adjusted: The adjusted closing value after any corporate actions
    • Returns: Daily percentage return based on close values
    • Volume: The volume of shares traded

5. Dow Jones

This file contains similar historical pricing data for the Dow Jones Industrial Average, providing insights into one of the most widely followed stock market indices in the world.

  • Columns:
    • Date: The date of the data point
    • Ticker: The stock symbol (for Dow Jones index, this will be "DJI")
    • Open: The opening price of the index
    • High: The highest value reached on that day
    • Low: The lowest value reached on that day
    • Close: The closing value of the index
    • Adjusted: The adjusted closing value after any corporate actions
    • Returns: Daily percentage return based on close values
    • Volume: The volume of shares traded

Personal Portfolio Data

This data is received using a custom framework that fetches real-time and historical stock data from Yahoo Finance. It provides the portfolio’s data based on user-specific stock holdings and performance, allowing for personalized analysis. The personal framework ensures the portfolio data is automatically retrieved and updated with the latest stock prices, returns, and performance metrics.

This part of the dataset would typically involve data specific to a particular user’s stock positions, weights, and performance, which can be integrated with the other files for portfolio performance analysis.

Search
Clear search
Close search
Google apps
Main menu