Tornado TracksThis feature layer, utilizing data from the National Oceanic and Atmospheric Administration (NOAA), displays tornadoes in the United States, Puerto Rico and U.S. Virgin Islands between 1950 and 2024. A tornado track shows the route of a tornado. Per NOAA, "A tornado is a narrow, violently rotating column of air that extends from a thunderstorm to the ground. Because wind is invisible, it is hard to see a tornado unless it forms a condensation funnel made up of water droplets, dust and debris. Tornadoes can be among the most violent phenomena of all atmospheric storms we experience. The most destructive tornadoes occur from supercells, which are rotating thunderstorms with a well-defined radar circulation called a mesocyclone. (Supercells can also produce damaging hail, severe non-tornadic winds, frequent lightning, and flash floods.)"EF-5 Tornado Track (May 3, 1999) near Oklahoma City, OklahomaData currency: December 30, 2024Data source: Storm Prediction CenterData modifications: Added field "Date_Calc"For more information: Severe Weather 101 - Tornadoes; NSSL Research: TornadoesSupport documentation: SPC Tornado, Hail, and Wind Database Format SpecificationFor feedback, please contact: ArcGIScomNationalMaps@esri.comNational Oceanic and Atmospheric AdministrationPer NOAA, its mission is "To understand and predict changes in climate, weather, ocean, and coasts, to share that knowledge and information with others, and to conserve and manage coastal and marine ecosystems and resources."
Storm Data is provided by the National Weather Service (NWS) and contain statistics on personal injuries and damage estimates. Storm Data covers the United States of America. The data began as early as 1950 through to the present, updated monthly with up to a 120 day delay possible. NCDC Storm Event database allows users to find various types of storms recorded by county, or use other selection criteria as desired. The data contain a chronological listing, by state, of hurricanes, tornadoes, thunderstorms, hail, floods, drought conditions, lightning, high winds, snow, temperature extremes and other weather phenomena.
This is a database of tornadoes that have affected the Huntsville Forecast area this year. National Weather Service Storm Survey information regarding the tornadoes that occurred so far in 2025 within the NWS Huntsville County Warning Area (CWA). Included are storm survey damage points with pictures where available, tornado damage paths, and estimated damage swath information where applicable.
This is a database of tornadoes that have affected the Huntsville Forecast area this year. National Weather Service Storm Survey information regarding the tornadoes that occurred so far in 2024 within the NWS Huntsville County Warning Area (CWA). Included are storm survey damage points with pictures where available, tornado damage paths, and estimated damage swath information where applicable. ALL DATA SHOULD BE CONSIDERED PRELIMINARY.
This dataset consists of Level II weather radar data collected from Next-Generation Radar (NEXRAD) stations located in the contiguous United States, Alaska, Hawaii, U.S. territories and at military base sites. NEXRAD is a network of 160 high-resolution Doppler weather radars operated by the NOAA National Weather Service (NWS), the Federal Aviation Administration (FAA), and the U.S. Air Force (USAF). Doppler radars detect atmospheric precipitation and winds, which allow scientists to track and anticipate weather events, such as rain, ice pellets, snow, hail, and tornadoes, as well as some non-weather objects like birds and insects. NEXRAD stations use the Weather Surveillance Radar - 1988, Doppler (WSR-88D) system. This is a 10 cm wavelength (S-Band) radar that operates at a frequency between 2,700 and 3,000 MHz. The radar system operates in two basic modes: a slow-scanning Clear Air Mode (Mode B) for analyzing air movements when there is little or no precipitation activity in the area, and a Precipitation Mode (Mode A) with a faster scan for tracking active weather. The two modes employ nine Volume Coverage Patterns (VCPs) to adequately sample the atmosphere based on weather conditions. A VCP is a series of 360 degree sweeps of the antenna at pre-determined elevation angles and pulse repetition frequencies completed in a specified period of time. The radar scan times 4.5, 5, 6 or 10 minutes depending on the selected VCP. The NEXRAD products are divided into multiple data processing levels. The lower Level II data contain the three meteorological base data quantities at original resolution: reflectivity, mean radial velocity, and spectrum width. With the advent of dual polarization beginning in 2011, additional base products of differential reflectivity, correlation coefficient and differential phase are available. Level II data are recorded at all NWS and most USAF and FAA WSR-88D sites. From the Level II quantities, computer processing generates numerous meteorological analysis Level 3 products. NEXRAD data are acquired by the NOAA National Centers for Environmental Information (NCEI) for archiving and dissemination to users. Data coverage varies by station and ranges from June 1991 to 1 day from present. Most stations began observing in the mid-1990s, and most period of records are continuous.
This dataset consists of Level III weather radar products collected from Next-Generation Radar (NEXRAD) stations located in the contiguous United States, Alaska, Hawaii, U.S. territories and at military base sites. NEXRAD is a network of 160 high-resolution Doppler weather radars operated by the NOAA National Weather Service (NWS), the Federal Aviation Administration (FAA), and the U.S. Air Force (USAF). Doppler radars detect atmospheric precipitation and winds, which allow scientists to track and anticipate weather events, such as rain, ice pellets, snow, hail, and tornadoes, as well as some non-weather objects like birds and insects. NEXRAD stations use the Weather Surveillance Radar - 1988, Doppler (WSR-88D) system. This is a 10 cm wavelength (S-Band) radar that operates at a frequency between 2,700 and 3,000 MHz. The radar system operates in two basic modes: a slow-scanning Clear Air Mode (Mode B) for analyzing air movements when there is little or no precipitation activity in the area, and a Precipitation Mode (Mode A) with a faster scan for tracking active weather. The two modes employ nine Volume Coverage Patterns (VCPs) to adequately sample the atmosphere based on weather conditions. A VCP is a series of 360 degree sweeps of the antenna at pre-determined elevation angles and pulse repetition frequencies completed in a specified period of time. The radar scan times 4.5, 5, 6 or 10 minutes depending on the selected VCP. During 2008, the WSR-88D radars were upgraded to produce increased spatial resolution data, called Super Resolution. The earlier Legacy Resolution data provides radar reflectivity at 1.0 degree azimuthal by 1 km range gate resolution to a range of 460 km, and Doppler velocity and spectrum width at 1.0 degree azimuthal by 250 m range gate resolution to a range of 230 km. The upgraded Super Resolution data provides radar reflectivity at 0.5 degree azimuthal by 250 m range gate resolution to a range of 460 km, and Doppler velocity and spectrum width at 0.5 degree azimuthal by 250 m range gate resolution to a range of 300 km. Super resolution makes a compromise of slightly decreased noise reduction for a large gain in resolution. In 2010, the deployment of the Dual Polarization (Dual Pol) capability to NEXRAD sites began with the first operational Dual Pol radar in May 2011. Dual Pol radar capability adds vertical polarization to the previous horizontal radar waves, in order to more accurately discern the return signal. This allows the radar to better distinguish between types of precipitation (e.g., rain, hail and snow), improves rainfall estimates, improves data retrieval in mountainous terrain, and aids in removal of non-weather artifacts. The NEXRAD products are divided in two data processing levels. The lower Level II data are base products at original resolution. Level II data are recorded at all NWS and most USAF and FAA WSR-88D sites. From the Level II quantities, computer processing generates numerous meteorological analysis Level III products. The Level III data consists of reduced resolution, low-bandwidth, base products as well as many derived, post-processed products. Level III products are recorded at most U.S. sites, though non-US sites do not have Level III products. There are over 40 Level III products available from the NCDC. General products for Level III include the base and composite reflectivity, storm relative velocity, vertical integrated liquid, echo tops and VAD wind profile. Precipitation products for Level III include estimated ground accumulated rainfall amounts for one and three hour periods, storm totals, and digital arrays. Estimates are based on reflectivity to rainfall rate (Z-R) relationships. Overlay products for Level III are alphanumeric data that give detailed information on certain parameters for an identified storm cell. These include storm structure, hail index, mesocyclone identification, tornadic vortex signature, and storm tracking information. Radar messages for Level III are sent by the radar site to users in order to know more about the radar status and special product data. NEXRAD data are provided to the NOAA National Climatic Data Center for archiving and dissemination to users. Data coverage varies by station and ranges from May 1992 to 1 day from present. Most stations began observing in the mid-1990s, and most period of records are continuous.
OverviewThe multiple hazard index for the United States Counties was designed to map natural hazard relating to exposure to multiple natural disasters. The index was created to provide communities and public health officials with an overview of the risks that are prominent in their county, and to facilitate the comparison of hazard level between counties. Most existing hazard maps focus on a single disaster type. By creating a measure that aggregates the hazard from individual disasters, the increased hazard that results from exposure to multiple natural disasters can be better understood. The multiple hazard index represents the aggregate of hazard from eleven individual disasters. Layers displaying the hazard from each individual disaster are also included.
The hazard index is displayed visually as a choropleth map, with the color blue representing areas with less hazard and red representing areas with higher hazard. Users can click on each county to view its hazard index value, and the level of hazard for each individual disaster. Layers describing the relative level of hazard from each individual disaster are also available as choropleth maps with red areas representing high, orange representing medium, and yellow representing low levels of hazard.Methodology and Data CitationsMultiple Hazard Index
The multiple hazard index was created by coding the individual hazard classifications and summing the coded values for each United States County. Each individual hazard is weighted equally in the multiple hazard index. Alaska and Hawaii were excluded from analysis because one third of individual hazard datasets only describe the coterminous United States.
Avalanche Hazard
University of South Carolina Hazards and Vulnerability Research Institute. “Spatial Hazard Events and Losses Database”. United States Counties. “Avalanches United States 2001-2009”. < http://hvri.geog.sc.edu/SHELDUS/
Downloaded 06/2016.
Classification
Avalanche hazard was classified by dividing counties based upon the number of avalanches they experienced over the nine year period in the dataset. Avalanche hazard was not normalized by total county area because it caused an over-emphasis on small counties, and because avalanches are a highly local hazard.
None = 0 AvalanchesLow = 1 AvalancheMedium = 2-5 AvalanchesHigh = 6-10 Avalanches
Earthquake Hazard
United States Geological Survey. “Earthquake Hazard Maps”. 1:2,000,000. “Peak Ground Acceleration 2% in 50 Years”. < http://earthquake.usgs.gov/hazards/products/conterminous/
. Downloaded 07/2016.
Classification
Peak ground acceleration (% gravity) with a 2% likelihood in 50 years was averaged by United States County, and the earthquake hazard of counties was classified based upon this average.
Low = 0 - 14.25 % gravity peak ground accelerationMedium = 14.26 - 47.5 % gravity peak ground accelerationHigh = 47.5+ % gravity peak ground acceleration
Flood Hazard
United States Federal Emergency Management Administration. “National Flood Hazard Layer”. 1:10,000. “0.2 Percent Annual Flood Area”. < https://data.femadata.com/FIMA/Risk_MAP/NFHL/
. Downloaded 07/2016.
Classification
The National Flood Hazard Layer 0.2 Percent Annual Flood Area was spatially intersected with the United States Counties layer, splitting flood areas by county and adding county information to flood areas. Flood area was aggregated by county, expressed as a fraction of the total county land area, and flood hazard was classified based upon percentage of land that is susceptible to flooding. National Flood Hazard Layer does not cover the entire United States; coverage is focused on populated areas. Areas not included in National Flood Hazard Layer were assigned flood risk of Low in order to include these areas in further analysis.
Low = 0-.001% area susceptibleMedium = .00101 % - .005 % area susceptibleHigh = .00501+ % area susceptible
Heat Wave Hazard
United States Center for Disease Control and Prevention. “National Climate Assessment”. Contiguous United States Counties. “Extreme Heat Events: Heat Wave Days in May - September for years 1981-2010”. Downloaded 06/2016.
Classification
Heat wave was classified by dividing counties based upon the number of heat wave days they experienced over the 30 year time period described in the dataset.
Low = 126 - 171 Heat wave DaysMedium = 172 – 187 Heat wave DaysHigh = 188 – 255 Heat wave Days
Hurricane Hazard
National Oceanic and Atmospheric Administration. Coastal Services Center. “Historical North Atlantic Tropical Cyclone Tracks, 1851-2004”. 1: 2,000,000. < https://catalog.data.gov/dataset/historical-north-atlantic-tropical-cyclone-tracks-1851-2004-direct-download
. Downloaded 06/2016.
National Oceanic and Atmospheric Administration. Coastal Services Center. “Historical North Pacific Tropical Cyclone Tracks, 1851-2004”. 1: 2,000,000. < https://catalog.data.gov/dataset/historical-north-atlantic-tropical-cyclone-tracks-1851-2004-direct-download
. Downloaded 06/2016.
Classification
Atlantic and Pacific datasets were merged. Tropical storm and disturbance tracks were filtered out leaving hurricane tracks. Each hurricane track was assigned the value of the category number that describes that event. Weighting each event by intensity ensures that areas with higher intensity events are characterized as being more hazardous. Values describing each hurricane event were aggregated by United States County, normalized by total county area, and the hurricane hazard of counties was classified based upon the normalized value.
Landslide Hazard
United States Geological Survey. “Landslide Overview Map of the United States”. 1:4,000,000. “Landslide Incidence and Susceptibility in the Conterminous United States”. < https://catalog.data.gov/dataset/landslide-incidence-and-susceptibility-in-the-conterminous-united-states-direct-download
. Downloaded 07/2016.
Classification
The classifications of High, Moderate, and Low landslide susceptibility and incidence from the study were numerically coded, the average value was computed for each county, and the landslide hazard was classified based upon the average value.
Long-Term Drought Hazard
United States Drought Monitor, Drought Mitigation Center, United States Department of Agriculture, National Oceanic and Atmospheric Administration. “Drought Monitor Summary Map”. “Long-Term Drought Impact”. < http://droughtmonitor.unl.edu/MapsAndData/GISData.aspx >. Downloaded 06/2016.
Classification
Short-term drought areas were filtered from the data; leaving only long-term drought areas. United States Counties were assigned the average U.S. Drought Monitor Classification Scheme Drought Severity Classification value that characterizes the county area. County long-term drought hazard was classified based upon average Drought Severity Classification value.
Low = 1 – 1.75 average Drought Severity Classification valueMedium = 1.76 -3.0 average Drought Severity Classification valueHigh = 3.0+ average Drought Severity Classification value
Snowfall Hazard
United States National Oceanic and Atmospheric Administration. “1981-2010 U.S. Climate Normals”. 1: 2,000,000. “Annual Snow Normal”. < http://www1.ncdc.noaa.gov/pub/data/normals/1981-2010/products/precipitation/
. Downloaded 08/2016.
Classification
Average yearly snowfall was joined with point location of weather measurement stations, and stations without valid snowfall measurements were filtered out (leaving 6233 stations). Snowfall was interpolated using least squared distance interpolation to create a .05 degree raster describing an estimate of yearly snowfall for the United States. The average yearly snowfall raster was aggregated by county to yield the average yearly snowfall per United States County. The snowfall risk of counties was classified by average snowfall.
None = 0 inchesLow = .01- 10 inchesMedium = 10.01- 50 inchesHigh = 50.01+ inches
Tornado Hazard
United States National Oceanic and Atmospheric Administration Storm Prediction Center. “Severe Thunderstorm Database and Storm Data Publication”. 1: 2,000,000. “United States Tornado Touchdown Points 1950-2004”. < https://catalog.data.gov/dataset/united-states-tornado-touchdown-points-1950-2004-direct-download
. Downloaded 07/2016.
Classification
Each tornado touchdown point was assigned the value of the Fujita Scale that describes that event. Weighting each event by intensity ensures that areas with higher intensity events are characterized as more hazardous. Values describing each tornado event were aggregated by United States County, normalized by total county area, and the tornado hazard of counties was classified based upon the normalized value.
Volcano Hazard
Smithsonian Institution National Volcanism Program. “Volcanoes of the World”. “Holocene Volcanoes”. < http://volcano.si.edu/search_volcano.cfm
. Downloaded 07/2016.
Classification
Volcano coordinate locations from spreadsheet were mapped and aggregated by United States County. Volcano count was normalized by county area, and the volcano hazard of counties was classified based upon the number of volcanoes present per unit area.
None = 0 volcanoes/100 kilometersLow = 0.000915 - 0.007611 volcanoes / 100 kilometersMedium = 0.007612 - 0.018376 volcanoes / 100 kilometersHigh = 0.018377- 0.150538 volcanoes / 100 kilometers
Wildfire Hazard
United States Department of Agriculture, Forest Service, Fire, Fuel, and Smoke Science Program. “Classified 2014 Wildfire Hazard Potential”. 270 meters. < http://www.firelab.org/document/classified-2014-whp-gis-data-and-maps
. Downloaded 06/2016.
Classification
The classifications of Very High, High, Moderate, Low, Very Low, and Non-Burnable/Water wildfire hazard from the study were numerically coded, the average value was computed for each county, and the wildfire hazard was classified based upon the average value.
This map contains continuously updated U.S. tornado reports, wind storm reports and hail storm reports. Click each feature to receive information about the specific location and read a short description about the issue.Now contains ALL available Incident Report types, for a total of 15, not just Hail; Wind; and Tornados.See new layer for details or Feature Layer Item with exclusive Past 24-Hour ALL Storm Reports Layer.Each layer is updated 4 times hourly from data provided by NOAA’s National Weather Service Storm Prediction Center.A full archive of storm events can be accessed from the NOAA National Centers for Environmental Information.SourceNOAA Storm Prediction Center https://www.spc.noaa.gov/climo/reportsNOAA ALL Storm Reports layer https://www.spc.noaa.gov/exper/reportsSample DataSee Sample Layer Item for sample data during inactive periods!Update FrequencyThe service is updated every 15 minutes using the Aggregated Live Feeds MethodologyArea CoveredCONUS (Contiguous United States)What can you do with this layer?This map service is suitable for data discovery and visualization.Change the symbology of each layer using single or bi-variate smart mapping. For instance, use size or color to indicate the intensity of a tornado.Click each feature to receive information about the specific location and read a short description about the issue.Query the attributes to show only specific event types or locations.Revisions:Aug 10, 2021: Updated Classic Layers to use new Symbols. Corrected Layer Order Presentation. Updated Thumbnail.Aug 8, 2021: Update to layer-popups, correcting link URLs. Expanded length of 'Comment' fields to 1kb of text. New Layer added that includes ALL available Incident Types and Age in 'Hours Old'.This map is provided for informational purposes and is not monitored 24/7 for accuracy and currency.If you would like to be alerted to potential issues or simply see when this service will update next, please visit our Live Feed Status Page.
NEXRAD is a network of 160 high-resolution Doppler weather radars operated by the NOAA National Weather Service (NWS), the Federal Aviation Administration (FAA), and the U.S. Air Force (USAF). Doppler radars detect atmospheric precipitation and winds, which allow scientists to track and anticipate weather events, such as rain, ice pellets, snow, hail, and tornadoes, as well as some non-weather objects like birds and insects. NEXRAD stations use the Weather Surveillance Radar - 1988, Doppler (WSR-88D) system. The NEXRAD products are divided in two data processing levels. The lower Level 2 data are base products at original resolution. Level 2 data are recorded at all NWS and most USAF and FAA WSR-88D sites. From the Level 2 quantities, computer processing generates numerous meteorological analysis Level 3 products. The Level 3 data consists of reduced resolution, low-bandwidth, base products as well as many derived, post-processed products. Level 3 products are recorded at most U.S. sites, though non-US sites do not have Level 3 products. There are over 40 Level 3 products available from the NCDC. General products for Level 3 include the base and composite reflectivity, storm relative velocity, vertical integrated liquid, echo tops and VAD wind profile. Precipitation products for Level 3 include estimated ground accumulated rainfall amounts for one and three hour periods, storm totals, and digital arrays. Estimates are based on reflectivity to rainfall rate (Z-R) relationships. Overlay products for Level 3 are alphanumeric data that give detailed information on certain parameters for an identified storm cell. These include storm structure, hail index, mesocyclone identification, tornadic vortex signature, and storm tracking information. Radar messages for Level 3 are sent by the radar site to users in order to know more about the radar status and special product data. NEXRAD data are provided to the NOAA National Climatic Data Center for archiving and dissemination to users. Data coverage varies by station and ranges from May 1992 to 1 day from present. Most stations began observing in the mid-1990s, and most period of records are continuous.Daily GHCN is part of the Global Historical Climatology Network - Daily (GHCN-Daily) dataset. GHCN-Daily integrates daily climate observations from approximately 30 different data sources. Version 3 was released in September 2012 with the addition of data from two additional station networks. Changes to the processing system associated with the version 3 release also allowed for updates to occur 7 days a week rather than only on most weekdays. Version 3 contains station-based measurements from well over 90,000 land-based stations worldwide, about two thirds of which are for precipitation measurement only. Other meteorological elements include, but are not limited to, daily maximum and minimum temperature, temperature at the time of observation, snowfall and snow depth. Over 25,000 stations are regularly updated with observations from within roughly the last month. The dataset is also routinely reconstructed (usually every week) from its roughly 30 data sources to ensure that GHCN-Daily is generally in sync with its growing list of constituent sources. During this process, quality assurance checks are applied to the full dataset. Where possible, GHCN-Daily station data are also updated daily from a variety of data streams. Station values for each daily update also undergo a suite of quality checks.Local Climatological Data (LCD) are summaries of climatological conditions from airport and other prominent weather stations managed by NWS, FAA, and DOD. The product includes hourly observations and associated remarks, and a record of hourly precipitation for the entire month. Also included are daily summaries summarizing temperature extremes, degree days, precipitation amounts and winds. The tabulated monthly summaries in the product include maximum, minimum, and average temperature, temperature departure from normal, dew point temperature, average station pressure, ceiling, visibility, weather type, wet bulb temperature, relative humidity, degree days (heating and cooling), daily precipitation, average wind speed, fastest wind speed/direction, sky cover, and occurrences of sunshine, snowfall and snow depth. The source data is global hourly (DSI 3505) which includes a number of quality control checks.Global Surface Summary of the Day is derived from The Integrated Surface Hourly (ISH) dataset. The ISH dataset includes global data obtained from the USAF Climatology Center, located in the Federal Climate Complex with NCDC. The latest daily summary data are normally available 1-2 days after the date-time of the observations used in the daily summaries. The online data files begin with 1929 and are at the time of this writing at the Version 8 software level. Over 9000 stations' data are typically available. The daily elements included in the dataset (as available from each station) are: Mean temperature (.1 Fahrenheit) Mean dew point (.1 Fahrenheit) Mean sea level pressure (.1 mb) Mean station pressure (.1 mb) Mean visibility (.1 miles) Mean wind speed (.1 knots) Maximum sustained wind speed (.1 knots) Maximum wind gust (.1 knots) Maximum temperature (.1 Fahrenheit) Minimum temperature (.1 Fahrenheit) Precipitation amount (.01 inches) Snow depth (.1 inches) Indicator for occurrence of: Fog, Rain or Drizzle, Snow or Ice Pellets, Hail, Thunder, Tornado/Funnel Cloud Global summary of day data for 18 surface meteorological elements are derived from the synoptic/hourly observations contained in USAF DATSAV3 Surface data and Federal Climate Complex Integrated Surface Hourly (ISH). Historical data are generally available for 1929 to the present, with data from 1973 to the present being the most complete. For some periods, one or more countries' data may not be available due to data restrictions or communications problems. In deriving the summary of day data, a minimum of 4 observations for the day must be present (allows for stations which report 4 synoptic observations/day). Since the data are converted to constant units (e.g, knots), slight rounding error from the originally reported values may occur (e.g, 9.9 instead of 10.0). The mean daily values described below are based on the hours of operation for the station. For some stations/countries, the visibility will sometimes 'cluster' around a value (such as 10 miles) due to the practice of not reporting visibilities greater than certain distances. The daily extremes and totals--maximum wind gust, precipitation amount, and snow depth--will only appear if the station reports the data sufficiently to provide a valid value. Therefore, these three elements will appear less frequently than other values. Also, these elements are derived from the stations' reports during the day, and may comprise a 24-hour period which includes a portion of the previous day. The data are reported and summarized based on Greenwich Mean Time (GMT, 0000Z - 2359Z) since the original synoptic/hourly data are reported and based on GMT.The global summaries data set contains a monthly (GSOM) resolution of meteorological elements (max temp, snow, etc) from 1763 to present with updates weekly. The major parameters are: monthly mean maximum, mean minimum and mean temperatures; monthly total precipitation and snowfall; departure from normal of the mean temperature and total precipitation; monthly heating and cooling degree days; number of days that temperatures and precipitation are above or below certain thresholds; and extreme daily temperature and precipitation amounts. The primary source data set source is the Global Historical Climatology Network (GHCN)-Daily Data set. The global summaries data set also contains a yearly (GSOY) resolution of meteorological elements. See associated resources for more information. This data is not to be confused with "GHCN-Monthly", "Annual Summaries" or "NCDC Summary of the Month". There are unique elements that are produced globally within the GSOM and GSOY data files. There are also bias corrected temperature data in GHCN-Monthly, which will not be available in GSOM and GSOY. The GSOM and GSOY data set is going to replace the legacy DSI-3220 and expand to include non-U.S. (a.k.a. global) stations. DSI-3220 only included National Weather Service (NWS) COOP Published, or "Published in CD", sites.The global summaries data set contains a yearly (GSOY) resolution of meteorological elements (max temp, snow, etc) from 1763 to present with updates weekly. The major parameters are: monthly mean maximum, mean minimum and mean temperatures; monthly total precipitation and snowfall; departure from normal of the mean temperature and total precipitation; monthly heating and cooling degree days; number of days that temperatures and precipitation are above or below certain thresholds; and extreme daily temperature and precipitation amounts. The primary source data set source is the Global Historical Climatology Network (GHCN)-Daily Data set. The global summaries data set also contains a monthly (GSOM) resolution of meteorological elements. See associated resources for more information. This data is not to be confused with "GHCN-Monthly", "Annual Summaries" or "NCDC Summary of the Month". There are unique elements that are produced globally within the GSOM and GSOY data files. There are also bias corrected temperature data in GHCN-Monthly, which will not be available in GSOM and GSOY. The GSOM and GSOY data set is going to replace the legacy DSI-3220 and expand to include non-U.S. (a.k.a. global) stations. DSI-3220 only included National Weather Service (NWS) COOP Published, or "Published in CD", sites.The U.S. Annual Climate Normals for 1981 to 2010 are 30-year averages of meteorological parameters that provide users with many tools to understand typical climate conditions for thousands of locations across the United States, as well as U.S.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Tornado TracksThis feature layer, utilizing data from the National Oceanic and Atmospheric Administration (NOAA), displays tornadoes in the United States, Puerto Rico and U.S. Virgin Islands between 1950 and 2024. A tornado track shows the route of a tornado. Per NOAA, "A tornado is a narrow, violently rotating column of air that extends from a thunderstorm to the ground. Because wind is invisible, it is hard to see a tornado unless it forms a condensation funnel made up of water droplets, dust and debris. Tornadoes can be among the most violent phenomena of all atmospheric storms we experience. The most destructive tornadoes occur from supercells, which are rotating thunderstorms with a well-defined radar circulation called a mesocyclone. (Supercells can also produce damaging hail, severe non-tornadic winds, frequent lightning, and flash floods.)"EF-5 Tornado Track (May 3, 1999) near Oklahoma City, OklahomaData currency: December 30, 2024Data source: Storm Prediction CenterData modifications: Added field "Date_Calc"For more information: Severe Weather 101 - Tornadoes; NSSL Research: TornadoesSupport documentation: SPC Tornado, Hail, and Wind Database Format SpecificationFor feedback, please contact: ArcGIScomNationalMaps@esri.comNational Oceanic and Atmospheric AdministrationPer NOAA, its mission is "To understand and predict changes in climate, weather, ocean, and coasts, to share that knowledge and information with others, and to conserve and manage coastal and marine ecosystems and resources."