Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This table contains the number of victims of suicide arranged by marital status, method, motives, age and sex. They represent the number deaths by suicide in the resident population of the Netherlands. The figures in this table are equal to the suicide figures in the causes of death statistics, because they are based on the same files. The causes of death statistics do not contain information on the motive of suicide. For the years 1950-1995, this information is obtained from a historical data file on suicides. For the years 1996-now the motive is taken from the external causes of death (Niet-Natuurlijke dood) file. Before the 9th revision of the International Statistical Classification of Diseases and Related Health Problems (ICD), i.e. for the years 1950-1978, it was not possible to code "jumping in front of train/metro". For these years 1950-1978 "jumping in front of train/metro" has been left empty, and it has been counted in the group "other method". Relative figures have been calculated per 100 000 of the corresponding population group. The figures are calculated based on the average population of the corresponding year. Data available from: 1950 Status of the figures: The figures up to and including 2023 are final. Changes as of January 23rd 2025: The figures for 2023 are made final. When will new figures be published: In the third quarter of 2025 the provisional figures for 2024 will be published.
Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
License information was derived automatically
Effect of suicide rates on life expectancy dataset
Abstract In 2015, approximately 55 million people died worldwide, of which 8 million committed suicide. In the USA, one of the main causes of death is the aforementioned suicide, therefore, this experiment is dealing with the question of how much suicide rates affects the statistics of average life expectancy. The experiment takes two datasets, one with the number of suicides and life expectancy in the second one and combine data into one dataset. Subsequently, I try to find any patterns and correlations among the variables and perform statistical test using simple regression to confirm my assumptions.
Data
The experiment uses two datasets - WHO Suicide Statistics[1] and WHO Life Expectancy[2], which were firstly appropriately preprocessed. The final merged dataset to the experiment has 13 variables, where country and year are used as index: Country, Year, Suicides number, Life expectancy, Adult Mortality, which is probability of dying between 15 and 60 years per 1000 population, Infant deaths, which is number of Infant Deaths per 1000 population, Alcohol, which is alcohol, recorded per capita (15+) consumption, Under-five deaths, which is number of under-five deaths per 1000 population, HIV/AIDS, which is deaths per 1 000 live births HIV/AIDS, GDP, which is Gross Domestic Product per capita, Population, Income composition of resources, which is Human Development Index in terms of income composition of resources, and Schooling, which is number of years of schooling.
LICENSE
THE EXPERIMENT USES TWO DATASET - WHO SUICIDE STATISTICS AND WHO LIFE EXPECTANCY, WHICH WERE COLLEECTED FROM WHO AND UNITED NATIONS WEBSITE. THEREFORE, ALL DATASETS ARE UNDER THE LICENSE ATTRIBUTION-NONCOMMERCIAL-SHAREALIKE 3.0 IGO (https://creativecommons.org/licenses/by-nc-sa/3.0/igo/).
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Number of suicides and suicide rates, by sex and age, in England and Wales. Information on conclusion type is provided, along with the proportion of suicides by method and the median registration delay.
NOTE: This dataset is no longer supported and is provided as-is. Any historical knowledge regarding meta data or it's creation is no longer available. All known information is proved as part of this data set. The Veteran Health Administration, in support of the Open Data Initiative, is providing the Veterans Affairs Suicide Prevention Synthetic Dataset (VASPSD). The VASPSD was developed using a real, record-level dataset provided through the VA Office of Suicide Prevention. The VASPSD contains no real Veteran information, however, it reflects similar characteristics of the real dataset. NOTICE: This data is intended to appear similar to actual VASPSD data but it does not have any real predictive modeling value. It should not be used in any real world application.
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
https://i.imgur.com/Vrs6apv.png" alt="">
There is a well-documented phenomenon of increased suicide rates among United States military veterans. One recent analysis, published in 2016, found the suicide rate amongst veterans to be around 20 per day. The widespread nature of the problem has resulted in efforts by and pressure on the United States military services to combat and address mental health issues in and after service in the country's armed forces.
In 2013 News21 published a sequence of reports on the phenomenon, aggregating and using data provided by individual states to typify the nationwide pattern. This dataset is the underlying data used in that report, as collected by the News21 team.
The data consists of six files, one for each year between 2005 and 2011. Each year's worth of data includes the general population of each US state, a count of suicides, a count of state veterans, and a count of veteran suicides.
This data was originally published by News21. It has been converted from an XLS to a CSV format for publication on Kaggle. The original data, visualizations, and stories can be found at the source.
What is the geospatial pattern of veterans in the United States? How much more vulnerable is the average veteran to suicide than the average citizen? Is the problem increasing or decreasing over time?
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
The posts were manually annotated all the posts as Suicidal or Non-Suicidal based on the following rules:
1. Suicidal Text
- Posts that conveyed definite signs of suicidal ideation or even showed signs of suffering extremely from mental health illnesses like depression etc. were marked in this category due to their relation with suicidal intent.
- Posts that included detailed planning of suicide or asked questions related to committing suicide, for eg. “Hello, hypothetically what would be a good way to go without loved ones knowing?”.
- Posts like "I weather today is so awful that it makes me want to kill myself hahaha" were carefully removed.
- These posts were marked as “1”.
2. Non Suicidal Text
- Posts that did not have anything related to suicide or self-harm were marked in this category.
- Posts that used words related to suicide or self-harm in the context of news or information.
- Posts that talked about suicide of some other person at some other time.
- These posts were marked as “0”. This was the default category.
Our annotators included one university professor and three university students who were very carefully instructed on how to annotate each post. The instructions are given below: 1. Select only one of the two categories mentioned above. 2. To select the default category in case of any doubt. 3. To remove any ambiguous posts which seemed very confusing after discussing with other annotators. 3. Maximum 100-200 posts were to be annotated in one session to avoid any mental fatigue. 4. Since the majority of posts in the dataset were extremely long (with words > 1000), a maximum of two annotation sessions were allowed in a day.
Once the annotators completed their tasks, they were divided into pairs of two where they verified the annotations of the other annotator. Any disagreement was carefully resolved and the final annotation was mutually agreed upon by the pair. This helped in validating each annotation.
Data on death rates for suicide, by selected population characteristics. Please refer to the PDF or Excel version of this table in the HUS 2019 Data Finder (https://www.cdc.gov/nchs/hus/contents2019.htm) for critical information about measures, definitions, and changes over time. SOURCE: NCHS, National Vital Statistics System (NVSS); Grove RD, Hetzel AM. Vital statistics rates in the United States, 1940–1960. National Center for Health Statistics. 1968; numerator data from NVSS annual public-use Mortality Files; denominator data from U.S. Census Bureau national population estimates; and Murphy SL, Xu JQ, Kochanek KD, Arias E, Tejada-Vera B. Deaths: Final data for 2018. National Vital Statistics Reports; vol 69 no 13. Hyattsville, MD: National Center for Health Statistics. 2021. Available from: https://www.cdc.gov/nchs/products/nvsr.htm. For more information on the National Vital Statistics System, see the corresponding Appendix entry at https://www.cdc.gov/nchs/data/hus/hus19-appendix-508.pdf.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Suicide is not only an individual phenomenon, but it is also influenced by social and environmental factors. With the high suicide rate and the abundance of social media data in South Korea, we have studied the potential of this new medium for predicting completed suicide at the population level. We tested two social media variables (suicide-related and dysphoria-related weblog entries) along with classical social, economic and meteorological variables as predictors of suicide over 3 years (2008 through 2010). Both social media variables were powerfully associated with suicide frequency. The suicide variable displayed high variability and was reactive to celebrity suicide events, while the dysphoria variable showed longer secular trends, with lower variability. We interpret these as reflections of social affect and social mood, respectively. In the final multivariate model, the two social media variables, especially the dysphoria variable, displaced two classical economic predictors – consumer price index and unemployment rate. The prediction model developed with the 2-year training data set (2008 through 2009) was validated in the data for 2010 and was robust in a sensitivity analysis controlling for celebrity suicide effects. These results indicate that social media data may be of value in national suicide forecasting and prevention.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This data shows deaths (of people age 10 and over) from Suicide and Undetermined Injury, numbers and rates by gender, as 3-year moving-averages. Suicide is a significant cause of premature deaths occurring generally at younger ages than other common causes of premature mortality. It may also be seen as an indicator of underlying rates of mental ill-health. Directly Age-Standardised Rates (DASR) are shown in the data, where numbers are sufficient, so that death rates can be directly compared between areas. The DASR calculation applies Age-specific rates to a Standard (European) population to cancel out possible effects on crude rates due to different age structures among populations, thus enabling direct comparisons of rates. The figures in this dataset include deaths recorded as suicide (people age 10 and over) and undetermined injury (age 15 and over) as those are mostly likely also to have been caused by self-harm rather than unverifiable accident, neglect or abuse. The population denominators for rates are age 10 and over. Low numbers may result in zero values or missing data. Data source: Office for Health Improvement and Disparities (OHID), Public Health Outcomes Framework (PHOF) indicator 41001 (E10). This data is updated annually.
This dataset contains counts of deaths for California as a whole based on information entered on death certificates. Final counts are derived from static data and include out-of-state deaths to California residents, whereas provisional counts are derived from incomplete and dynamic data. Provisional counts are based on the records available when the data was retrieved and may not represent all deaths that occurred during the time period. Deaths involving injuries from external or environmental forces, such as accidents, homicide and suicide, often require additional investigation that tends to delay certification of the cause and manner of death. This can result in significant under-reporting of these deaths in provisional data.
The final data tables include both deaths that occurred in California regardless of the place of residence (by occurrence) and deaths to California residents (by residence), whereas the provisional data table only includes deaths that occurred in California regardless of the place of residence (by occurrence). The data are reported as totals, as well as stratified by age, gender, race-ethnicity, and death place type. Deaths due to all causes (ALL) and selected underlying cause of death categories are provided. See temporal coverage for more information on which combinations are available for which years.
The cause of death categories are based solely on the underlying cause of death as coded by the International Classification of Diseases. The underlying cause of death is defined by the World Health Organization (WHO) as "the disease or injury which initiated the train of events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury." It is a single value assigned to each death based on the details as entered on the death certificate. When more than one cause is listed, the order in which they are listed can affect which cause is coded as the underlying cause. This means that similar events could be coded with different underlying causes of death depending on variations in how they were entered. Consequently, while underlying cause of death provides a convenient comparison between cause of death categories, it may not capture the full impact of each cause of death as it does not always take into account all conditions contributing to the death.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This table contains the number of victims of suicide arranged by marital status, method, motives, age and sex. They represent the number deaths by suicide in the resident population of the Netherlands. The figures in this table are equal to the suicide figures in the causes of death statistics, because they are based on the same files. The causes of death statistics do not contain information on the motive of suicide. For the years 1950-1995, this information is obtained from a historical data file on suicides. For the years 1996-now the motive is taken from the external causes of death (Niet-Natuurlijke dood) file. Before the 9th revision of the International Statistical Classification of Diseases and Related Health Problems (ICD), i.e. for the years 1950-1978, it was not possible to code "jumping in front of train/metro". For these years 1950-1978 "jumping in front of train/metro" has been left empty, and it has been counted in the group "other method". Relative figures have been calculated per 100 000 of the corresponding population group. The figures are calculated based on the average population of the corresponding year. Data available from: 1950 Status of the figures: The figures up to and including 2023 are final. Changes as of January 23rd 2025: The figures for 2023 are made final. When will new figures be published: In the third quarter of 2025 the provisional figures for 2024 will be published.