40 datasets found
  1. s

    US Colleges and Universities

    • data.smartidf.services
    • public.aws-ec2-eu-1.opendatasoft.com
    • +2more
    csv, excel, geojson +1
    Updated Jul 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). US Colleges and Universities [Dataset]. https://data.smartidf.services/explore/dataset/us-colleges-and-universities/
    Explore at:
    geojson, json, excel, csvAvailable download formats
    Dataset updated
    Jul 6, 2025
    License

    https://en.wikipedia.org/wiki/Public_domainhttps://en.wikipedia.org/wiki/Public_domain

    Area covered
    United States
    Description

    The Colleges and Universities feature class/shapefile is composed of all Post Secondary Education facilities as defined by the Integrated Post Secondary Education System (IPEDS, http://nces.ed.gov/ipeds/), National Center for Education Statistics (NCES, https://nces.ed.gov/), US Department of Education for the 2018-2019 school year. Included are Doctoral/Research Universities, Masters Colleges and Universities, Baccalaureate Colleges, Associates Colleges, Theological seminaries, Medical Schools and other health care professions, Schools of engineering and technology, business and management, art, music, design, Law schools, Teachers colleges, Tribal colleges, and other specialized institutions. Overall, this data layer covers all 50 states, as well as Puerto Rico and other assorted U.S. territories. This feature class contains all MEDS/MEDS+ as approved by the National Geospatial-Intelligence Agency (NGA) Homeland Security Infrastructure Program (HSIP) Team. Complete field and attribute information is available in the ”Entities and Attributes” metadata section. Geographical coverage is depicted in the thumbnail above and detailed in the "Place Keyword" section of the metadata. This feature class does not have a relationship class but is related to Supplemental Colleges. Colleges and Universities that are not included in the NCES IPEDS data are added to the Supplemental Colleges feature class when found. This release includes the addition of 175 new records, the removal of 468 no longer reported by NCES, and modifications to the spatial location and/or attribution of 6682 records.

  2. College enrollment in public and private institutions in the U.S. 1965-2031

    • statista.com
    • ai-chatbox.pro
    Updated Mar 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). College enrollment in public and private institutions in the U.S. 1965-2031 [Dataset]. https://www.statista.com/statistics/183995/us-college-enrollment-and-projections-in-public-and-private-institutions/
    Explore at:
    Dataset updated
    Mar 25, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    There were approximately 18.58 million college students in the U.S. in 2022, with around 13.49 million enrolled in public colleges and a further 5.09 million students enrolled in private colleges. The figures are projected to remain relatively constant over the next few years.

    What is the most expensive college in the U.S.? The overall number of higher education institutions in the U.S. totals around 4,000, and California is the state with the most. One important factor that students – and their parents – must consider before choosing a college is cost. With annual expenses totaling almost 78,000 U.S. dollars, Harvey Mudd College in California was the most expensive college for the 2021-2022 academic year. There are three major costs of college: tuition, room, and board. The difference in on-campus and off-campus accommodation costs is often negligible, but they can change greatly depending on the college town.

    The differences between public and private colleges Public colleges, also called state colleges, are mostly funded by state governments. Private colleges, on the other hand, are not funded by the government but by private donors and endowments. Typically, private institutions are  much more expensive. Public colleges tend to offer different tuition fees for students based on whether they live in-state or out-of-state, while private colleges have the same tuition cost for every student.

  3. N

    University Heights, IA Median Income by Age Groups Dataset: A Comprehensive...

    • neilsberg.com
    csv, json
    Updated Aug 7, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). University Heights, IA Median Income by Age Groups Dataset: A Comprehensive Breakdown of University Heights Annual Median Income Across 4 Key Age Groups // 2024 Edition [Dataset]. https://www.neilsberg.com/research/datasets/a3fba913-54ae-11ef-a42e-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Aug 7, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    University Heights
    Variables measured
    Income for householder under 25 years, Income for householder 65 years and over, Income for householder between 25 and 44 years, Income for householder between 45 and 64 years
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates. It delineates income distributions across four age groups (Under 25 years, 25 to 44 years, 45 to 64 years, and 65 years and over) following an initial analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series via current methods (R-CPI-U-RS). For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the distribution of median household income among distinct age brackets of householders in University Heights. Based on the latest 2018-2022 5-Year Estimates from the American Community Survey, it displays how income varies among householders of different ages in University Heights. It showcases how household incomes typically rise as the head of the household gets older. The dataset can be utilized to gain insights into age-based household income trends and explore the variations in incomes across households.

    Key observations: Insights from 2022

    In terms of income distribution across age cohorts, in University Heights, householders within the 65 years and over age group have the highest median household income at $255,665, followed by those in the 25 to 44 years age group with an income of $111,934. Meanwhile householders within the 45 to 64 years age group report the second lowest median household income of $108,897. Notably, householders within the under 25 years age group, had the lowest median household income at $32,539.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.

    Age groups classifications include:

    • Under 25 years
    • 25 to 44 years
    • 45 to 64 years
    • 65 years and over

    Variables / Data Columns

    • Age Of The Head Of Household: This column presents the age of the head of household
    • Median Household Income: Median household income, in 2022 inflation-adjusted dollars for the specific age group

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for University Heights median household income by age. You can refer the same here

  4. NCES Academic Library Survey Dataset 1996 - 2020 -- alsMERGE_2020.csv

    • figshare.com
    txt
    Updated Jan 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Starr Hoffman (2024). NCES Academic Library Survey Dataset 1996 - 2020 -- alsMERGE_2020.csv [Dataset]. http://doi.org/10.6084/m9.figshare.25007429.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jan 16, 2024
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Starr Hoffman
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset contains data from the National Center for Education Statistics' Academic Library Survey, which was gathered every two years from 1996 - 2014, and annually in IPEDS starting in 2014 (this dataset has continued to only merge data every two years, following the original schedule). This data was merged, transformed, and used for research by Starr Hoffman and Samantha Godbey.This data was merged using R; R scripts for this merge can be made available upon request. Some variables changed names or definitions during this time; a view of these variables over time is provided in the related Figshare Project. Carnegie Classification changed several times during this period; all Carnegie classifications were crosswalked to the 2000 classification version; that information is also provided in the related Figshare Project. This data was used for research published in several articles, conference papers, and posters starting in 2018 (some of this research used an older version of the dataset which was deposited in the University of Nevada, Las Vegas's repository).SourcesAll data sources were downloaded from the National Center for Education Statistics website https://nces.ed.gov/. Individual datasets and years accessed are listed below.[dataset] U.S. Department of Education, National Center for Education Statistics, Academic Libraries component, Integrated Postsecondary Education Data System (IPEDS), (2020, 2018, 2016, 2014), https://nces.ed.gov/ipeds/datacenter/login.aspx?gotoReportId=7[dataset] U.S. Department of Education, National Center for Education Statistics, Academic Libraries Survey (ALS) Public Use Data File, Library Statistics Program, (2012, 2010, 2008, 2006, 2004, 2002, 2000, 1998, 1996), https://nces.ed.gov/surveys/libraries/aca_data.asp[dataset] U.S. Department of Education, National Center for Education Statistics, Institutional Characteristics component, Integrated Postsecondary Education Data System (IPEDS), (2020, 2018, 2016, 2014), https://nces.ed.gov/ipeds/datacenter/login.aspx?gotoReportId=7[dataset] U.S. Department of Education, National Center for Education Statistics, Fall Enrollment component, Integrated Postsecondary Education Data System (IPEDS), (2020, 2018, 2016, 2014, 2012, 2010, 2008, 2006, 2004, 2002, 2000, 1998, 1996), https://nces.ed.gov/ipeds/datacenter/login.aspx?gotoReportId=7[dataset] U.S. Department of Education, National Center for Education Statistics, Human Resources component, Integrated Postsecondary Education Data System (IPEDS), (2020, 2018, 2016, 2014, 2012, 2010, 2008, 2006), https://nces.ed.gov/ipeds/datacenter/login.aspx?gotoReportId=7[dataset] U.S. Department of Education, National Center for Education Statistics, Employees Assigned by Position component, Integrated Postsecondary Education Data System (IPEDS), (2004, 2002), https://nces.ed.gov/ipeds/datacenter/login.aspx?gotoReportId=7[dataset] U.S. Department of Education, National Center for Education Statistics, Fall Staff component, Integrated Postsecondary Education Data System (IPEDS), (1999, 1997, 1995), https://nces.ed.gov/ipeds/datacenter/login.aspx?gotoReportId=7

  5. N

    University Park, TX Median Income by Age Groups Dataset: A Comprehensive...

    • neilsberg.com
    csv, json
    Updated Aug 7, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). University Park, TX Median Income by Age Groups Dataset: A Comprehensive Breakdown of University Park Annual Median Income Across 4 Key Age Groups // 2024 Edition [Dataset]. https://www.neilsberg.com/research/datasets/a3fbab92-54ae-11ef-a42e-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Aug 7, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    University Park, Texas
    Variables measured
    Income for householder under 25 years, Income for householder 65 years and over, Income for householder between 25 and 44 years, Income for householder between 45 and 64 years
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates. It delineates income distributions across four age groups (Under 25 years, 25 to 44 years, 45 to 64 years, and 65 years and over) following an initial analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series via current methods (R-CPI-U-RS). For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the distribution of median household income among distinct age brackets of householders in University Park. Based on the latest 2018-2022 5-Year Estimates from the American Community Survey, it displays how income varies among householders of different ages in University Park. It showcases how household incomes typically rise as the head of the household gets older. The dataset can be utilized to gain insights into age-based household income trends and explore the variations in incomes across households.

    Key observations: Insights from 2022

    In terms of income distribution across age cohorts, in University Park, the median household income stands at $260,314 for householders within the 25 to 44 years age group, followed by $260,314 for the 45 to 64 years age group. Notably, householders within the 65 years and over age group, had the lowest median household income at $173,759.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.

    Age groups classifications include:

    • Under 25 years
    • 25 to 44 years
    • 45 to 64 years
    • 65 years and over

    Variables / Data Columns

    • Age Of The Head Of Household: This column presents the age of the head of household
    • Median Household Income: Median household income, in 2022 inflation-adjusted dollars for the specific age group

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for University Park median household income by age. You can refer the same here

  6. International students in China

    • kaggle.com
    Updated Oct 18, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mohaiminul Islam (2020). International students in China [Dataset]. https://www.kaggle.com/mohaiminul101/international-students-in-china/activity
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Oct 18, 2020
    Dataset provided by
    Kaggle
    Authors
    Mohaiminul Islam
    License

    http://www.gnu.org/licenses/lgpl-3.0.htmlhttp://www.gnu.org/licenses/lgpl-3.0.html

    Area covered
    China
    Description

    Context

    More international students are flocking to China than ever before. According to a report, over 540,000 foreigners studied in China in 2018 – marking a 40 percent increase from 2012. China attracts more international students than any other Asian power and ranks third globally, behind the United States and the United Kingdom.

    Content

    In 2018 there were a total of 492,185 international students from 196 countries/areas pursuing their studies in 1,004 higher education institutions in China’s 31 provinces/autonomous regions/provincial-level municipalities, marking an increase of 3,013 students or 0.62% compared to 2017. International students in Hong Kong, Macau and Taiwan are not included in the datasets. The datasets contain three CSV files (Continent, Country, Province) with different data about international students in China.

    Columns Description

    @Continent (Number/percent of international students by continent) Continent- The name of continent Number - The number of total international students Deaths- The percentage of total international students

    @Country (Number of international students by country of origin) Rank- The rank of the country based on total students in China Country- The name of the country Number- The number of total international students

    @Province (The top provinces/cities with the largest number of international students) Province- The name of the city/province Number- The number of total international students

    Acknowledgements

    This data collected from moe.gov.cn.

    Inspiration

    Currently, I'm studying at a Chinese university. Every year many international students come to China for their higher study, and the ratio of international students is growing steadily. This data will help us to understand the ratio of international students in China.

  7. f

    ReferenceUSA Historical Consumer Datasets

    • arizona.figshare.com
    Updated Aug 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    University of Arizona Libraries (2024). ReferenceUSA Historical Consumer Datasets [Dataset]. http://doi.org/10.25422/azu.data.26222102.v1
    Explore at:
    Dataset updated
    Aug 6, 2024
    Dataset provided by
    University of Arizona Research Data Repository
    Authors
    University of Arizona Libraries
    License

    http://rightsstatements.org/vocab/InC/1.0/http://rightsstatements.org/vocab/InC/1.0/

    Description

    Dataset available only to University of Arizona affiliates. To obtain access, you must log in to ReDATA with your NetID. Data is for research use by each individual downloader only. Sharing and/or redistribution of any portion of this dataset is prohibited.This ReferenceUSA dataset from Data Axle (formerly Infogroup) contains household data about US consumers in annual snapshots from 2006-2021. It includes details such as family demographics, income, home ownership status, lifestyle, location and more, which can help users to create marketing plans and conduct competitive analyses.Consumer profiles are described with 58-66 indicators. Data for all states are combined into single files for each year between 2006 and 2012 while there is a file for each state in 2013-2021. The Layout - Consumer DB Historical 2006-2012.xlsx in Documentation.zip applies to 2006-2012. Codebooks for 2013, 2014, 2015, 2017, 2018, 2019 and 2021 are not included but files in 2013-2021 have similar layouts therefore 2016 Historical Residential File Layout.xlsx and 2020 Historical Residential File Layout.xlsx in Documentation.zip apply to 2013-2021.The University of Arizona University Libraries also subscribe to Data Axle Reference Solutions which provides this data in a searchable, online database with historical data available going back to 2003.NOTE: The uncompressed datasets are very large.Detailed file descriptions and MD5 hash values for each file can be found in the README.txt file.For inquiries regarding the contents of this dataset, please contact the Corresponding Author listed in the README.txt file. Administrative inquiries (e.g., removal requests, trouble downloading, etc.) can be directed to data-management@arizona.edu

  8. N

    University Place, WA Median Income by Age Groups Dataset: A Comprehensive...

    • neilsberg.com
    csv, json
    Updated Aug 7, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). University Place, WA Median Income by Age Groups Dataset: A Comprehensive Breakdown of University Place Annual Median Income Across 4 Key Age Groups // 2024 Edition [Dataset]. https://www.neilsberg.com/research/datasets/a3fbac10-54ae-11ef-a42e-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Aug 7, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    University Place, Washington
    Variables measured
    Income for householder under 25 years, Income for householder 65 years and over, Income for householder between 25 and 44 years, Income for householder between 45 and 64 years
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates. It delineates income distributions across four age groups (Under 25 years, 25 to 44 years, 45 to 64 years, and 65 years and over) following an initial analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series via current methods (R-CPI-U-RS). For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the distribution of median household income among distinct age brackets of householders in University Place. Based on the latest 2018-2022 5-Year Estimates from the American Community Survey, it displays how income varies among householders of different ages in University Place. It showcases how household incomes typically rise as the head of the household gets older. The dataset can be utilized to gain insights into age-based household income trends and explore the variations in incomes across households.

    Key observations: Insights from 2022

    In terms of income distribution across age cohorts, in University Place, householders within the 45 to 64 years age group have the highest median household income at $121,005, followed by those in the 25 to 44 years age group with an income of $105,672. Meanwhile householders within the 65 years and over age group report the second lowest median household income of $68,695. Notably, householders within the under 25 years age group, had the lowest median household income at $52,514.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.

    Age groups classifications include:

    • Under 25 years
    • 25 to 44 years
    • 45 to 64 years
    • 65 years and over

    Variables / Data Columns

    • Age Of The Head Of Household: This column presents the age of the head of household
    • Median Household Income: Median household income, in 2022 inflation-adjusted dollars for the specific age group

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for University Place median household income by age. You can refer the same here

  9. d

    Data from: Grass-Cast Database - Data on aboveground net primary...

    • catalog.data.gov
    • agdatacommons.nal.usda.gov
    Updated Jun 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Agricultural Research Service (2025). Grass-Cast Database - Data on aboveground net primary productivity (ANPP), climate data, NDVI, and cattle weight gain for Western U.S. rangelands [Dataset]. https://catalog.data.gov/dataset/grass-cast-database-data-on-aboveground-net-primary-productivity-anpp-climate-data-ndvi-an-ac7cd
    Explore at:
    Dataset updated
    Jun 5, 2025
    Dataset provided by
    Agricultural Research Service
    Area covered
    United States
    Description

    Grass-Cast: Experimental Grassland Productivity Forecast for the Great Plains Grass-Cast uses almost 40 years of historical data on weather and vegetation growth in order to project grassland productivity in the Western U.S. More details on the projection model and method can be found at https://esajournals.onlinelibrary.wiley.com/doi/full/10.1002/ecs2.3280. Every spring, ranchers in the drought‐prone U.S. Great Plains face the same difficult challenge—trying to estimate how much forage will be available for livestock to graze during the upcoming summer grazing season. To reduce this uncertainty in predicting forage availability, we developed an innovative new grassland productivity forecast system, named Grass‐Cast, to provide science‐informed estimates of growing season aboveground net primary production (ANPP). Grass‐Cast uses over 30 yr of historical data including weather and the satellite‐derived normalized vegetation difference index (NDVI)—combined with ecosystem modeling and seasonal precipitation forecasts—to predict if rangelands in individual counties are likely to produce below‐normal, near‐normal, or above‐normal amounts of grass biomass (lbs/ac). Grass‐Cast also provides a view of rangeland productivity in the broader region, to assist in larger‐scale decision‐making—such as where forage resources for grazing might be more plentiful if a rancher’s own region is at risk of drought. Grass‐Cast is updated approximately every two weeks from April through July. Each Grass‐Cast forecast provides three scenarios of ANPP for the upcoming growing season based on different precipitation outlooks. Near real‐time 8‐d NDVI can be used to supplement Grass‐Cast in predicting cumulative growing season NDVI and ANPP starting in mid‐April for the Southern Great Plains and mid‐May to early June for the Central and Northern Great Plains. Here, we present the scientific basis and methods for Grass‐Cast along with the county‐level production forecasts from 2017 and 2018 for ten states in the U.S. Great Plains. The correlation between early growing season forecasts and the end‐of‐growing season ANPP estimate is >50% by late May or early June. In a retrospective evaluation, we compared Grass‐Cast end‐of‐growing season ANPP results to an independent dataset and found that the two agreed 69% of the time over a 20‐yr period. Although some predictive tools exist for forecasting upcoming growing season conditions, none predict actual productivity for the entire Great Plains. The Grass‐Cast system could be adapted to predict grassland ANPP outside of the Great Plains or to predict perennial biofuel grass production. This new experimental grassland forecast is the result of a collaboration between Colorado State University, U.S. Department of Agriculture (USDA), National Drought Mitigation Center, and the University of Arizona. Funding for this project was provided by the USDA Natural Resources Conservation Service (NRCS), USDA Agricultural Research Service (ARS), and the National Drought Mitigation Center. Watch for updates on the Grass-Cast website or on Twitter (@PeckAgEc). Project Contact: Dannele Peck, Director of the USDA Northern Plains Climate Hub, at dannele.peck@ars.usda.gov or 970-744-9043. Resources in this dataset:Resource Title: Cattle weight gain. File Name: Cattle_weight_gains.xlsxResource Description: Cattle weight gain data for Grass-Cast Database. Resource Title: NDVI. File Name: NDVI.xlsxResource Description: Annual NDVI growing season values for Grass-Cast sites. See readme for more information and NDVI_raw for the raw values. Resource Title: NDVI_raw . File Name: NDVI_raw.xlsxResource Description: Raw bimonthly NDVI values for Grass-Cast sites. Resource Title: ANPP. File Name: ANPP.xlsxResource Description: Dataset for annual aboveground net primary productivity (ANPP). Excel sheet is broken into two tabs, 1) 'readme' describing the data, 2) 'ANPP' with the actual data. Resource Title: Grass-Cast_sitelist . File Name: Grass-Cast_sitelist.xlsxResource Description: This provides a list of sites-studies that are currently incorporated into the Database as well as meta-data and contact info associated with the data sets. Includes a 'readme' tab and 'sitelist' tab. Resource Title: Grass-Cast_AgDataCommons_overview. File Name: Grass-Cast_AgDataCommons_download.htmlResource Description: Html document that shows database overview information. This document provides a glimpse of the data tables available within the data resource as well as respective meta-data tables. The R script (R markdown, .Rmd format) that generates the html file, and can be used to upload the Grass-Cast associated Ag Data Commons data files can be downloaded at the 'Grass-Cast R script' zip folder. The Grass-Cast files still need to be locally downloaded before use, but we are looking to make a download automated. Resource Title: Grass-Cast R script . File Name: R_access_script.zipResource Description: R script (in Rmarkdown [Rmd] format) for uploading and looking at Grass-Cast data.

  10. N

    University City, MO Median Income by Age Groups Dataset: A Comprehensive...

    • neilsberg.com
    csv, json
    Updated Aug 7, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). University City, MO Median Income by Age Groups Dataset: A Comprehensive Breakdown of University City Annual Median Income Across 4 Key Age Groups // 2024 Edition [Dataset]. https://www.neilsberg.com/research/datasets/a3fba84e-54ae-11ef-a42e-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Aug 7, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    University City, Missouri
    Variables measured
    Income for householder under 25 years, Income for householder 65 years and over, Income for householder between 25 and 44 years, Income for householder between 45 and 64 years
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates. It delineates income distributions across four age groups (Under 25 years, 25 to 44 years, 45 to 64 years, and 65 years and over) following an initial analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series via current methods (R-CPI-U-RS). For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the distribution of median household income among distinct age brackets of householders in University City. Based on the latest 2018-2022 5-Year Estimates from the American Community Survey, it displays how income varies among householders of different ages in University City. It showcases how household incomes typically rise as the head of the household gets older. The dataset can be utilized to gain insights into age-based household income trends and explore the variations in incomes across households.

    Key observations: Insights from 2022

    In terms of income distribution across age cohorts, in University City, householders within the 45 to 64 years age group have the highest median household income at $116,316, followed by those in the 25 to 44 years age group with an income of $73,837. Meanwhile householders within the 65 years and over age group report the second lowest median household income of $72,202. Notably, householders within the under 25 years age group, had the lowest median household income at $22,187.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.

    Age groups classifications include:

    • Under 25 years
    • 25 to 44 years
    • 45 to 64 years
    • 65 years and over

    Variables / Data Columns

    • Age Of The Head Of Household: This column presents the age of the head of household
    • Median Household Income: Median household income, in 2022 inflation-adjusted dollars for the specific age group

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for University City median household income by age. You can refer the same here

  11. d

    Johns Hopkins COVID-19 Case Tracker

    • data.world
    csv, zip
    Updated Jul 31, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Associated Press (2025). Johns Hopkins COVID-19 Case Tracker [Dataset]. https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Jul 31, 2025
    Authors
    The Associated Press
    Time period covered
    Jan 22, 2020 - Mar 9, 2023
    Area covered
    Description

    Updates

    • Notice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.

    • April 9, 2020

      • The population estimate data for New York County, NY has been updated to include all five New York City counties (Kings County, Queens County, Bronx County, Richmond County and New York County). This has been done to match the Johns Hopkins COVID-19 data, which aggregates counts for the five New York City counties to New York County.
    • April 20, 2020

      • Johns Hopkins death totals in the US now include confirmed and probable deaths in accordance with CDC guidelines as of April 14. One significant result of this change was an increase of more than 3,700 deaths in the New York City count. This change will likely result in increases for death counts elsewhere as well. The AP does not alter the Johns Hopkins source data, so probable deaths are included in this dataset as well.
    • April 29, 2020

      • The AP is now providing timeseries data for counts of COVID-19 cases and deaths. The raw counts are provided here unaltered, along with a population column with Census ACS-5 estimates and calculated daily case and death rates per 100,000 people. Please read the updated caveats section for more information.
    • September 1st, 2020

      • Johns Hopkins is now providing counts for the five New York City counties individually.
    • February 12, 2021

      • The Ohio Department of Health recently announced that as many as 4,000 COVID-19 deaths may have been underreported through the state’s reporting system, and that the "daily reported death counts will be high for a two to three-day period."
      • Because deaths data will be anomalous for consecutive days, we have chosen to freeze Ohio's rolling average for daily deaths at the last valid measure until Johns Hopkins is able to back-distribute the data. The raw daily death counts, as reported by Johns Hopkins and including the backlogged death data, will still be present in the new_deaths column.
    • February 16, 2021

      - Johns Hopkins has reconciled Ohio's historical deaths data with the state.

      Overview

    The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.

    The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.

    This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.

    The AP is updating this dataset hourly at 45 minutes past the hour.

    To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.

    Queries

    Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic

    Interactive

    The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.

    @(https://datawrapper.dwcdn.net/nRyaf/15/)

    Interactive Embed Code

    <iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>
    

    Caveats

    • This data represents the number of cases and deaths reported by each state and has been collected by Johns Hopkins from a number of sources cited on their website.
    • In some cases, deaths or cases of people who've crossed state lines -- either to receive treatment or because they became sick and couldn't return home while traveling -- are reported in a state they aren't currently in, because of state reporting rules.
    • In some states, there are a number of cases not assigned to a specific county -- for those cases, the county name is "unassigned to a single county"
    • This data should be credited to Johns Hopkins University's COVID-19 tracking project. The AP is simply making it available here for ease of use for reporters and members.
    • Caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
    • Population estimates at the county level are drawn from 2014-18 5-year estimates from the American Community Survey.
    • The Urban/Rural classification scheme is from the Center for Disease Control and Preventions's National Center for Health Statistics. It puts each county into one of six categories -- from Large Central Metro to Non-Core -- according to population and other characteristics. More details about the classifications can be found here.

    Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here

    Attribution

    This data should be credited to Johns Hopkins University COVID-19 tracking project

  12. Residential Patterns in South Florida

    • redivis.com
    application/jsonl +7
    Updated Mar 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Carnegie Mellon University Libraries (2023). Residential Patterns in South Florida [Dataset]. https://redivis.com/datasets/78y1-bnxtd190k
    Explore at:
    application/jsonl, stata, spss, csv, sas, avro, parquet, arrowAvailable download formats
    Dataset updated
    Mar 20, 2023
    Dataset provided by
    Redivis Inc.
    Authors
    Carnegie Mellon University Libraries
    Time period covered
    Jan 1, 2016 - Dec 1, 2016
    Area covered
    South Florida, Florida
    Description

    Abstract

    This dataset was curated for the digital humanities portion of the project "500 Years of Black History in South Florida" by Synatra Smith, Luling Huang, and Portia Hopkins.

    Methodology

    Data was curated at the U.S. Census Tract level for four counties in South Florida: Broward, Miami-Dade, Monroe, and Palm Beach.

    There are two tables in this dataset:

    • sociodem_enepov: This table contains several sociodemographic variables and energy burden level at the census tract level;
    • airqua: This table contains monthly median air quality data at the census tract level for Year 2016.

    %3C!-- --%3E

    The sociodemographic data come from the American Community Survey (2020 5-year estimates). The variables include fraction of black population, median income, unemployment rate, and four education level variables for population 25 years or above: fraction of population below high school, fraction of population who had high school diploma only, fraction of population who had a college degree or equivalent only, and fraction of population who had a graduate degree. Here are the table numbers and relevant columns from the U.S. Census data portal:

    • Education: S1501
    • Black population: B01001B (column: B01001B_001E)
    • Total population: B01001 (for calculating fraction of black population)
    • Median income: S1903 (column: S1903_C03_001E)
    • Employment: S2301 (column: S2301_C04_001E)

    %3C!-- --%3E

    The energy burden data come from the U.S. Department of Energy's Low-Income Energy Affordability Data (LEAD) tool. The air quality (PM2.5 concentration) data come from the U.S. Centers for Disease Control and Prevention's Daily Census Tract-Level PM2.5 Concentrations, 2016.

    This project is conducted on behalf of the Association for the Study of African American Life and History and the National Park Service with additional funding from the Council on Library and Information Resources.

    References

    • Centers for Disease Control and Prevention. (n.d.). National Environmental Public Health Tracking Network [Data set]. www.cdc.gov/ephtracking

    %3C!-- --%3E

    %3C!-- --%3E

    • U.S. Census Bureau. (2023). United States Census Bureau: Data [Data set]. U.S. Department of Commerce. https://data.census.gov/

    %3C!-- --%3E

    Usage

    This dataset curates from data existing in the public domain and can be used for other purposes freely with attribution.

  13. N

    University Park, IA Population Breakdown by Gender and Age Dataset: Male and...

    • neilsberg.com
    csv, json
    Updated Feb 19, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). University Park, IA Population Breakdown by Gender and Age Dataset: Male and Female Population Distribution Across 18 Age Groups // 2024 Edition [Dataset]. https://www.neilsberg.com/research/datasets/8e7cacde-c989-11ee-9145-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 19, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    University Park
    Variables measured
    Male and Female Population Under 5 Years, Male and Female Population over 85 years, Male and Female Population Between 5 and 9 years, Male and Female Population Between 10 and 14 years, Male and Female Population Between 15 and 19 years, Male and Female Population Between 20 and 24 years, Male and Female Population Between 25 and 29 years, Male and Female Population Between 30 and 34 years, Male and Female Population Between 35 and 39 years, Male and Female Population Between 40 and 44 years, and 8 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates. To measure the three variables, namely (a) Population (Male), (b) Population (Female), and (c) Gender Ratio (Males per 100 Females), we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau across 18 age groups, ranging from under 5 years to 85 years and above. These age groups are described above in the variables section. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of University Park by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for University Park. The dataset can be utilized to understand the population distribution of University Park by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in University Park. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for University Park.

    Key observations

    Largest age group (population): Male # 10-14 years (67) | Female # 50-54 years (35). Source: U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.

    Variables / Data Columns

    • Age Group: This column displays the age group for the University Park population analysis. Total expected values are 18 and are define above in the age groups section.
    • Population (Male): The male population in the University Park is shown in the following column.
    • Population (Female): The female population in the University Park is shown in the following column.
    • Gender Ratio: Also known as the sex ratio, this column displays the number of males per 100 females in University Park for each age group.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for University Park Population by Gender. You can refer the same here

  14. N

    West University Place, TX Median Income by Age Groups Dataset: A...

    • neilsberg.com
    csv, json
    Updated Aug 7, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). West University Place, TX Median Income by Age Groups Dataset: A Comprehensive Breakdown of West University Place Annual Median Income Across 4 Key Age Groups // 2024 Edition [Dataset]. https://www.neilsberg.com/research/datasets/a3fed7c6-54ae-11ef-a42e-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Aug 7, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    West University Place, Texas
    Variables measured
    Income for householder under 25 years, Income for householder 65 years and over, Income for householder between 25 and 44 years, Income for householder between 45 and 64 years
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates. It delineates income distributions across four age groups (Under 25 years, 25 to 44 years, 45 to 64 years, and 65 years and over) following an initial analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series via current methods (R-CPI-U-RS). For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the distribution of median household income among distinct age brackets of householders in West University Place. Based on the latest 2018-2022 5-Year Estimates from the American Community Survey, it displays how income varies among householders of different ages in West University Place. It showcases how household incomes typically rise as the head of the household gets older. The dataset can be utilized to gain insights into age-based household income trends and explore the variations in incomes across households.

    Key observations: Insights from 2022

    In terms of income distribution across age cohorts, in West University Place, the median household income stands at $260,314 for householders within the 25 to 44 years age group, followed by $260,314 for the 45 to 64 years age group. Notably, householders within the 65 years and over age group, had the lowest median household income at $141,799.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.

    Age groups classifications include:

    • Under 25 years
    • 25 to 44 years
    • 45 to 64 years
    • 65 years and over

    Variables / Data Columns

    • Age Of The Head Of Household: This column presents the age of the head of household
    • Median Household Income: Median household income, in 2022 inflation-adjusted dollars for the specific age group

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for West University Place median household income by age. You can refer the same here

  15. N

    University Heights, IA Population Breakdown by Gender and Age Dataset: Male...

    • neilsberg.com
    csv, json
    Updated Feb 19, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). University Heights, IA Population Breakdown by Gender and Age Dataset: Male and Female Population Distribution Across 18 Age Groups // 2024 Edition [Dataset]. https://www.neilsberg.com/research/datasets/8e7ca844-c989-11ee-9145-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 19, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Iowa, University Heights
    Variables measured
    Male and Female Population Under 5 Years, Male and Female Population over 85 years, Male and Female Population Between 5 and 9 years, Male and Female Population Between 10 and 14 years, Male and Female Population Between 15 and 19 years, Male and Female Population Between 20 and 24 years, Male and Female Population Between 25 and 29 years, Male and Female Population Between 30 and 34 years, Male and Female Population Between 35 and 39 years, Male and Female Population Between 40 and 44 years, and 8 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates. To measure the three variables, namely (a) Population (Male), (b) Population (Female), and (c) Gender Ratio (Males per 100 Females), we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau across 18 age groups, ranging from under 5 years to 85 years and above. These age groups are described above in the variables section. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of University Heights by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for University Heights. The dataset can be utilized to understand the population distribution of University Heights by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in University Heights. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for University Heights.

    Key observations

    Largest age group (population): Male # 20-24 years (128) | Female # 20-24 years (128). Source: U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.

    Variables / Data Columns

    • Age Group: This column displays the age group for the University Heights population analysis. Total expected values are 18 and are define above in the age groups section.
    • Population (Male): The male population in the University Heights is shown in the following column.
    • Population (Female): The female population in the University Heights is shown in the following column.
    • Gender Ratio: Also known as the sex ratio, this column displays the number of males per 100 females in University Heights for each age group.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for University Heights Population by Gender. You can refer the same here

  16. N

    University City, MO Population Breakdown by Gender Dataset: Male and Female...

    • neilsberg.com
    csv, json
    Updated Feb 19, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). University City, MO Population Breakdown by Gender Dataset: Male and Female Population Distribution // 2024 Edition [Dataset]. https://www.neilsberg.com/research/datasets/d0febb90-c980-11ee-9145-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 19, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    University City, Missouri
    Variables measured
    Male Population, Female Population, Male Population as Percent of Total Population, Female Population as Percent of Total Population
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of University City by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of University City across both sexes and to determine which sex constitutes the majority.

    Key observations

    There is a majority of female population, with 55.52% of total population being female. Source: U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.

    Variables / Data Columns

    • Gender: This column displays the Gender (Male / Female)
    • Population: The population of the gender in the University City is shown in this column.
    • % of Total Population: This column displays the percentage distribution of each gender as a proportion of University City total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for University City Population by Race & Ethnicity. You can refer the same here

  17. N

    University Park, TX Population Breakdown by Gender and Age Dataset: Male and...

    • neilsberg.com
    csv, json
    Updated Feb 19, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). University Park, TX Population Breakdown by Gender and Age Dataset: Male and Female Population Distribution Across 18 Age Groups // 2024 Edition [Dataset]. https://www.neilsberg.com/research/datasets/8e7cb2e1-c989-11ee-9145-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 19, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    University Park, Texas
    Variables measured
    Male and Female Population Under 5 Years, Male and Female Population over 85 years, Male and Female Population Between 5 and 9 years, Male and Female Population Between 10 and 14 years, Male and Female Population Between 15 and 19 years, Male and Female Population Between 20 and 24 years, Male and Female Population Between 25 and 29 years, Male and Female Population Between 30 and 34 years, Male and Female Population Between 35 and 39 years, Male and Female Population Between 40 and 44 years, and 8 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates. To measure the three variables, namely (a) Population (Male), (b) Population (Female), and (c) Gender Ratio (Males per 100 Females), we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau across 18 age groups, ranging from under 5 years to 85 years and above. These age groups are described above in the variables section. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of University Park by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for University Park. The dataset can be utilized to understand the population distribution of University Park by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in University Park. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for University Park.

    Key observations

    Largest age group (population): Male # 15-19 years (1,735) | Female # 15-19 years (1,838). Source: U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.

    Variables / Data Columns

    • Age Group: This column displays the age group for the University Park population analysis. Total expected values are 18 and are define above in the age groups section.
    • Population (Male): The male population in the University Park is shown in the following column.
    • Population (Female): The female population in the University Park is shown in the following column.
    • Gender Ratio: Also known as the sex ratio, this column displays the number of males per 100 females in University Park for each age group.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for University Park Population by Gender. You can refer the same here

  18. N

    University City, MO Population Breakdown by Gender and Age Dataset: Male and...

    • neilsberg.com
    csv, json
    Updated Feb 19, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). University City, MO Population Breakdown by Gender and Age Dataset: Male and Female Population Distribution Across 18 Age Groups // 2024 Edition [Dataset]. https://www.neilsberg.com/research/datasets/8e7ca64a-c989-11ee-9145-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 19, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    University City, Missouri
    Variables measured
    Male and Female Population Under 5 Years, Male and Female Population over 85 years, Male and Female Population Between 5 and 9 years, Male and Female Population Between 10 and 14 years, Male and Female Population Between 15 and 19 years, Male and Female Population Between 20 and 24 years, Male and Female Population Between 25 and 29 years, Male and Female Population Between 30 and 34 years, Male and Female Population Between 35 and 39 years, Male and Female Population Between 40 and 44 years, and 8 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates. To measure the three variables, namely (a) Population (Male), (b) Population (Female), and (c) Gender Ratio (Males per 100 Females), we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau across 18 age groups, ranging from under 5 years to 85 years and above. These age groups are described above in the variables section. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of University City by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for University City. The dataset can be utilized to understand the population distribution of University City by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in University City. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for University City.

    Key observations

    Largest age group (population): Male # 30-34 years (1,767) | Female # 20-24 years (2,291). Source: U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.

    Variables / Data Columns

    • Age Group: This column displays the age group for the University City population analysis. Total expected values are 18 and are define above in the age groups section.
    • Population (Male): The male population in the University City is shown in the following column.
    • Population (Female): The female population in the University City is shown in the following column.
    • Gender Ratio: Also known as the sex ratio, this column displays the number of males per 100 females in University City for each age group.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for University City Population by Gender. You can refer the same here

  19. N

    University Place, WA Population Breakdown by Gender and Age Dataset: Male...

    • neilsberg.com
    csv, json
    Updated Feb 19, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). University Place, WA Population Breakdown by Gender and Age Dataset: Male and Female Population Distribution Across 18 Age Groups // 2024 Edition [Dataset]. https://www.neilsberg.com/research/datasets/8e7cb4d1-c989-11ee-9145-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 19, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    University Place, Washington
    Variables measured
    Male and Female Population Under 5 Years, Male and Female Population over 85 years, Male and Female Population Between 5 and 9 years, Male and Female Population Between 10 and 14 years, Male and Female Population Between 15 and 19 years, Male and Female Population Between 20 and 24 years, Male and Female Population Between 25 and 29 years, Male and Female Population Between 30 and 34 years, Male and Female Population Between 35 and 39 years, Male and Female Population Between 40 and 44 years, and 8 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates. To measure the three variables, namely (a) Population (Male), (b) Population (Female), and (c) Gender Ratio (Males per 100 Females), we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau across 18 age groups, ranging from under 5 years to 85 years and above. These age groups are described above in the variables section. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of University Place by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for University Place. The dataset can be utilized to understand the population distribution of University Place by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in University Place. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for University Place.

    Key observations

    Largest age group (population): Male # 35-39 years (1,296) | Female # 60-64 years (1,384). Source: U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.

    Variables / Data Columns

    • Age Group: This column displays the age group for the University Place population analysis. Total expected values are 18 and are define above in the age groups section.
    • Population (Male): The male population in the University Place is shown in the following column.
    • Population (Female): The female population in the University Place is shown in the following column.
    • Gender Ratio: Also known as the sex ratio, this column displays the number of males per 100 females in University Place for each age group.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for University Place Population by Gender. You can refer the same here

  20. N

    University Park, TX Population Breakdown by Gender Dataset: Male and Female...

    • neilsberg.com
    csv, json
    Updated Feb 19, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). University Park, TX Population Breakdown by Gender Dataset: Male and Female Population Distribution // 2024 Edition [Dataset]. https://www.neilsberg.com/research/datasets/d0fecfd0-c980-11ee-9145-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 19, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    University Park, Texas
    Variables measured
    Male Population, Female Population, Male Population as Percent of Total Population, Female Population as Percent of Total Population
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of University Park by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of University Park across both sexes and to determine which sex constitutes the majority.

    Key observations

    There is a slight majority of female population, with 51.3% of total population being female. Source: U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.

    Variables / Data Columns

    • Gender: This column displays the Gender (Male / Female)
    • Population: The population of the gender in the University Park is shown in this column.
    • % of Total Population: This column displays the percentage distribution of each gender as a proportion of University Park total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for University Park Population by Race & Ethnicity. You can refer the same here

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2025). US Colleges and Universities [Dataset]. https://data.smartidf.services/explore/dataset/us-colleges-and-universities/

US Colleges and Universities

Explore at:
geojson, json, excel, csvAvailable download formats
Dataset updated
Jul 6, 2025
License

https://en.wikipedia.org/wiki/Public_domainhttps://en.wikipedia.org/wiki/Public_domain

Area covered
United States
Description

The Colleges and Universities feature class/shapefile is composed of all Post Secondary Education facilities as defined by the Integrated Post Secondary Education System (IPEDS, http://nces.ed.gov/ipeds/), National Center for Education Statistics (NCES, https://nces.ed.gov/), US Department of Education for the 2018-2019 school year. Included are Doctoral/Research Universities, Masters Colleges and Universities, Baccalaureate Colleges, Associates Colleges, Theological seminaries, Medical Schools and other health care professions, Schools of engineering and technology, business and management, art, music, design, Law schools, Teachers colleges, Tribal colleges, and other specialized institutions. Overall, this data layer covers all 50 states, as well as Puerto Rico and other assorted U.S. territories. This feature class contains all MEDS/MEDS+ as approved by the National Geospatial-Intelligence Agency (NGA) Homeland Security Infrastructure Program (HSIP) Team. Complete field and attribute information is available in the ”Entities and Attributes” metadata section. Geographical coverage is depicted in the thumbnail above and detailed in the "Place Keyword" section of the metadata. This feature class does not have a relationship class but is related to Supplemental Colleges. Colleges and Universities that are not included in the NCES IPEDS data are added to the Supplemental Colleges feature class when found. This release includes the addition of 175 new records, the removal of 468 no longer reported by NCES, and modifications to the spatial location and/or attribution of 6682 records.

Search
Clear search
Close search
Google apps
Main menu