100+ datasets found
  1. F

    Dow Jones Industrial Average

    • fred.stlouisfed.org
    json
    Updated Jul 11, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Dow Jones Industrial Average [Dataset]. https://fred.stlouisfed.org/series/DJIA
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jul 11, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval

    Description

    Graph and download economic data for Dow Jones Industrial Average (DJIA) from 2015-07-13 to 2025-07-11 about stock market, average, industry, and USA.

  2. EOD data for all Dow Jones stocks

    • kaggle.com
    zip
    Updated Jun 12, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Timo Bozsolik (2019). EOD data for all Dow Jones stocks [Dataset]. https://www.kaggle.com/datasets/timoboz/stock-data-dow-jones
    Explore at:
    zip(1697460 bytes)Available download formats
    Dataset updated
    Jun 12, 2019
    Authors
    Timo Bozsolik
    Description

    Update

    Unfortunately, the API this dataset used to pull the stock data isn't free anymore. Instead of having this auto-updating, I dropped the last version of the data files in here, so at least the historic data is still usable.

    Content

    This dataset provides free end of day data for all stocks currently in the Dow Jones Industrial Average. For each of the 30 components of the index, there is one CSV file named by the stock's symbol (e.g. AAPL for Apple). Each file provides historically adjusted market-wide data (daily, max. 5 years back). See here for description of the columns: https://iextrading.com/developer/docs/#chart

    Since this dataset uses remote URLs as files, it is automatically updated daily by the Kaggle platform and automatically represents the latest data.

    Acknowledgements

    List of stocks and symbols as per https://en.wikipedia.org/wiki/Dow_Jones_Industrial_Average

    Thanks to https://iextrading.com for providing this data for free!

    Terms of Use

    Data provided for free by IEX. View IEX’s Terms of Use.

  3. T

    United States Stock Market Index Data

    • tradingeconomics.com
    • jp.tradingeconomics.com
    • +11more
    csv, excel, json, xml
    Updated Mar 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2024). United States Stock Market Index Data [Dataset]. https://tradingeconomics.com/united-states/stock-market??sa=u&ei=ffhqvnvmn5dloatmoocabw&ved=0cjmbebywfq&usg=afqjcngzbcc8p0owixmdsdjcu_endviwgg
    Explore at:
    csv, json, excel, xmlAvailable download formats
    Dataset updated
    Mar 6, 2024
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 3, 1928 - Jul 14, 2025
    Area covered
    United States
    Description

    The main stock market index of United States, the US500, fell to 6226 points on July 14, 2025, losing 0.54% from the previous session. Over the past month, the index has climbed 3.20% and is up 10.56% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from United States. United States Stock Market Index - values, historical data, forecasts and news - updated on July of 2025.

  4. F

    Dow-Jones Industrial Stock Price Index for United States

    • fred.stlouisfed.org
    json
    Updated Aug 15, 2012
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2012). Dow-Jones Industrial Stock Price Index for United States [Dataset]. https://fred.stlouisfed.org/series/M1109BUSM293NNBR
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Aug 15, 2012
    License

    https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required

    Area covered
    United States
    Description

    Graph and download economic data for Dow-Jones Industrial Stock Price Index for United States (M1109BUSM293NNBR) from Dec 1914 to Dec 1968 about stock market, industry, price index, indexes, price, and USA.

  5. h

    Dow30_stock_prediction

    • huggingface.co
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lei Z, Dow30_stock_prediction [Dataset]. https://huggingface.co/datasets/descartes100/Dow30_stock_prediction
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Authors
    Lei Z
    Description

    Dow30 Stock Prediction Dataset

      Overview
    

    Welcome to the Dow30 Stock Prediction dataset! This dataset is designed to assist in predicting stock returns for companies in the Dow Jones Industrial Average (Dow30). It includes essential information about each company, such as news from the last two weeks, basic financial data, and stock prices over the same period.

      Dataset Structure
    

    The dataset consists of the following columns:

    prompt: Information about the company… See the full description on the dataset page: https://huggingface.co/datasets/descartes100/Dow30_stock_prediction.

  6. Dow Stock Data 2000-2020

    • kaggle.com
    Updated Sep 10, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    THG (2021). Dow Stock Data 2000-2020 [Dataset]. https://www.kaggle.com/deeplytics/dow-stock-data/tasks
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 10, 2021
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    THG
    Description

    Context

    Stock time series are a favourite among data scientists because they are easily understood and widely available - in this extensive data set you will find long-time time-series with open/close/high/min/adjusted features, as well as data regarding stock splits, trading volume and dividends.

    Content

    This data set includes Dow Jones member stock prices (status 01.0.1.2021) with all their historic stock performances from 01.01.2020 to 31.12.2020.

    • 30 Dow Jones stocks
    • 21 years of data (depending on company age)
    • 1 entry per day
    • 150503 data points

    Please also check the corresponding Jupyter Notebook to get some basic ideas how to use this data set: https://www.kaggle.com/deeplytics/dow-jones-historic-stock-data-2000-2020

    Stock Names

    In the data set, all companies use their stock ticker names. If you are unfamiliar with them, please check this overview: https://www.cnbc.com/dow-30/

    Inspiration

    Today's free APIs and coding libraries make it relatively easy for the average user to get an understanding of stock price movements. More advanced users may even be able to find patterns, that can be incorporated into investment decisions.

    Acknowledgements

    Photo by Dmitry Demidko on Unsplash: https://unsplash.com/photos/eBWzFKahEaU?utm_source=unsplash&utm_medium=referral&utm_content=creditShareLink

  7. M

    Dow-Jones Industrial Stock Index | Data | 1914-1968

    • macrotrends.net
    csv
    Updated Jul 31, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MACROTRENDS (2025). Dow-Jones Industrial Stock Index | Data | 1914-1968 [Dataset]. https://www.macrotrends.net/datasets/3558/dow-jones-industrial-stock-index
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jul 31, 2025
    Dataset authored and provided by
    MACROTRENDS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    1914 - 1968
    Area covered
    United States
    Description

    Dow-Jones Industrial Stock Index: 54 years of historical data from 1914 to 1968.

  8. T

    United States Stock Market Index Data

    • tradingeconomics.com
    • fa.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Mar 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2024). United States Stock Market Index Data [Dataset]. https://tradingeconomics.com/united-states/stock-market?&sa=u&ei=oscuvi_vm87uaom-gzah&ved=0cdcqfjag&usg=afqjcnft8xo94npdcodluglxnqi05ysxta
    Explore at:
    excel, json, csv, xmlAvailable download formats
    Dataset updated
    Mar 6, 2024
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 3, 1928 - Jul 4, 2025
    Area covered
    United States
    Description

    The main stock market index of United States, the US500, fell to 6238 points on July 4, 2025, losing 0.65% from the previous session. Over the past month, the index has climbed 5.04% and is up 12.06% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from United States. United States Stock Market Index - values, historical data, forecasts and news - updated on July of 2025.

  9. k

    The Dow Jones Industrial Average (Forecast)

    • kappasignal.com
    Updated Mar 29, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). The Dow Jones Industrial Average (Forecast) [Dataset]. https://www.kappasignal.com/2023/03/the-dow-jones-industrial-average.html
    Explore at:
    Dataset updated
    Mar 29, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    The Dow Jones Industrial Average

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  10. Stock market predictions

    • kaggle.com
    Updated Feb 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tanishq dublish (2024). Stock market predictions [Dataset]. https://www.kaggle.com/datasets/tanishqdublish/stock-market-predictions
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 18, 2024
    Dataset provided by
    Kaggle
    Authors
    Tanishq dublish
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    Actually, I prepare this dataset for students on my Deep Learning and NLP course.

    But I am also very happy to see kagglers play around with it.

    Have fun!

    Description:

    There are two channels of data provided in this dataset:

    News data: I crawled historical news headlines from Reddit WorldNews Channel (/r/worldnews). They are ranked by reddit users' votes, and only the top 25 headlines are considered for a single date. (Range: 2008-06-08 to 2016-07-01)

    Stock data: Dow Jones Industrial Average (DJIA) is used to "prove the concept". (Range: 2008-08-08 to 2016-07-01)

    I provided three data files in .csv format:

    RedditNews.csv: two columns The first column is the "date", and second column is the "news headlines". All news are ranked from top to bottom based on how hot they are. Hence, there are 25 lines for each date.

    DJIA_table.csv: Downloaded directly from Yahoo Finance: check out the web page for more info.

    Combined_News_DJIA.csv: To make things easier for my students, I provide this combined dataset with 27 columns. The first column is "Date", the second is "Label", and the following ones are news headlines ranging from "Top1" to "Top25".

  11. F

    S&P 500

    • fred.stlouisfed.org
    json
    Updated Jul 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). S&P 500 [Dataset]. https://fred.stlouisfed.org/series/SP500
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jul 11, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval

    Description

    View data of the S&P 500, an index of the stocks of 500 leading companies in the US economy, which provides a gauge of the U.S. equity market.

  12. Dow Jones Industrial Average Index Target Price Prediction (Forecast)

    • kappasignal.com
    Updated Oct 25, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). Dow Jones Industrial Average Index Target Price Prediction (Forecast) [Dataset]. https://www.kappasignal.com/2022/10/dow-jones-industrial-average-index_25.html
    Explore at:
    Dataset updated
    Oct 25, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Dow Jones Industrial Average Index Target Price Prediction

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  13. Dow Jones Industrial Average Index assigned short-term B1 & long-term Ba1...

    • kappasignal.com
    Updated Oct 24, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). Dow Jones Industrial Average Index assigned short-term B1 & long-term Ba1 forecasted stock rating. (Forecast) [Dataset]. https://www.kappasignal.com/2022/10/dow-jones-industrial-average-index.html
    Explore at:
    Dataset updated
    Oct 24, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Dow Jones Industrial Average Index assigned short-term B1 & long-term Ba1 forecasted stock rating.

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  14. T

    Japan Stock Market Index (JP225) Data

    • tradingeconomics.com
    • ko.tradingeconomics.com
    • +12more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Japan Stock Market Index (JP225) Data [Dataset]. https://tradingeconomics.com/japan/stock-market
    Explore at:
    excel, csv, xml, jsonAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 5, 1965 - Jul 14, 2025
    Area covered
    Japan
    Description

    Japan's main stock market index, the JP225, fell to 39432 points on July 14, 2025, losing 0.35% from the previous session. Over the past month, the index has climbed 2.93%, though it remains 4.47% lower than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from Japan. Japan Stock Market Index (JP225) - values, historical data, forecasts and news - updated on July of 2025.

  15. u

    Stock market statistics, Canada and United States, Bank of Canada

    • data.urbandatacentre.ca
    • www150.statcan.gc.ca
    • +4more
    Updated Oct 1, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Stock market statistics, Canada and United States, Bank of Canada [Dataset]. https://data.urbandatacentre.ca/dataset/gov-canada-e037b4dd-4c13-4cc2-b8c4-0262083dbbd0
    Explore at:
    Dataset updated
    Oct 1, 2024
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Area covered
    Canada, United States
    Description

    This table contains 14 series, with data starting from 1953 (not all combinations necessarily have data for all years). This table contains data described by the following dimensions (Not all combinations are available): Geography (1 items: Canada ...), Stock market statistics (14 items: Toronto Stock Exchange; value of shares traded; United States common stocks; Dow-Jones industrials; high; United States common stocks; Dow-Jones industrials; low; Toronto Stock Exchange; volume of shares traded ...).

  16. The data about the 30 DJIA companies.

    • plos.figshare.com
    xls
    Updated Jun 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Peter Gabrovšek; Darko Aleksovski; Igor Mozetič; Miha Grčar (2023). The data about the 30 DJIA companies. [Dataset]. http://doi.org/10.1371/journal.pone.0173151.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 8, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Peter Gabrovšek; Darko Aleksovski; Igor Mozetič; Miha Grčar
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The collected tweets and Earnings Announcements (EA) cover the period of three years, from June 1, 2013 to June 3, 2016. Companies are ordered by the total number of tweets collected. For each company, there is the sentiment distribution, market capitalization, and the prevailing timing of EAs with respect to the NYSE trading hours. Each company issues four EAs per year, therefore there is a total of 360 EAs (30 companies, three years, four EAs per year)1.

  17. d

    Yacodata: S&P 500 Companies Data (up-to-date intelligence on US largest 500...

    • datarade.ai
    .csv
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yacodata, Yacodata: S&P 500 Companies Data (up-to-date intelligence on US largest 500 companies) [Dataset]. https://datarade.ai/data-products/s-p500-companies-informations-up-to-date-yacodata
    Explore at:
    .csvAvailable download formats
    Dataset authored and provided by
    Yacodata
    Area covered
    United States
    Description

    The dataset consists of companies listed in the S&P500, stock market index that measures the stock performance of 500 large companies listed on stock exchanges in the United State.

    The S&P 500 stock market index, maintained by S&P Dow Jones Indices, comprises 505 common stocks issued by 500 large-cap companies and traded on American stock exchanges (including the 30 companies that compose the Dow Jones Industrial Average)

    The S&P500 or SPX is the most commonly followed equity index, it covers about 80 percent of the American equity market by capitalization.

    The index constituents and the constituent weights are updated regularly using rules published by S&P Dow Jones Indices. Although called the S&P 500, the index contains 505 stocks

  18. Will the Dow Jones Industrial Average Index Soar or Sink? (Forecast)

    • kappasignal.com
    Updated Oct 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). Will the Dow Jones Industrial Average Index Soar or Sink? (Forecast) [Dataset]. https://www.kappasignal.com/2024/10/will-dow-jones-industrial-average-index.html
    Explore at:
    Dataset updated
    Oct 19, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Will the Dow Jones Industrial Average Index Soar or Sink?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  19. The Dow Jones U.S. Completion Total Stock Market Index (Forecast)

    • kappasignal.com
    Updated May 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). The Dow Jones U.S. Completion Total Stock Market Index (Forecast) [Dataset]. https://www.kappasignal.com/2023/05/the-dow-jones-us-completion-total-stock.html
    Explore at:
    Dataset updated
    May 8, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    The Dow Jones U.S. Completion Total Stock Market Index

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  20. Z

    Data from: CNNpred: CNN-based stock market prediction using a diverse set of...

    • data.niaid.nih.gov
    • data.mendeley.com
    Updated Feb 4, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ehsan Hoseinzade (2020). CNNpred: CNN-based stock market prediction using a diverse set of variables [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_3634200
    Explore at:
    Dataset updated
    Feb 4, 2020
    Dataset authored and provided by
    Ehsan Hoseinzade
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset contains several daily features of S&P 500, NASDAQ Composite, Dow Jones Industrial Average, RUSSELL 2000, and NYSE Composite from 2010 to 2017. It covers features from various categories of technical indicators, futures contracts, price of commodities, important indices of markets around the world, price of major companies in the U.S. market, and treasury bill rates. Sources and thorough description of features have been mentioned in the paper of "CNNpred: CNN-based stock market prediction using a diverse set of variables".

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2025). Dow Jones Industrial Average [Dataset]. https://fred.stlouisfed.org/series/DJIA

Dow Jones Industrial Average

DJIA

Explore at:
29 scholarly articles cite this dataset (View in Google Scholar)
jsonAvailable download formats
Dataset updated
Jul 11, 2025
License

https://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval

Description

Graph and download economic data for Dow Jones Industrial Average (DJIA) from 2015-07-13 to 2025-07-11 about stock market, average, industry, and USA.

Search
Clear search
Close search
Google apps
Main menu