Facebook
TwitterBy Homeland Infrastructure Foundation [source]
This dataset compiles historical data on tornadoes in the United States, Puerto Rico, and the U.S. Virgin Islands – providing a critical resource to researchers and policy-makers alike. Obtained from the National Weather Service's Storm Prediction Center (SPC), it contains an intricate wealth of information that sheds light onto patterns of tornado outbreaks across time & geographical space yielding insights into factors like magnitude, fatalities/injuries caused and losses incurred by these devastating weather disasters. With attributes such as Start Longitude/Latitude, End Longitude/Latitude, Day of Origin & Time Zone – this dataset will enable a comprehensive analysis of changes over time in regards to both intensity & frequency for those interested in studying climate change and its impact on extreme weather events such as tornadoes. For disaster management personnel dealing with natural hazards like floods or hurricanes - a familiarity with this dataset can help identify areas prone to frequent storms - thereby empowering proactive measures towards their mitigation.*
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This dataset contains historical tornado tracks in the United States, Puerto Rico, and the U.S. Virgin Islands. The data was obtained from the National Weather Service's Storm Prediction Center (SPC). It includes thirty-seven columns of statistics which you can use to analyze when, where, and how frequently tornadoes occur in North America over time.
- Creating a tornado watch and warning system using Geographic Information Systems (GIS) technology to track and predict the path of dangerous storms.
- Developing an insurance system that gives detailed information on historical data related to natural disasters including tornadoes, hurricanes, floods, etc., in order to better assess risk levels for insuring homes and businesses in vulnerable areas.
- Developing an app that provides real-time notifications for potential tornadoes by utilizing the dataset's coordinates and forecasting data from the National Weather Service (NWS). The app could even provide shelter locations near users based on their current location ensuring that people are aware of potential active threats nearby them quickly increasing safety levels as much as possible when these hazardous events occur
If you use this dataset in your research, please credit the original authors. Data Source
License: Dataset copyright by authors - You are free to: - Share - copy and redistribute the material in any medium or format for any purpose, even commercially. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original. - Keep intact - all notices that refer to this license, including copyright notices.
File: Historical_Tornado_Tracks.csv | Column name | Description | |:--------------|:-------------------------------------| | OM | Origin Mode (Point or Line) (String) | | YR | Year (Integer) | | MO | Month (Integer) | | DY | Day (Integer) | | DATE | Date (String) | | TIME | Time (String) | | TZ | Time Zone (String) | | ST | State (String) | | STF | FIPS State Code (String) | | STN | State Name (String) | | MAG | Magnitude (Integer) | | INJ | Injuries (Integer) | | FAT | Fatalities (Integer) | | LOSS | Loss (Integer) | | CLOSS | Crop Loss (Integer) | | SLAT | Starting Latitude (Float) | | SLON | Starting Longitude (Float) | | ELAT | Ending Latitude (Float) | | ELON | Ending Longitude (Float) | | LEN | Length of Track (Float) ...
Facebook
TwitterTornado TracksThis feature layer, utilizing data from the National Oceanic and Atmospheric Administration (NOAA), displays tornadoes in the United States, Puerto Rico and U.S. Virgin Islands between 1950 and 2024. A tornado track shows the route of a tornado. Per NOAA, "A tornado is a narrow, violently rotating column of air that extends from a thunderstorm to the ground. Because wind is invisible, it is hard to see a tornado unless it forms a condensation funnel made up of water droplets, dust and debris. Tornadoes can be among the most violent phenomena of all atmospheric storms we experience. The most destructive tornadoes occur from supercells, which are rotating thunderstorms with a well-defined radar circulation called a mesocyclone. (Supercells can also produce damaging hail, severe non-tornadic winds, frequent lightning, and flash floods.)"EF-5 Tornado Track (May 3, 1999) near Oklahoma City, OklahomaData currency: December 30, 2024Data source: Storm Prediction CenterData modifications: Added field "Date_Calc"For more information: Severe Weather 101 - Tornadoes; NSSL Research: TornadoesSupport documentation: SPC Tornado, Hail, and Wind Database Format SpecificationFor feedback, please contact: ArcGIScomNationalMaps@esri.comNational Oceanic and Atmospheric AdministrationPer NOAA, its mission is "To understand and predict changes in climate, weather, ocean, and coasts, to share that knowledge and information with others, and to conserve and manage coastal and marine ecosystems and resources."
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Tornadoes frequently occur in the United States, resulting in vast destruction and often injuries and death. They occur more often in the United States and Canada than in other countries with the most tornado-prone regions in the US being the central and southeastern states along a corridor sometimes called "Tornado Alley."
A tornado's destructiveness is derived largely from the wind speed within it. For this reason, meteoroligists rate tornadoes using a scale based on wind speed. In the US, tornadoes were originally rated on the Fujita Scale, and since February 2007 on the Enhanced Fujita Scale. The two scales cover slightly different speed ranges, but for practical purposes are the same. The enhanced Fujita scale is shown below.
| Rating | Wind Speed | Damage |
|---|---|---|
| EF0 | 65–85 mph | Light damage |
| EF1 | 86–110 mph | Moderate damage |
| EF2 | 111–135 mph | Considerable damage |
| EF3 | 136–165 mph | Severe damage |
| EF4 | 166–200 mph | Devastating damage |
| EF5 | >200 mph | Incredible damage |
This dataset was derived from a dataset produced by NOAA's Storm Prediction Center. The primary changes made to create this dataset were the deletion of some columns, change of some data types, and sorting by date.
NOAA Storm Prediction Center WIkipedia - Tornado Wikipedia - Fujita Scale Wikipedia - Enhanced Fujita Scale
Facebook
TwitterTornadoesThis feature layer, utilizing data from the National Oceanic and Atmospheric Administration (NOAA), displays tornadoes in the United States, Puerto Rico and U.S. Virgin Islands between 1950 and 2024. Per NOAA, "A tornado is a narrow, violently rotating column of air that extends from a thunderstorm to the ground. Because wind is invisible, it is hard to see a tornado unless it forms a condensation funnel made up of water droplets, dust and debris. Tornadoes can be among the most violent phenomena of all atmospheric storms we experience. The most destructive tornadoes occur from supercells, which are rotating thunderstorms with a well-defined radar circulation called a mesocyclone. (Supercells can also produce damaging hail, severe non-tornadic winds, frequent lightning, and flash floods.)"EF-5 Tornado (May 22, 2011) near Joplin, MissouriData currency: December 30, 2024Data source: Storm Prediction CenterData modifications: Added field "Date_Calc"For more information: Severe Weather 101 - Tornadoes; NSSL Research: TornadoesSupport documentation: SPC Tornado, Hail, and Wind Database Format SpecificationFor feedback, please contact: ArcGIScomNationalMaps@esri.comNational Oceanic and Atmospheric AdministrationPer NOAA, its mission is "To understand and predict changes in climate, weather, ocean, and coasts, to share that knowledge and information with others, and to conserve and manage coastal and marine ecosystems and resources."
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Q: Where is severe weather likely at this time of year? A: Shading on each map reflects how often severe weather occurred within 25 miles during a 30-year base period. The darker the shading, the higher the number of severe weather reports near that date. For this map, severe weather encompasses tornadoes, thunderstorm winds over 58 miles per hour, and hail larger than three-quarters of an inch in diameter. Q: How were these maps produced? A: For each day of the year, scientists plotted reports of severe weather from 1982 to 2011 on a gridded map. To reveal the long-term patterns of these events, they applied mathematical filters to smooth the counts in time and space. Keep in mind that severe weather is possible at any location on any day of the year. Q: What do the colors mean? A: Shaded areas show the historical probability of severe weather occurring within 25 miles. Meteorologists estimated these probabilities from severe weather reports submitted from 1982-2011. For each day of the year, scientists plotted reports of severe events onto a map marked with grid cells 50 miles on a side. For each grid cell, they counted the number of years with at least one report, and divided by the total number of years. To reveal the long-term patterns suggested by this relatively small dataset, they used statistical methods to smooth the data. For instance, to smooth clusters of events in time, a mathematical filter replaced the value in every grid cell with a 15-day average. Another filter extended report locations over a 25-mile-wide circle to indicate the probability that the event could have occurred at other points within that area. Q: Why do these data matter? A: Knowing when and where severe weather tends to occur through the year promotes preparedness. Residents who are alert to the possibility of severe weather are better able to respond in ways that keep them safe. These data can also help emergency response personnel plan for when and where their services may be necessary. Q: How did you produce these snapshots? A: Data Snapshots are derivatives of existing data products: to meet the needs of a broad audience, we present the source data in a simplified visual style. NOAA's National Weather Service Storm Prediction Center produced the Severe Weather Climatology files. To produce our images, we obtained the climatology data as a numpy array, and ran a set of scripts to display the mapped areas on our base maps with a custom color bar. Additional information Data for these images represents an update and extension of work first put forth by Dr. Harold Brooks of the National Severe Storms Laboratory. References Brooks, H. E., C. A. Doswell, III, and M. P. Kay, (2003) Climatological estimates of local daily tornado probability, Wea. Forecasting, 18, 626-640.Source: https://www.climate.gov/maps-data/data-snapshots/data-source/historic-probability-severe-weather This upload includes two additional files:* Historic Probability of Severe Weather _NOAA Climate.gov.pdf is a screenshot of the main Climate.gov site for these snapshots (https://www.climate.gov/maps-data/data-snapshots/data-source/historic-probability-severe-weather )* Cimate_gov_ Data Snapshots.pdf is a screenshot of the data download page for the full-resolution files.
Facebook
TwitterThe National Weather Service issues warnings for severe weather that are imminent or actively occurring. This layer shows shorter-term warnings for the following events:Special Marine Warnings - potentially hazardous weather conditions of short duration (up to 2 hours) that may include sustained winds or gusts of 39 mph or greater, hail 0.75” or greater in diameter, or waterspouts.Severe Thunderstorm Warnings - storms with winds of 58 mph or higher or hail 1” or greater in diameter.Tornado Warnings - imminent or active tornados.Extreme Wind Warnings - surface winds of 115 mph or greater associated with non-convective, downslope, derecho, or sustained hurricane winds are expected to occur within one hour.Flash Flood Warnings - conditions are favorable for flash flooding. It does not mean that flash flooding will occur, but it is possible.SourceCurrent Warnings: https://www.weather.gov/source/crh/shapefiles/CurrentWarnings.tar.gzSample DataSee Sample Layer Item for sample data during Weather inactivity!Update FrequencyThe service is updated every 5 minutes using the Aggregated Live Feeds methodology.Area CoveredContiguous United StatesWhat can you do with this layer?Customize the display of each attribute by using the Change Style option for any layer.Query the layer to display only specific types of weather watches and warnings.Add to a map with other weather data layers to provide inside on hazardous weather events.Use ArcGIS Online analysis tools, such as Enrich Data, to determine the potential impact of weather events on populations.This map is provided for informational purposes and is not monitored 24/7 for accuracy and currency.If you would like to be alerted to potential issues or simply see when this Service will update next, please visit our Live Feed Status Page!
Facebook
TwitterTornado TracksThis feature layer, utilizing data from the National Oceanic and Atmospheric Administration (NOAA), displays tornadoes in the United States, Puerto Rico and U.S. Virgin Islands between 1950 and 2022. A tornado track shows the route of a tornado. Per NOAA, "A tornado is a narrow, violently rotating column of air that extends from a thunderstorm to the ground. Because wind is invisible, it is hard to see a tornado unless it forms a condensation funnel made up of water droplets, dust and debris. Tornadoes can be among the most violent phenomena of all atmospheric storms we experience. The most destructive tornadoes occur from supercells, which are rotating thunderstorms with a well-defined radar circulation called a mesocyclone. (Supercells can also produce damaging hail, severe non-tornadic winds, frequent lightning, and flash floods.)"EF-5 Tornado Track (May 3, 1999) near Oklahoma City, OklahomaData currency: December 30, 2022Data source: Storm Prediction CenterData modifications: Added fields Calculated Month and DateFor more information: Severe Weather 101 - Tornadoes; NSSL Research: TornadoesSupport documentation: SPC Tornado, Hail, and Wind Database Format SpecificationFor feedback, please contact: ArcGIScomNationalMaps@esri.comNational Oceanic and Atmospheric AdministrationPer NOAA, its mission is "To understand and predict changes in climate, weather, ocean, and coasts, to share that knowledge and information with others, and to conserve and manage coastal and marine ecosystems and resources."
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Facebook
TwitterBy Homeland Infrastructure Foundation [source]
This dataset compiles historical data on tornadoes in the United States, Puerto Rico, and the U.S. Virgin Islands – providing a critical resource to researchers and policy-makers alike. Obtained from the National Weather Service's Storm Prediction Center (SPC), it contains an intricate wealth of information that sheds light onto patterns of tornado outbreaks across time & geographical space yielding insights into factors like magnitude, fatalities/injuries caused and losses incurred by these devastating weather disasters. With attributes such as Start Longitude/Latitude, End Longitude/Latitude, Day of Origin & Time Zone – this dataset will enable a comprehensive analysis of changes over time in regards to both intensity & frequency for those interested in studying climate change and its impact on extreme weather events such as tornadoes. For disaster management personnel dealing with natural hazards like floods or hurricanes - a familiarity with this dataset can help identify areas prone to frequent storms - thereby empowering proactive measures towards their mitigation.*
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This dataset contains historical tornado tracks in the United States, Puerto Rico, and the U.S. Virgin Islands. The data was obtained from the National Weather Service's Storm Prediction Center (SPC). It includes thirty-seven columns of statistics which you can use to analyze when, where, and how frequently tornadoes occur in North America over time.
- Creating a tornado watch and warning system using Geographic Information Systems (GIS) technology to track and predict the path of dangerous storms.
- Developing an insurance system that gives detailed information on historical data related to natural disasters including tornadoes, hurricanes, floods, etc., in order to better assess risk levels for insuring homes and businesses in vulnerable areas.
- Developing an app that provides real-time notifications for potential tornadoes by utilizing the dataset's coordinates and forecasting data from the National Weather Service (NWS). The app could even provide shelter locations near users based on their current location ensuring that people are aware of potential active threats nearby them quickly increasing safety levels as much as possible when these hazardous events occur
If you use this dataset in your research, please credit the original authors. Data Source
License: Dataset copyright by authors - You are free to: - Share - copy and redistribute the material in any medium or format for any purpose, even commercially. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original. - Keep intact - all notices that refer to this license, including copyright notices.
File: Historical_Tornado_Tracks.csv | Column name | Description | |:--------------|:-------------------------------------| | OM | Origin Mode (Point or Line) (String) | | YR | Year (Integer) | | MO | Month (Integer) | | DY | Day (Integer) | | DATE | Date (String) | | TIME | Time (String) | | TZ | Time Zone (String) | | ST | State (String) | | STF | FIPS State Code (String) | | STN | State Name (String) | | MAG | Magnitude (Integer) | | INJ | Injuries (Integer) | | FAT | Fatalities (Integer) | | LOSS | Loss (Integer) | | CLOSS | Crop Loss (Integer) | | SLAT | Starting Latitude (Float) | | SLON | Starting Longitude (Float) | | ELAT | Ending Latitude (Float) | | ELON | Ending Longitude (Float) | | LEN | Length of Track (Float) ...