90 datasets found
  1. T

    United States Existing Home Sales Prices

    • tradingeconomics.com
    • zh.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, United States Existing Home Sales Prices [Dataset]. https://tradingeconomics.com/united-states/single-family-home-prices
    Explore at:
    xml, excel, json, csvAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1968 - Jun 30, 2025
    Area covered
    United States
    Description

    Single Family Home Prices in the United States increased to 435300 USD in June from 423700 USD in May of 2025. This dataset provides - United States Existing Single Family Home Prices- actual values, historical data, forecast, chart, statistics, economic calendar and news.

  2. T

    United States House Price Index YoY

    • tradingeconomics.com
    • fa.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated May 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States House Price Index YoY [Dataset]. https://tradingeconomics.com/united-states/house-price-index-yoy
    Explore at:
    json, excel, xml, csvAvailable download formats
    Dataset updated
    May 27, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1992 - May 31, 2025
    Area covered
    United States
    Description

    House Price Index YoY in the United States decreased to 2.80 percent in May from 3.20 percent in April of 2025. This dataset includes a chart with historical data for the United States FHFA House Price Index YoY.

  3. F

    Median Sales Price of Houses Sold for the United States

    • fred.stlouisfed.org
    json
    Updated Jul 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Median Sales Price of Houses Sold for the United States [Dataset]. https://fred.stlouisfed.org/series/MSPUS
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jul 24, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    United States
    Description

    Graph and download economic data for Median Sales Price of Houses Sold for the United States (MSPUS) from Q1 1963 to Q2 2025 about sales, median, housing, and USA.

  4. T

    United States Existing Home Sales

    • tradingeconomics.com
    • ar.tradingeconomics.com
    • +12more
    csv, excel, json, xml
    Updated Jul 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Existing Home Sales [Dataset]. https://tradingeconomics.com/united-states/existing-home-sales
    Explore at:
    csv, json, xml, excelAvailable download formats
    Dataset updated
    Jul 23, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1968 - Jun 30, 2025
    Area covered
    United States
    Description

    Existing Home Sales in the United States decreased to 3930 Thousand in June from 4040 Thousand in May of 2025. This dataset provides the latest reported value for - United States Existing Home Sales - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  5. T

    United States FHFA House Price Index

    • tradingeconomics.com
    • ko.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, United States FHFA House Price Index [Dataset]. https://tradingeconomics.com/united-states/housing-index
    Explore at:
    xml, excel, json, csvAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1991 - May 31, 2025
    Area covered
    United States
    Description

    Housing Index in the United States decreased to 434.40 points in May from 435.10 points in April of 2025. This dataset provides the latest reported value for - United States House Price Index MoM Change - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  6. United States House Prices Growth

    • ceicdata.com
    Updated Nov 27, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2021). United States House Prices Growth [Dataset]. https://www.ceicdata.com/en/indicator/united-states/house-prices-growth
    Explore at:
    Dataset updated
    Nov 27, 2021
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 1, 2022 - Dec 1, 2024
    Area covered
    United States
    Description

    Key information about House Prices Growth

    • US house prices grew 5.2% YoY in Dec 2024, following an increase of 5.4% YoY in the previous quarter.
    • YoY growth data is updated quarterly, available from Mar 1992 to Dec 2024, with an average growth rate of 5.4%.
    • House price data reached an all-time high of 17.7% in Sep 2021 and a record low of -12.4% in Dec 2008.

    CEIC calculates House Prices Growth from quarterly House Price Index. Federal Housing Finance Agency provides House Price Index with base January 1991=100.

  7. Vital Signs: Home Prices – by zip code

    • data.bayareametro.gov
    application/rdfxml +5
    Updated Aug 21, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zillow (2019). Vital Signs: Home Prices – by zip code [Dataset]. https://data.bayareametro.gov/dataset/Vital-Signs-Home-Prices-by-zip-code/8xer-7dm5
    Explore at:
    application/rssxml, csv, tsv, json, xml, application/rdfxmlAvailable download formats
    Dataset updated
    Aug 21, 2019
    Dataset authored and provided by
    Zillowhttp://zillow.com/
    Description

    VITAL SIGNS INDICATOR Home Prices (EC7)

    FULL MEASURE NAME Home Prices

    LAST UPDATED August 2019

    DESCRIPTION Home prices refer to the cost of purchasing one’s own house or condominium. While a significant share of residents may choose to rent, home prices represent a primary driver of housing affordability in a given region, county or city.

    DATA SOURCE Zillow Median Sale Price (1997-2018) http://www.zillow.com/research/data/

    Bureau of Labor Statistics: Consumer Price Index All Urban Consumers Data Table (1997-2018; specific to each metro area) http://data.bls.gov

    CONTACT INFORMATION vitalsigns.info@bayareametro.gov

    METHODOLOGY NOTES (across all datasets for this indicator) Median housing price estimates for the region, counties, cities, and zip code come from analysis of individual home sales by Zillow. The median sale price is the price separating the higher half of the sales from the lower half. In other words, 50 percent of home sales are below or above the median value. Zillow defines all homes as single-family residential, condominium, and co-operative homes with a county record. Single-family residences are detached, which means the home is an individual structure with its own lot. Condominiums are units that you own in a multi-unit complex, such as an apartment building. Co-operative homes are slightly different from condominiums where the homeowners own shares in the corporation that owns the building, not the actual units themselves.

    For metropolitan area comparison values, the Bay Area metro area’s median home sale price is the population-weighted average of the nine counties’ median home prices. Home sales prices are not reliably available for Houston, because Texas is a non-disclosure state. For more information on non-disclosure states, see: http://www.zillow.com/blog/chronicles-of-data-collection-ii-non-disclosure-states-3783/

    Inflation-adjusted data are presented to illustrate how home prices have grown relative to overall price increases; that said, the use of the Consumer Price Index does create some challenges given the fact that housing represents a major chunk of consumer goods bundle used to calculate CPI. This reflects a methodological tradeoff between precision and accuracy and is a common concern when working with any commodity that is a major component of CPI itself.

  8. T

    United States New Home Sales

    • tradingeconomics.com
    • it.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated May 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States New Home Sales [Dataset]. https://tradingeconomics.com/united-states/new-home-sales
    Explore at:
    csv, json, excel, xmlAvailable download formats
    Dataset updated
    May 23, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1963 - Jun 30, 2025
    Area covered
    United States
    Description

    New Home Sales in the United States increased to 627 Thousand units in June from 623 Thousand units in May of 2025. This dataset provides the latest reported value for - United States New Home Sales - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  9. G

    New housing price index, monthly

    • open.canada.ca
    • www150.statcan.gc.ca
    • +2more
    csv, html, xml
    Updated Jun 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics Canada (2025). New housing price index, monthly [Dataset]. https://open.canada.ca/data/en/dataset/324befd1-893b-42e6-bece-6d30af3dd9f1
    Explore at:
    xml, csv, htmlAvailable download formats
    Dataset updated
    Jun 20, 2025
    Dataset provided by
    Statistics Canada
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    New housing price index (NHPI). Monthly data are available from January 1981. The table presents data for the most recent reference period and the last four periods. The base period for the index is (201612=100).

  10. Live tables on housing market and house prices

    • gov.uk
    Updated Jul 14, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ministry of Housing, Communities & Local Government (2018 to 2021) (2016). Live tables on housing market and house prices [Dataset]. https://www.gov.uk/government/statistical-data-sets/live-tables-on-housing-market-and-house-prices
    Explore at:
    Dataset updated
    Jul 14, 2016
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    Ministry of Housing, Communities & Local Government (2018 to 2021)
    Description

    These statistics are no longer updated by DCLG.

    The equivalents of tables 581 to 588 are now published by the Office for National Statistics in the http://www.ons.gov.uk/peoplepopulationandcommunity/housing/bulletins/housepricestatisticsforsmallareas/previousReleases" class="govuk-link">house price statistics for small areas series and tables 576 to 578 in the https://www.ons.gov.uk/peoplepopulationandcommunity/housing/bulletins/housingaffordabilityinenglandandwales/previousReleases" class="govuk-link">housing affordability series.

    Discontinued tables

    Tables 531, 542, 563, 575 and 580 have been discontinued and are no longer being updated.

    https://assets.publishing.service.gov.uk/media/5a78fdd5ed915d0422066f21/141008.xls">Table 531: distribution of house prices, by new/other dwellings and type of buyer, United Kingdom, from 1990 (final version)

     <p class="gem-c-attachment_metadata"><span class="gem-c-attachment_attribute">MS Excel Spreadsheet</span>, <span class="gem-c-attachment_attribute">91 KB</span></p>
    
    
    
    
     <p class="gem-c-attachment_metadata">This file may not be suitable for users of assistive technology.</p>
     <details data-module="ga4-event-tracker" data-ga4-event='{"event_name":"select_content","type":"detail","text":"Request an accessible format.","section":"Request an accessible format.","index_section":1}' class="gem-c-details govuk-details govuk-!-margin-bottom-0" title="Request an accessible format.">
    

    Request an accessible format.

      If you use assistive technology (such as a screen reader) and need a version of this document in a more accessible format, please email <a href="mailto:alternativeformats@communities.gov.uk" target="_blank" class="govuk-link">alternativeformats@communities.gov.uk</a>. Please tell us what format you need. It will help us if you say what assistive technology you use.
    

    https://assets.publishing.service.gov.uk/media/5a7ee6cae5274a2e8ab48eba/Table_542_-_Discontinued.xls">Table 542: mortgage lending by type of lender, United Kingdom, from 1990 (final version)

     <p class="gem-c-attachment_metadata"><span class="gem-c-attachment_attribute">MS Excel Spreadsheet</
    
  11. Vital Signs: Home Prices – Bay Area

    • data.bayareametro.gov
    application/rdfxml +5
    Updated Aug 21, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zillow (2019). Vital Signs: Home Prices – Bay Area [Dataset]. https://data.bayareametro.gov/dataset/Vital-Signs-Home-Prices-Bay-Area/vnvp-ma92
    Explore at:
    application/rssxml, csv, tsv, json, application/rdfxml, xmlAvailable download formats
    Dataset updated
    Aug 21, 2019
    Dataset authored and provided by
    Zillowhttp://zillow.com/
    Area covered
    San Francisco Bay Area
    Description

    VITAL SIGNS INDICATOR Home Prices (EC7)

    FULL MEASURE NAME Home Prices

    LAST UPDATED August 2019

    DESCRIPTION Home prices refer to the cost of purchasing one’s own house or condominium. While a significant share of residents may choose to rent, home prices represent a primary driver of housing affordability in a given region, county or city.

    DATA SOURCE Zillow Median Sale Price (1997-2018) http://www.zillow.com/research/data/

    Bureau of Labor Statistics: Consumer Price Index All Urban Consumers Data Table (1997-2018; specific to each metro area) http://data.bls.gov

    CONTACT INFORMATION vitalsigns.info@bayareametro.gov

    METHODOLOGY NOTES (across all datasets for this indicator) Median housing price estimates for the region, counties, cities, and zip code come from analysis of individual home sales by Zillow. The median sale price is the price separating the higher half of the sales from the lower half. In other words, 50 percent of home sales are below or above the median value. Zillow defines all homes as single-family residential, condominium, and co-operative homes with a county record. Single-family residences are detached, which means the home is an individual structure with its own lot. Condominiums are units that you own in a multi-unit complex, such as an apartment building. Co-operative homes are slightly different from condominiums where the homeowners own shares in the corporation that owns the building, not the actual units themselves.

    For metropolitan area comparison values, the Bay Area metro area’s median home sale price is the population-weighted average of the nine counties’ median home prices. Home sales prices are not reliably available for Houston, because Texas is a non-disclosure state. For more information on non-disclosure states, see: http://www.zillow.com/blog/chronicles-of-data-collection-ii-non-disclosure-states-3783/

    Inflation-adjusted data are presented to illustrate how home prices have grown relative to overall price increases; that said, the use of the Consumer Price Index does create some challenges given the fact that housing represents a major chunk of consumer goods bundle used to calculate CPI. This reflects a methodological tradeoff between precision and accuracy and is a common concern when working with any commodity that is a major component of CPI itself.

  12. o

    Existing own homes; average purchase prices, region

    • data.overheid.nl
    • staging.dexes.eu
    • +2more
    atom, json
    Updated Feb 17, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centraal Bureau voor de Statistiek (Rijk) (2025). Existing own homes; average purchase prices, region [Dataset]. https://data.overheid.nl/dataset/4146-existing-own-homes--average-purchase-prices--region
    Explore at:
    json(KB), atom(KB)Available download formats
    Dataset updated
    Feb 17, 2025
    Dataset provided by
    Centraal Bureau voor de Statistiek (Rijk)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This table shows the average purchase price that has been paid in the reporting period for existing own homes purchased by a private individual. The average purchase price of existing own homes may differ from the price index of existing own homes. The average purchase price is no indicator for price developments of owner-occupied residential property. The average purchase price reflects the average price of dwellings sold in a particular period. The fact that de dwellings sold differs from one period to another is not taken into account. The following instance explains which problems are entailed by the continually changing of the quality of the dwellings sold. Suppose in February of a particular year mainly big houses with extensive gardens beautifully situated alongside canals are sold, whereas in March many small terraced houses are sold. In that case the average purchase price in February will be higher than in March but this does not mean that house prices are increased. See note 3 for a link to the article 'Why the average purchase price is not an indicator'.

    Data available from: 1995

    Status of the figures: The figures in this table are immediately definitive. The calculation of these figures is based on the number of notary transactions that are registered every month by the Dutch Land Registry Office (Kadaster). A revision of the figures is exceptional and occurs specifically if an error significantly exceeds the acceptable statistical margins. The average purchasing prices of existing owner-occupied sold homes can be calculated by Kadaster at a later date. These figures are usually the same as the publication on Statline, but in some periods they differ. Kadaster calculates the average purchasing prices based on the most recent data. These may have changed since the first publication. Statistics Netherlands uses figures from the first publication in accordance with the revision policy described above.

    Changes as of 17 February 2025: Added average purchase prices of the municipalities for the year 2024.

    When will new figures be published? New figures are published approximately one to three months after the period under review.

  13. Real Estate Price Prediction Data

    • figshare.com
    txt
    Updated Aug 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mohammad Shbool; Rand Al-Dmour; Bashar Al-Shboul; Nibal Albashabsheh; Najat Almasarwah (2024). Real Estate Price Prediction Data [Dataset]. http://doi.org/10.6084/m9.figshare.26517325.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Aug 8, 2024
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Mohammad Shbool; Rand Al-Dmour; Bashar Al-Shboul; Nibal Albashabsheh; Najat Almasarwah
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Overview: This dataset was collected and curated to support research on predicting real estate prices using machine learning algorithms, specifically Support Vector Regression (SVR) and Gradient Boosting Machine (GBM). The dataset includes comprehensive information on residential properties, enabling the development and evaluation of predictive models for accurate and transparent real estate appraisals.Data Source: The data was sourced from Department of Lands and Survey real estate listings.Features: The dataset contains the following key attributes for each property:Area (in square meters): The total living area of the property.Floor Number: The floor on which the property is located.Location: Geographic coordinates or city/region where the property is situated.Type of Apartment: The classification of the property, such as studio, one-bedroom, two-bedroom, etc.Number of Bathrooms: The total number of bathrooms in the property.Number of Bedrooms: The total number of bedrooms in the property.Property Age (in years): The number of years since the property was constructed.Property Condition: A categorical variable indicating the condition of the property (e.g., new, good, fair, needs renovation).Proximity to Amenities: The distance to nearby amenities such as schools, hospitals, shopping centers, and public transportation.Market Price (target variable): The actual sale price or listed price of the property.Data Preprocessing:Normalization: Numeric features such as area and proximity to amenities were normalized to ensure consistency and improve model performance.Categorical Encoding: Categorical features like property condition and type of apartment were encoded using one-hot encoding or label encoding, depending on the specific model requirements.Missing Values: Missing data points were handled using appropriate imputation techniques or by excluding records with significant missing information.Usage: This dataset was utilized to train and test machine learning models, aiming to predict the market price of residential properties based on the provided attributes. The models developed using this dataset demonstrated improved accuracy and transparency over traditional appraisal methods.Dataset Availability: The dataset is available for public use under the [CC BY 4.0]. Users are encouraged to cite the related publication when using the data in their research or applications.Citation: If you use this dataset in your research, please cite the following publication:[Real Estate Decision-Making: Precision in Price Prediction through Advanced Machine Learning Algorithms].

  14. F

    Real Residential Property Prices for Canada

    • fred.stlouisfed.org
    json
    Updated Jun 26, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Real Residential Property Prices for Canada [Dataset]. https://fred.stlouisfed.org/series/QCAR628BIS
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jun 26, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required

    Area covered
    Canada
    Description

    Graph and download economic data for Real Residential Property Prices for Canada (QCAR628BIS) from Q1 1970 to Q1 2025 about Canada, residential, HPI, housing, real, price index, indexes, and price.

  15. T

    China Newly Built House Prices YoY Change

    • tradingeconomics.com
    • id.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated May 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). China Newly Built House Prices YoY Change [Dataset]. https://tradingeconomics.com/china/housing-index
    Explore at:
    xml, excel, csv, jsonAvailable download formats
    Dataset updated
    May 19, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 2011 - Jun 30, 2025
    Area covered
    China
    Description

    Housing Index in China decreased by 3.20 percent in June from -3.50 percent in May of 2025. This dataset provides the latest reported value for - China Newly Built House Prices YoY Change - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  16. Zillow Datasets

    • brightdata.com
    .json, .csv, .xlsx
    Updated Dec 19, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bright Data (2022). Zillow Datasets [Dataset]. https://brightdata.com/products/datasets/zillow
    Explore at:
    .json, .csv, .xlsxAvailable download formats
    Dataset updated
    Dec 19, 2022
    Dataset authored and provided by
    Bright Datahttps://brightdata.com/
    License

    https://brightdata.com/licensehttps://brightdata.com/license

    Area covered
    Worldwide
    Description

    Gain a complete view of the real estate market with our Zillow datasets. Track price trends, rental/sale status, and price per square foot with the Zillow Price History dataset and explore detailed listings with prices, locations, and features using the Zillow Properties Listing dataset. Over 134M records available Price starts at $250/100K records Data formats are available in JSON, NDJSON, CSV, XLSX and Parquet. 100% ethical and compliant data collection Included datapoints:

    Zpid
    City
    State
    Home Status
    Street Address
    Zipcode
    Home Type
    Living Area Value
    Bedrooms
    Bathrooms
    Price
    Property Type
    Date Sold
    Annual Homeowners Insurance
    Price Per Square Foot
    Rent Zestimate
    Tax Assessed Value
    Zestimate
    Home Values
    Lot Area
    Lot Area Unit
    Living Area
    Living Area Units
    Property Tax Rate
    Page View Count
    Favorite Count
    Time On Zillow
    Time Zone
    Abbreviated Address
    Brokerage Name
    And much more
    
  17. d

    Real Estate Data | Property Listing, Sold Properties, Rankings, Agent...

    • datarade.ai
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Grepsr, Real Estate Data | Property Listing, Sold Properties, Rankings, Agent Datasets | Global Coverage | For Competitive Property Pricing and Investment [Dataset]. https://datarade.ai/data-products/real-estate-property-data-grepsr-grepsr
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset authored and provided by
    Grepsr
    Area covered
    Kazakhstan, Australia, South Sudan, Tonga, Congo (Democratic Republic of the), Iraq, Spain, Holy See, Malaysia, Kuwait
    Description

    Extract detailed property data points — address, URL, prices, floor space, overview, parking, agents, and more — from any real estate listings. The Rankings data contains the ranking of properties as they come in the SERPs of different property listing sites. Furthermore, with our real estate agents' data, you can directly get in touch with the real estate agents/brokers via email or phone numbers.

    A. Usecase/Applications possible with the data:

    1. Property pricing - accurate property data for real estate valuation. Gather information about properties and their valuations from Federal, State, or County level websites. Monitor the real estate market across the country and decide the best time to buy or sell based on data

    2. Secure your real estate investment - Monitor foreclosures and auctions to identify investment opportunities. Identify areas within special economic and opportunity zones such as QOZs - cross-map that with commercial or residential listings to identify leads. Ensure the safety of your investments, property, and personnel by analyzing crime data prior to investing.

    3. Identify hot, emerging markets - Gather data about rent, demographic, and population data to expand retail and e-commerce businesses. Helps you drive better investment decisions.

    4. Profile a building’s retrofit history - a building permit is required before the start of any construction activity of a building, such as changing the building structure, remodeling, or installing new equipment. Moreover, many large cities provide public datasets of building permits in history. Use building permits to profile a city’s building retrofit history.

    5. Study market changes - New construction data helps measure and evaluate the size, composition, and changes occurring within the housing and construction sectors.

    6. Finding leads - Property records can reveal a wealth of information, such as how long an owner has currently lived in a home. US Census Bureau data and City-Data.com provide profiles of towns and city neighborhoods as well as demographic statistics. This data is available for free and can help agents increase their expertise in their communities and get a feel for the local market.

    7. Searching for Targeted Leads - Focusing on small, niche areas of the real estate market can sometimes be the most efficient method of finding leads. For example, targeting high-end home sellers may take longer to develop a lead, but the payoff could be greater. Or, you may have a special interest or background in a certain type of home that would improve your chances of connecting with potential sellers. In these cases, focused data searches may help you find the best leads and develop relationships with future sellers.

    How does it work?

    • Analyze sample data
    • Customize parameters to suit your needs
    • Add to your projects
    • Contact support for further customization
  18. d

    Housing Cost Burden by Race

    • catalog.data.gov
    • data.seattle.gov
    • +3more
    Updated Jan 31, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Seattle ArcGIS Online (2025). Housing Cost Burden by Race [Dataset]. https://catalog.data.gov/dataset/housing-cost-burden-by-race-cea20
    Explore at:
    Dataset updated
    Jan 31, 2025
    Dataset provided by
    City of Seattle ArcGIS Online
    Description

    Displacement risk indicator showing how many households within the specified groups are facing either housing cost burden (contributing more than 30% of monthly income toward housing costs) or severe housing cost burden (contributing more than 50% of monthly income toward housing costs).

  19. A

    ‘Property Prices Index By City 2009 to 2021’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Feb 13, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2022). ‘Property Prices Index By City 2009 to 2021’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-property-prices-index-by-city-2009-to-2021-048d/638a90ec/?iid=002-832&v=presentation
    Explore at:
    Dataset updated
    Feb 13, 2022
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘Property Prices Index By City 2009 to 2021’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/jolenech/property-prices-index-by-city-2009-to-2021 on 13 February 2022.

    --- Dataset description provided by original source is as follows ---

    Context

    I wanted to see how affordable housing is across countries and wanted to compare the price of housing. But I could not find a properly documented and easily downloaded dataset hence I created one with the help of web-scraping with Python and Pandas.

    Content

    I spent a lot of time searching for a source for the information I wanted in order to compare affordability. I stumbled upon a great website which was exactly what I was looking for Numbeo The website has a lot of details like affordability index, prime to income ratio, price to rent ratios in and out of city centre and more!

    Now I had the data, I needed to download it. Since I couldn't get the raw form of the data, I did web scraping in order to get details in the table for 2009 to 2021 using a for loop to go through all links and create csv files for every year.

    What's in the dataset?

    Details of columns Note: There are a few null values in the 2009 dataset (mortgage and Affordability Index columns.

    Check out the code I used on Github.

    Acknowledgements

    I couldn't have gotten the data without Numbeo!

    Inspiration

    I was working on a project trying to see if Price of Housing in Singapore can be justified and wanted more data that's global instead of just from Singapore. Let me know if you have any questions!

    --- Original source retains full ownership of the source dataset ---

  20. T

    United Kingdom House Price Index

    • tradingeconomics.com
    • it.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jul 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United Kingdom House Price Index [Dataset]. https://tradingeconomics.com/united-kingdom/housing-index
    Explore at:
    json, excel, xml, csvAvailable download formats
    Dataset updated
    Jul 15, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1983 - Jul 31, 2025
    Area covered
    United Kingdom
    Description

    Housing Index in the United Kingdom increased to 514.30 points in July from 512.40 points in June of 2025. This dataset provides - United Kingdom House Price Index - actual values, historical data, forecast, chart, statistics, economic calendar and news.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
TRADING ECONOMICS, United States Existing Home Sales Prices [Dataset]. https://tradingeconomics.com/united-states/single-family-home-prices

United States Existing Home Sales Prices

United States Existing Home Sales Prices - Historical Dataset (1968-01-31/2025-06-30)

Explore at:
xml, excel, json, csvAvailable download formats
Dataset authored and provided by
TRADING ECONOMICS
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Time period covered
Jan 31, 1968 - Jun 30, 2025
Area covered
United States
Description

Single Family Home Prices in the United States increased to 435300 USD in June from 423700 USD in May of 2025. This dataset provides - United States Existing Single Family Home Prices- actual values, historical data, forecast, chart, statistics, economic calendar and news.

Search
Clear search
Close search
Google apps
Main menu