79 datasets found
  1. Z

    Dataset for the Instagram and TikTok problematic use

    • data.niaid.nih.gov
    Updated Jul 19, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hendrikse, Calanthe (2023). Dataset for the Instagram and TikTok problematic use [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_8159159
    Explore at:
    Dataset updated
    Jul 19, 2023
    Dataset provided by
    Limniou, Maria
    Hendrikse, Calanthe
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset supports research on how engagement with social media (Instagram and TikTok) was related to problematic social media use (PSMU) and mental well-being. There are three different files. The SPSS and Excel spreadsheet files include the same dataset but in a different format. The SPSS output presents the data analysis in regard to the difference between Instagram and TikTok users.

  2. TikTok global quarterly downloads 2018-2024

    • statista.com
    • es.statista.com
    • +1more
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department, TikTok global quarterly downloads 2018-2024 [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Description

    In the fourth quarter of 2024, TikTok generated around 186 million downloads from users worldwide. Initially launched in China first by ByteDance as Douyin, the short-video format was popularized by TikTok and took over the global social media environment in 2020. In the first quarter of 2020, TikTok downloads peaked at over 313.5 million worldwide, up by 62.3 percent compared to the first quarter of 2019.

                  TikTok interactions: is there a magic formula for content success?
    
                  In 2024, TikTok registered an engagement rate of approximately 4.64 percent on video content hosted on its platform. During the same examined year, the social video app recorded over 1,100 interactions on average. These interactions were primarily composed of likes, while only recording less than 20 comments per piece of content on average in 2024.
                  The platform has been actively monitoring the issue of fake interactions, as it removed around 236 million fake likes during the first quarter of 2024. Though there is no secret formula to get the maximum of these metrics, recommended video length can possibly contribute to the success of content on TikTok.
                  It was recommended that tiny TikTok accounts with up to 500 followers post videos that are around 2.6 minutes long as of the first quarter of 2024. While, the ideal video duration for huge TikTok accounts with over 50,000 followers was 7.28 minutes. The average length of TikTok videos posted by the creators in 2024 was around 43 seconds.
    
                  What’s trending on TikTok Shop?
    
                  Since its launch in September 2023, TikTok Shop has become one of the most popular online shopping platforms, offering consumers a wide variety of products. In 2023, TikTok shops featuring beauty and personal care items sold over 370 million products worldwide.
                  TikTok shops featuring womenswear and underwear, as well as food and beverages, followed with 285 and 138 million products sold, respectively. Similarly, in the United States market, health and beauty products were the most-selling items,
                  accounting for 85 percent of sales made via the TikTok Shop feature during the first month of its launch. In 2023, Indonesia was the market with the largest number of TikTok Shops, hosting over 20 percent of all TikTok Shops. Thailand and Vietnam followed with 18.29 and 17.54 percent of the total shops listed on the famous short video platform, respectively.
    
  3. g

    Data from: News on TikTok: An Annotated Dataset of TikTok Videos from...

    • search.gesis.org
    Updated Jan 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wedel, Lion; Mayer, Anna-Theresa; Batzner, Jan; Hendrickx, Jonathan (2025). News on TikTok: An Annotated Dataset of TikTok Videos from German-Speaking News Outlets in 2023 [Dataset]. http://doi.org/10.7802/2863
    Explore at:
    Dataset updated
    Jan 8, 2025
    Dataset provided by
    GESIS search
    GESIS, Köln
    Authors
    Wedel, Lion; Mayer, Anna-Theresa; Batzner, Jan; Hendrickx, Jonathan
    License

    https://www.gesis.org/en/institute/data-usage-termshttps://www.gesis.org/en/institute/data-usage-terms

    Description

    TikTok is developing into a key platform for news, advertising, politics, online shopping, and entertainment in Germany, with over 20 million monthly users. Especially among young people, TikTok plays an increasing role in their information environment. We provide a human-coded dataset of over 4,000 TikTok videos from German-speaking news outlets from 2023. The coding includes descriptive variables of the videos (e.g., visual style, text overlays, and audio presence) and theory-derived concepts from the journalism sciences (e.g., news values).

    This dataset consists of every second video published in 2023 by major news outlets active on TikTok from Germany, Austria, and Switzerland. The data collection was facilitated with the official TikTok API in January 2024. The manual coding took place between September 2024 and December 2024. For a detailed description of the data collection, validation, annotation and descriptive analysis, please refer to [Forthcoming dataset paper publication].

  4. TikTok: account removed 2020-2024, by reason

    • statista.com
    • de.statista.com
    • +1more
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department, TikTok: account removed 2020-2024, by reason [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Description

    During the fourth quarter 2024, approximately 20.6 million TikTok accounts were removed from the platform due to suspicion of being operated by users under the age of 13. During the last measured period, around 185 million fake accounts were removed from fake accounts removed from TikTok.

  5. TikTok Datasets

    • brightdata.com
    .json, .csv, .xlsx
    Updated Sep 9, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bright Data (2022). TikTok Datasets [Dataset]. https://brightdata.com/products/datasets/tiktok
    Explore at:
    .json, .csv, .xlsxAvailable download formats
    Dataset updated
    Sep 9, 2022
    Dataset authored and provided by
    Bright Datahttps://brightdata.com/
    License

    https://brightdata.com/licensehttps://brightdata.com/license

    Area covered
    Worldwide
    Description

    Use our TikTok profiles dataset to extract business and non-business information from complete public profiles and filter by account name, followers, create date, or engagement score. You may purchase the entire dataset or a customized subset depending on your needs. Popular use cases include sentiment analysis, brand monitoring, influencer marketing, and more. The TikTok dataset includes all major data points: timestamp, account name, nickname, bio,average engagement score, creation date, is_verified,l ikes, followers, external link in bio, and more. Get your TikTok dataset today!

  6. U

    Data from: #Coronavirus on TikTok: user engagement with misinformation as a...

    • datacatalog.hshsl.umaryland.edu
    • datasetcatalog.nlm.nih.gov
    • +4more
    Updated Jul 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jonathan D. Baghdadi; K.C. Coffey; Rachael Belcher; James Frisbie; Naeemul Hassan; Danielle Sim; Rena D. Malik (2024). #Coronavirus on TikTok: user engagement with misinformation as a potential threat to public health behavior [Dataset]. http://doi.org/10.5061/dryad.bvq83bkdp
    Explore at:
    Dataset updated
    Jul 18, 2024
    Dataset provided by
    HS/HSL
    Authors
    Jonathan D. Baghdadi; K.C. Coffey; Rachael Belcher; James Frisbie; Naeemul Hassan; Danielle Sim; Rena D. Malik
    Area covered
    United States
    Description

    A sample of TikTok videos associated with the hashtag #coronavirus were downloaded on September 20, 2020. Misinformation was evaluated on a scale (low, medium, high) using a codebook developed by experts in infectious diseases. Multivariable modeling was used to evaluate factors associated with number of views and presence of user comments indicating intention to change behavior. Videos and related metadata were downloaded using a third-party TikTok Scraper using the search term #coronavirus. Videos were reviewed for content and data were entered on a spreadsheet.

  7. h

    TikTok-10M

    • huggingface.co
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataset Company, TikTok-10M [Dataset]. https://huggingface.co/datasets/The-data-company/TikTok-10M
    Explore at:
    Dataset authored and provided by
    Dataset Company
    License

    https://choosealicense.com/licenses/other/https://choosealicense.com/licenses/other/

    Description

    TikTok-10M Dataset

      Dataset Description
    

    TikTok-10M is a large-scale dataset containing 10 million short-form posts from TikTok, designed for video understanding, multimodal learning, and social media content analysis. The dataset was curated to bridge the gap between academic video datasets and actual user-generated content, providing researchers with authentic patterns and characteristics of modern short-form video content that dominates social media platforms.… See the full description on the dataset page: https://huggingface.co/datasets/The-data-company/TikTok-10M.

  8. TikTok Shop Datasets

    • brightdata.com
    .json, .csv, .xlsx
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bright Data (2025). TikTok Shop Datasets [Dataset]. https://brightdata.com/products/datasets/tiktok/shop
    Explore at:
    .json, .csv, .xlsxAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset authored and provided by
    Bright Datahttps://brightdata.com/
    License

    https://brightdata.com/licensehttps://brightdata.com/license

    Area covered
    Worldwide
    Description

    Use our TikTok Shop dataset to extract detailed e-commerce insights, including product names, prices, discounts, seller details, product descriptions, categories, customer ratings, and reviews. You may purchase the entire dataset or a customized subset tailored to your needs. Popular use cases include trend analysis, pricing optimization, customer behavior studies, and marketing strategy refinement. The TikTok Shop dataset includes key data points: product performance metrics, user engagement, customer reviews, and more. Unlock the potential of TikTok's shopping platform today with our comprehensive dataset!

  9. 3.5M Tiktok Mobile App Reviews

    • kaggle.com
    Updated Sep 23, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shivam Bansal (2021). 3.5M Tiktok Mobile App Reviews [Dataset]. https://www.kaggle.com/datasets/shivamb/35-million-tiktok-mobile-app-reviews/data
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 23, 2021
    Dataset provided by
    Kaggle
    Authors
    Shivam Bansal
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    This dataset contains reviews for one of the most popular mobile app - tiktok. All the publicly posted reviews are scraped from the google play store.

    Inspiration

    • The dataset can be used to identify key insights related to the app, key problems/issues people have raised.
    • Perform sentiment analysis of the reviews and find what people are talking about.
    • Perform topic modeling to identify key topics mentioned in the review over time
    • Generate visualizations of different worlds / n-grams / topics extracted from the reviews.
  10. c

    from TikTok Dataset

    • cubig.ai
    Updated Jun 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CUBIG (2025). from TikTok Dataset [Dataset]. https://cubig.ai/store/products/457/from-tiktok-dataset
    Explore at:
    Dataset updated
    Jun 12, 2025
    Dataset authored and provided by
    CUBIG
    License

    https://cubig.ai/store/terms-of-servicehttps://cubig.ai/store/terms-of-service

    Measurement technique
    Synthetic data generation using AI techniques for model training, Privacy-preserving data transformation via differential privacy
    Description

    1) Data Introduction • The Dataset from TikTok contains 19,382 reports that users flagged as including "claim" in videos or comments, along with video length, transcription text, account status, and participation indicators, and is suitable for analyzing reporting reasons and viewer reactions by content.

    2) Data Utilization (1) Dataset from TikTok has characteristics that: • This dataset consists of 12 columns, providing both the reported content type and the meta-participation index of the video. (2) Dataset from TikTok can be used to: • Claim Judgment Classification Model Development: By inputting video transcription text, participation indicators such as views, likes, shares, comments, and account authentication and sanctions information, the machine learning classification model can be automatically determined whether the content contains "claims." • Optimizing moderation tasks: Automate reporting priorities based on classification model predictability to speed up reporting processing and reduce supervision burden by selecting content that managers urgently need to review.

  11. Facebook users worldwide 2017-2027

    • statista.com
    • de.statista.com
    • +1more
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stacy Jo Dixon, Facebook users worldwide 2017-2027 [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Stacy Jo Dixon
    Description

    The global number of Facebook users was forecast to continuously increase between 2023 and 2027 by in total 391 million users (+14.36 percent). After the fourth consecutive increasing year, the Facebook user base is estimated to reach 3.1 billion users and therefore a new peak in 2027. Notably, the number of Facebook users was continuously increasing over the past years. User figures, shown here regarding the platform Facebook, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period and count multiple accounts by persons only once.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).

  12. s

    Data from: TikTok dataset - Current affairs on TikTok. Virality and...

    • research.science.eus
    Updated 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Peña-Fernández, Simón; Larrondo-Ureta, Ainara; Morales-i-Gras, Jordi; Peña-Fernández, Simón; Larrondo-Ureta, Ainara; Morales-i-Gras, Jordi (2022). TikTok dataset - Current affairs on TikTok. Virality and entertainment for digital natives [Dataset]. https://research.science.eus/documentos/668fc45ab9e7c03b01bdae53?lang=ca
    Explore at:
    Dataset updated
    2022
    Authors
    Peña-Fernández, Simón; Larrondo-Ureta, Ainara; Morales-i-Gras, Jordi; Peña-Fernández, Simón; Larrondo-Ureta, Ainara; Morales-i-Gras, Jordi
    Description

    Tiktok network graph with 5,638 nodes and 318,986 unique links, representing up to 790,599 weighted links between labels, using Gephi network analysis software. Source of: Peña-Fernández, Simón, Larrondo-Ureta, Ainara, & Morales-i-Gras, Jordi. (2022). Current affairs on TikTok. Virality and entertainment for digital natives. Profesional De La Información, 31(1), 1–12. https://doi.org/10.5281/zenodo.5962655 Abstract: Since its appearance in 2018, TikTok has become one of the most popular social media platforms among digital natives because of its algorithm-based engagement strategies, a policy of public accounts, and a simple, colorful, and intuitive content interface. As happened in the past with other platforms such as Facebook, Twitter, and Instagram, various media are currently seeking ways to adapt to TikTok and its particular characteristics to attract a younger audience less accustomed to the consumption of journalistic material. Against this background, the aim of this study is to identify the presence of the media and journalists on TikTok, measure the virality and engagement of the content they generate, describe the communities created around them, and identify the presence of journalistic use of these accounts. For this, 23,174 videos from 143 accounts belonging to media from 25 countries were analyzed. The results indicate that, in general, the presence and impact of the media in this social network are low and that most of their content is oriented towards the creation of user communities based on viral content and entertainment. However, albeit with a lesser presence, one can also identify accounts and messages that adapt their content to the specific characteristics of TikTok. Their virality and engagement figures illustrate that there is indeed a niche for current affairs on this social network.

  13. Number of TikTok users in Malaysia 2018-2029

    • statista.com
    Updated Jun 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Number of TikTok users in Malaysia 2018-2029 [Dataset]. https://www.statista.com/forecasts/1380739/tiktok-users-in-malaysia
    Explore at:
    Dataset updated
    Jun 27, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Malaysia
    Description

    In 2023, the number of TikTok users in Malaysia was estimated to reach around ** million. The number was forecast to continuously increase between 2024 and 2029. Based on the forecast, the number of TikTok users in Malaysia will reach **** million by 2029.User figures, shown here with regards to the platform TikTok, have been estimated by considering company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period and count multiple accounts by persons only once.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).

  14. The Invasion of Ukraine Viewed through TikTok: A Dataset

    • zenodo.org
    bin, csv +1
    Updated May 13, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Benjamin Steel; Sara Parker; Derek Ruths; Benjamin Steel; Sara Parker; Derek Ruths (2023). The Invasion of Ukraine Viewed through TikTok: A Dataset [Dataset]. http://doi.org/10.5281/zenodo.7926959
    Explore at:
    text/x-python, bin, csvAvailable download formats
    Dataset updated
    May 13, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Benjamin Steel; Sara Parker; Derek Ruths; Benjamin Steel; Sara Parker; Derek Ruths
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Ukraine
    Description

    This is a dataset of videos and comments related to the invasion of Ukraine, published on TikTok by a number of users over the year of 2022. It was compiled by Benjamin Steel, Sara Parker and Derek Ruths at the Network Dynamics Lab, McGill University. We created this dataset to facilitate the study of TikTok, and the nature of social interaction on the platform relevant to a major political event.

    The dataset has been released here on Zenodo: https://doi.org/10.5281/zenodo.7926959 as well as on Github: https://github.com/networkdynamics/data-and-code/tree/master/ukraine_tiktok

    To create the dataset, we identified hashtags and keywords explicitly related to the conflict to collect a core set of videos (or ”TikToks”). We then compiled comments associated with these videos. All of the data captured is publically available information, and contains personally identifiable information. In total we collected approximately 16 thousand videos and 12 million comments, from approximately 6 million users. There are approximately 1.9 comments on average per user captured, and 1.5 videos per user who posted a video. The author personally collected this data using the web scraping PyTok library, developed by the author: https://github.com/networkdynamics/pytok.

    Due to scraping duration, this is just a sample of the publically available discourse concerning the invasion of Ukraine on TikTok. Due to the fuzzy search functionality of the TikTok, the dataset contains videos with a range of relatedness to the invasion.

    We release here the unique video IDs of the dataset in a CSV format. The data was collected without the specific consent of the content creators, so we have released only the data required to re-create it, to allow users to delete content from TikTok and be removed from the dataset if they wish. Contained in this repository are scripts that will automatically pull the full dataset, which will take the form of JSON files organised into a folder for each video. The JSON files are the entirety of the data returned by the TikTok API. We include a script to parse the JSON files into CSV files with the most commonly used data. We plan to further expand this dataset as collection processes progress and the war continues. We will version the dataset to ensure reproducibility.

    To build this dataset from the IDs here:

    1. Go to https://github.com/networkdynamics/pytok and clone the repo locally
    2. Run pip install -e . in the pytok directory
    3. Run pip install pandas tqdm to install these libraries if not already installed
    4. Run get_videos.py to get the video data
    5. Run video_comments.py to get the comment data
    6. Run user_tiktoks.py to get the video history of the users
    7. Run hashtag_tiktoks.py or search_tiktoks.py to get more videos from other hashtags and search terms
    8. Run load_json_to_csv.py to compile the JSON files into two CSV files, comments.csv and videos.csv

    If you get an error about the wrong chrome version, use the command line argument get_videos.py --chrome-version YOUR_CHROME_VERSION Please note pulling data from TikTok takes a while! We recommend leaving the scripts running on a server for a while for them to finish downloading everything. Feel free to play around with the delay constants to either speed up the process or avoid TikTok rate limiting.

    Please do not hesitate to make an issue in this repo to get our help with this!

    The videos.csv will contain the following columns:

    video_id: Unique video ID

    createtime: UTC datetime of video creation time in YYYY-MM-DD HH:MM:SS format

    author_name: Unique author name

    author_id: Unique author ID

    desc: The full video description from the author

    hashtags: A list of hashtags used in the video description

    share_video_id: If the video is sharing another video, this is the video ID of that original video, else empty

    share_video_user_id: If the video is sharing another video, this the user ID of the author of that video, else empty

    share_video_user_name: If the video is sharing another video, this is the user name of the author of that video, else empty

    share_type: If the video is sharing another video, this is the type of the share, stitch, duet etc.

    mentions: A list of users mentioned in the video description, if any

    The comments.csv will contain the following columns:

    comment_id: Unique comment ID

    createtime: UTC datetime of comment creation time in YYYY-MM-DD HH:MM:SS format

    author_name: Unique author name

    author_id: Unique author ID

    text: Text of the comment

    mentions: A list of users that are tagged in the comment

    video_id: The ID of the video the comment is on

    comment_language: The language of the comment, as predicted by the TikTok API

    reply_comment_id: If the comment is replying to another comment, this is the ID of that comment

    The date can be compiled into a user interaction network to facilitate study of interaction dynamics. There is code to help with that here: https://github.com/networkdynamics/polar-seeds. Additional scripts for further preprocessing of this data can be found there too.

  15. u

    Data from: DataSet "Political communication on TikTok: from the feminisation...

    • portaldelaciencia.uva.es
    • produccioncientifica.ucm.es
    • +2more
    Updated 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gómez García, Salvador; Quevedo Redondo, Raquel; Gómez García, Salvador; Quevedo Redondo, Raquel (2023). DataSet "Political communication on TikTok: from the feminisation of discourse to incivility expressed in emoji form" [Dataset]. https://portaldelaciencia.uva.es/documentos/668fc489b9e7c03b01be0722
    Explore at:
    Dataset updated
    2023
    Authors
    Gómez García, Salvador; Quevedo Redondo, Raquel; Gómez García, Salvador; Quevedo Redondo, Raquel
    Description

    In a context where there is permanent electoral campaigning, an increasing number of political communication experts are trying to unravel the resources used by government officials and their parties to influence TikTok users. From a broad perspective, the subject matter is not new, but it is topical; nonetheless, this research discloses a gap in the literature by amalgamating the recognition of idiosyncratic attributes of the feminisation of political discourse on TikTok with the analysis of the reactions (text and emojis) that the audiovisual content imbued by this trend elicits in users. The purpose is to ascertain whether the inclusive tone of the feminised rhetorical style can be extrapolated to TikTok and, if so, whether its particular characteristics mitigate expressions of incivility. To do so, the initial content posted (first seven months) on TikTok by the Spanish political platform Sumar with its leader, Yolanda Díaz, featuring prominently in most of the videos, were selected for scrutiny. A mixed methodology analysis of audiovisual content and comments showed that the anti-polarisation rhetoric and storytelling contributed to neutralising the extreme forms of flaming, although Sumar did not use a strategy tailor-made to suit TikTok.

  16. f

    TikTokData.xlsx

    • figshare.com
    xlsx
    Updated Jun 14, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Emily Zawacki (2022). TikTokData.xlsx [Dataset]. http://doi.org/10.6084/m9.figshare.20069333.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jun 14, 2022
    Dataset provided by
    figshare
    Authors
    Emily Zawacki
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    We used TikTok’s built-in account analytics to download and record video and account metrics for the period between 10/8/2021 and 2/6/2022. We collected the following summary data for each individual video: video views, likes, comments, shares, total cumulative play time, average duration the video was watched, percentage of viewers who watched the full video, unique reached audience, and the percentage of video views by section (For You, personal profile, Following, hashtags).
    We evaluated the “success” of videos based on reach and engagement metrics, as well as viewer retention (how long a video is watched). We used metrics of reach (number of unique users the video was seen by) and engagement (likes, comments, and shares) to calculate the engagement rate of each video. The engagement rate is calculated as the engagement parameter as a percentage of total reach (e.g., Likes / Audience Reached *100).

  17. TikTok Video Performance Dataset

    • kaggle.com
    Updated Aug 17, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Haseeb_in_Data (2024). TikTok Video Performance Dataset [Dataset]. https://www.kaggle.com/datasets/haseebindata/tiktok-video-performance-dataset/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 17, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Haseeb_in_Data
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    This dataset contains information about TikTok videos, including user interactions and video details. It includes features such as video ID, username, video title, likes, comments, shares, views, and more. This dataset is useful for analyzing video performance and user engagement on TikTok.

    File Information:

    • Format: .csv
    • Rows: 5
    • Columns: 15
    • Size: 1.97 KB

    Columns:

    • Video_ID: Unique identifier for each video.
    • User_ID: Unique identifier for the user who posted the video.
    • Username: Username of the user.
    • Video_Title: Title or description of the video.
    • Category: Category or type of the video.
    • Likes: Number of likes the video received.
    • Comments: Number of comments on the video.
    • Shares: Number of shares of the video.
    • Views: Number of views the video received.
    • Upload_Date: Date when the video was uploaded.
    • Video_Length: Length of the video in seconds.
    • Hashtags: List of hashtags used in the video.
    • User_Followers: Number of followers the user has.
    • User_Following: Number of accounts the user is following.
    • User_Likes: Number of likes the user has given. This dataset provides valuable insights into video performance and user engagement, making it useful for various analytical and predictive tasks.
  18. Social Media Usage Dataset(Applications)

    • kaggle.com
    Updated Oct 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bhadra Mohit (2024). Social Media Usage Dataset(Applications) [Dataset]. https://www.kaggle.com/datasets/bhadramohit/social-media-usage-datasetapplications/suggestions?status=pending&yourSuggestions=true
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Oct 23, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Bhadra Mohit
    License

    https://cdla.io/sharing-1-0/https://cdla.io/sharing-1-0/

    Description

    Context: This dataset offers insights into the usage patterns of social media apps for 1,000 users across seven popular platforms: Facebook, Instagram, Twitter, Snapchat, TikTok, LinkedIn, and Pinterest. It tracks various metrics such as daily time spent on the app, number of posts made, likes received, and new followers gained.

    Dataset Features:

    User_ID: Unique identifier for each user. App: The social media platform being used. Daily_Minutes_Spent: Total time a user spends on the app each day, ranging from 5 to 500 minutes. Posts_Per_Day: Number of posts a user creates per day, ranging from 0 to 20. Likes_Per_Day: Total number of likes a user receives on their posts each day, ranging from 0 to 200. Follows_Per_Day: The number of new followers a user gains daily, ranging from 0 to 50. Context & Use Cases: This dataset could be particularly useful for social media analysts, digital marketers, or researchers interested in understanding user engagement trends across different platforms. It provides insights into how much time users spend, how actively they post, and the level of engagement they receive (in terms of likes and followers).

    Conclusion & Outcome: Analyzing this dataset could yield several outcomes:

    Engagement Patterns: Identifying which platforms have higher engagement in terms of time spent or likes received. Active Users: Determining which users are the most active across various platforms based on the number of posts and followers gained. User Retention: Studying the correlation between time spent and follower growth, providing insight into user retention strategies for different platforms. Overall, the dataset allows for exploration of social media usage trends and helps drive decision-making for marketing strategies, content creation, and platform engagement.

  19. Influencer Marketing ROI Dataset

    • kaggle.com
    Updated Jun 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ojas Singh (2025). Influencer Marketing ROI Dataset [Dataset]. https://www.kaggle.com/datasets/tfisthis/influencer-marketing-roi-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 9, 2025
    Dataset provided by
    Kaggle
    Authors
    Ojas Singh
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    This dataset tracks influencer marketing campaigns across major social media platforms, providing a robust foundation for analyzing campaign effectiveness, engagement, reach, and sales outcomes. Each record represents a unique campaign and includes details such as the campaign’s platform (Instagram, YouTube, TikTok, Twitter), influencer category (e.g., Fashion, Tech, Fitness), campaign type (Product Launch, Brand Awareness, Giveaway, etc.), start and end dates, total user engagements, estimated reach, product sales, and campaign duration. The dataset structure supports diverse analyses, including ROI calculation, campaign benchmarking, and influencer performance comparison.

    Columns: - campaign_id: Unique identifier for each campaign
    - platform: Social media platform where the campaign ran
    - influencer_category: Niche or industry focus of the influencer
    - campaign_type: Objective or style of the campaign
    - start_date, end_date: Campaign time frame
    - engagements: Total user interactions (likes, comments, shares, etc.)
    - estimated_reach: Estimated number of unique users exposed to the campaign
    - product_sales: Number of products sold as a result of the campaign
    - campaign_duration_days: Duration of the campaign in days

    Getting Started with the Data

    1. Load and Inspect the Dataset

    import pandas as pd
    
    df = pd.read_csv('influencer_marketing_roi_dataset.csv', parse_dates=['start_date', 'end_date'])
    print(df.head())
    print(df.info())
    

    2. Basic Exploration

    # Overview of campaign types and platforms
    print(df['campaign_type'].value_counts())
    print(df['platform'].value_counts())
    
    # Summary statistics
    print(df[['engagements', 'estimated_reach', 'product_sales']].describe())
    

    3. Engagement and Sales Analysis

    # Average engagements and sales by platform
    platform_stats = df.groupby('platform')[['engagements', 'product_sales']].mean()
    print(platform_stats)
    
    # Top influencer categories by product sales
    top_categories = df.groupby('influencer_category')['product_sales'].sum().sort_values(ascending=False)
    print(top_categories)
    

    4. ROI Calculation Example

    # Assume a fixed campaign cost for demonstration
    df['campaign_cost'] = 500 + df['estimated_reach'] * 0.01 # Example formula
    
    # Calculate ROI: (Revenue - Cost) / Cost
    # Assume each product sold yields $40 revenue
    df['revenue'] = df['product_sales'] * 40
    df['roi'] = (df['revenue'] - df['campaign_cost']) / df['campaign_cost']
    
    # View campaigns with highest ROI
    top_roi = df.sort_values('roi', ascending=False).head(10)
    print(top_roi[['campaign_id', 'platform', 'roi']])
    

    5. Visualizing Campaign Performance

    import matplotlib.pyplot as plt
    import seaborn as sns
    
    # Engagements vs. Product Sales scatter plot
    plt.figure(figsize=(8,6))
    sns.scatterplot(data=df, x='engagements', y='product_sales', hue='platform', alpha=0.6)
    plt.title('Engagements vs. Product Sales by Platform')
    plt.xlabel('Engagements')
    plt.ylabel('Product Sales')
    plt.legend()
    plt.show()
    
    # Average ROI by Influencer Category
    category_roi = df.groupby('influencer_category')['roi'].mean().sort_values()
    category_roi.plot(kind='barh', color='teal')
    plt.title('Average ROI by Influencer Category')
    plt.xlabel('Average ROI')
    plt.show()
    

    6. Time-Based Analysis

    # Campaigns over time
    df['month'] = df['start_date'].dt.to_period('M')
    monthly_sales = df.groupby('month')['product_sales'].sum()
    monthly_sales.plot(figsize=(10,4), marker='o', title='Monthly Product Sales from Influencer Campaigns')
    plt.ylabel('Product Sales')
    plt.show()
    

    Use Cases

    • ROI Analysis: Quantify the return on investment for influencer campaigns across platforms and categories.
    • Campaign Benchmarking: Compare campaign performance by type, influencer niche, or platform.
    • Trend Analysis: Track engagement, reach, and sales trends over time.
    • Influencer Selection: Identify high-performing influencer categories and campaign types for future partnerships.
  20. d

    45K+ Mom Influencers on Tiktok | USA Only | User Profile Data & Influencer...

    • data.dataunify.ai
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Unify, 45K+ Mom Influencers on Tiktok | USA Only | User Profile Data & Influencer Posts | Min 10k followers | Social Listening & Creator Marketing [Dataset]. https://data.dataunify.ai/products/social-media-data-45k-mom-influencers-on-tiktok-us-based-data-unify
    Explore at:
    Dataset authored and provided by
    Data Unify
    Area covered
    United States
    Description

    A curated dataset of TikTok Mom creators with rich engagement metrics and post-level insights. Ideal for analyzing parenting and lifestyle content trends, influencer performance, and audience behavior—delivered in flexible, structured formats for easy integration.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Hendrikse, Calanthe (2023). Dataset for the Instagram and TikTok problematic use [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_8159159

Dataset for the Instagram and TikTok problematic use

Explore at:
Dataset updated
Jul 19, 2023
Dataset provided by
Limniou, Maria
Hendrikse, Calanthe
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

This dataset supports research on how engagement with social media (Instagram and TikTok) was related to problematic social media use (PSMU) and mental well-being. There are three different files. The SPSS and Excel spreadsheet files include the same dataset but in a different format. The SPSS output presents the data analysis in regard to the difference between Instagram and TikTok users.

Search
Clear search
Close search
Google apps
Main menu