8 datasets found
  1. Data from: Tornado Tracks

    • gis-fema.hub.arcgis.com
    • anrgeodata.vermont.gov
    • +4more
    Updated Feb 7, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri U.S. Federal Datasets (2020). Tornado Tracks [Dataset]. https://gis-fema.hub.arcgis.com/datasets/fedmaps::tornado-tracks-1/about
    Explore at:
    Dataset updated
    Feb 7, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri U.S. Federal Datasets
    Area covered
    Description

    Tornado TracksThis feature layer, utilizing data from the National Oceanic and Atmospheric Administration (NOAA), displays tornadoes in the United States, Puerto Rico and U.S. Virgin Islands between 1950 and 2024. A tornado track shows the route of a tornado. Per NOAA, "A tornado is a narrow, violently rotating column of air that extends from a thunderstorm to the ground. Because wind is invisible, it is hard to see a tornado unless it forms a condensation funnel made up of water droplets, dust and debris. Tornadoes can be among the most violent phenomena of all atmospheric storms we experience. The most destructive tornadoes occur from supercells, which are rotating thunderstorms with a well-defined radar circulation called a mesocyclone. (Supercells can also produce damaging hail, severe non-tornadic winds, frequent lightning, and flash floods.)"EF-5 Tornado Track (May 3, 1999) near Oklahoma City, OklahomaData currency: December 30, 2024Data source: Storm Prediction CenterData modifications: Added field "Date_Calc"For more information: Severe Weather 101 - Tornadoes; NSSL Research: TornadoesSupport documentation: SPC Tornado, Hail, and Wind Database Format SpecificationFor feedback, please contact: ArcGIScomNationalMaps@esri.comNational Oceanic and Atmospheric AdministrationPer NOAA, its mission is "To understand and predict changes in climate, weather, ocean, and coasts, to share that knowledge and information with others, and to conserve and manage coastal and marine ecosystems and resources."

  2. United States tornado data

    • kaggle.com
    Updated Sep 17, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WxExplorer (2020). United States tornado data [Dataset]. https://www.kaggle.com/wxexplorer/yearly-united-states-tornado-data-per-state/metadata
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 17, 2020
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    WxExplorer
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    United States
    Description

    Context

    This data set contains the number of confirmed tornadoes for each state for each year and their responding affects.

    Content

    Current table includes number of confirmed tornadoes in each state for each year from 1951 to 2019. Future datasets will be related to Fujita/Enhanced Fujita rank, total damage (reported and inflation corrected), and fatalities/injuries. Data is from National Centers for Environmental Information's Storm Events Database.

    Inspiration

    I am curious about the trend of sever weather occurring in the United States over time. This started with tornadic events but will evolve to severe thunderstorm and hail events as well.

  3. State of the Climate Monthly Overview - National Tornadoes

    • data.wu.ac.at
    • ncei.noaa.gov
    • +1more
    html, xml
    Updated Feb 8, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Oceanic and Atmospheric Administration, Department of Commerce (2018). State of the Climate Monthly Overview - National Tornadoes [Dataset]. https://data.wu.ac.at/schema/data_gov/NzkxODZiYWYtNDRjMi00YWMzLThlZGMtNzYxNjlmM2U3OTcy
    Explore at:
    xml, htmlAvailable download formats
    Dataset updated
    Feb 8, 2018
    Dataset provided by
    United States Department of Commercehttp://www.commerce.gov/
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Area covered
    e440ac6b8f702a7d4ba0adc4a6f5d085823a0e39
    Description

    The State of the Climate is a collection of periodic summaries recapping climate-related occurrences on both a global and national scale. The State of the Climate Monthly Overview - National Tornadoes provides a summary of tornadic activity in the United States. Tornado occurrences and significant events, including storms and outbreaks, are covered. Regular monthly and annual reports begin in July 2008. Spring "tornado seaso" reports are available for 2006 and 2008. In some months during climatologically inactive periods, the narrative part of this report may be omitted.

  4. NCDC Storm Events Database

    • catalog.data.gov
    • data.globalchange.gov
    • +3more
    Updated Sep 19, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA National Centers for Environmental Information (Point of Contact) (2023). NCDC Storm Events Database [Dataset]. https://catalog.data.gov/dataset/ncdc-storm-events-database2
    Explore at:
    Dataset updated
    Sep 19, 2023
    Dataset provided by
    National Centers for Environmental Informationhttps://www.ncei.noaa.gov/
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Description

    Storm Data is provided by the National Weather Service (NWS) and contain statistics on personal injuries and damage estimates. Storm Data covers the United States of America. The data began as early as 1950 through to the present, updated monthly with up to a 120 day delay possible. NCDC Storm Event database allows users to find various types of storms recorded by county, or use other selection criteria as desired. The data contain a chronological listing, by state, of hurricanes, tornadoes, thunderstorms, hail, floods, drought conditions, lightning, high winds, snow, temperature extremes and other weather phenomena.

  5. a

    National Risk Index Annualized Frequency Tornado

    • impactmap-smudallas.hub.arcgis.com
    Updated Mar 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SMU (2024). National Risk Index Annualized Frequency Tornado [Dataset]. https://impactmap-smudallas.hub.arcgis.com/datasets/national-risk-index-annualized-frequency-tornado
    Explore at:
    Dataset updated
    Mar 18, 2024
    Dataset authored and provided by
    SMU
    Area covered
    Description

    National Risk Index Version: March 2023 (1.19.0)A Tornado is a narrow, violently rotating column of air that extends from the base of a thunderstorm to the ground and is visible only if it forms a condensation funnel made up of water droplets, dust and debris. Annualized frequency values for Tornadoes are in units of events per year.The National Risk Index is a dataset and online tool that helps to illustrate the communities most at risk for 18 natural hazards across the United States and territories: Avalanche, Coastal Flooding, Cold Wave, Drought, Earthquake, Hail, Heat Wave, Hurricane, Ice Storm, Landslide, Lightning, Riverine Flooding, Strong Wind, Tornado, Tsunami, Volcanic Activity, Wildfire, and Winter Weather. The National Risk Index provides Risk Index values, scores and ratings based on data for Expected Annual Loss due to natural hazards, Social Vulnerability, and Community Resilience. Separate values, scores and ratings are also provided for Expected Annual Loss, Social Vulnerability, and Community Resilience. For the Risk Index and Expected Annual Loss, values, scores and ratings can be viewed as a composite score for all hazards or individually for each of the 18 hazard types.Sources for Expected Annual Loss data include: Alaska Department of Natural Resources, Arizona State University’s (ASU) Center for Emergency Management and Homeland Security (CEMHS), California Department of Conservation, California Office of Emergency Services California Geological Survey, Colorado Avalanche Information Center, CoreLogic’s Flood Services, Federal Emergency Management Agency (FEMA) National Flood Insurance Program, Humanitarian Data Exchange (HDX), Iowa State University's Iowa Environmental Mesonet, Multi-Resolution Land Characteristics (MLRC) Consortium, National Aeronautics and Space Administration’s (NASA) Cooperative Open Online Landslide Repository (COOLR), National Earthquake Hazards Reduction Program (NEHRP), National Oceanic and Atmospheric Administration’s National Centers for Environmental Information (NCEI), National Oceanic and Atmospheric Administration's National Hurricane Center, National Oceanic and Atmospheric Administration's National Weather Service (NWS), National Oceanic and Atmospheric Administration's Office for Coastal Management, National Oceanic and Atmospheric Administration's National Geophysical Data Center, National Oceanic and Atmospheric Administration's Storm Prediction Center, Oregon Department of Geology and Mineral Industries, Pacific Islands Ocean Observing System, Puerto Rico Seismic Network, Smithsonian Institution's Global Volcanism Program, State of Hawaii’s Office of Planning’s Statewide GIS Program, U.S. Army Corps of Engineers’ Cold Regions Research and Engineering Laboratory (CRREL), U.S. Census Bureau, U.S. Department of Agriculture's (USDA) National Agricultural Statistics Service (NASS), U.S. Forest Service's Fire Modeling Institute's Missoula Fire Sciences Lab, U.S. Forest Service's National Avalanche Center (NAC), U.S. Geological Survey (USGS), U.S. Geological Survey's Landslide Hazards Program, United Nations Office for Disaster Risk Reduction (UNDRR), University of Alaska – Fairbanks' Alaska Earthquake Center, University of Nebraska-Lincoln's National Drought Mitigation Center (NDMC), University of Southern California's Tsunami Research Center, and Washington State Department of Natural Resources.Data for Social Vulnerability are provided by the Centers for Disease Control (CDC) Agency for Toxic Substances and Disease Registry (ATSDR) Social Vulnerability Index, and data for Community Resilience are provided by University of South Carolina's Hazards and Vulnerability Research Institute’s (HVRI) 2020 Baseline Resilience Indicators for Communities.The source of the boundaries for counties and Census tracts are based on the U.S. Census Bureau’s 2021 TIGER/Line shapefiles. Building value and population exposures for communities are based on FEMA’s Hazus 6.0. Agriculture values are based on the USDA 2017 Census of Agriculture.

  6. a

    Multiple Hazard Index for United States Counties

    • hub.arcgis.com
    Updated Jul 29, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    jjs2154_columbia (2016). Multiple Hazard Index for United States Counties [Dataset]. https://hub.arcgis.com/maps/800f684ebadf423bae4c669cb0a1d7da
    Explore at:
    Dataset updated
    Jul 29, 2016
    Dataset authored and provided by
    jjs2154_columbia
    Area covered
    Description

    OverviewThe multiple hazard index for the United States Counties was designed to map natural hazard relating to exposure to multiple natural disasters. The index was created to provide communities and public health officials with an overview of the risks that are prominent in their county, and to facilitate the comparison of hazard level between counties. Most existing hazard maps focus on a single disaster type. By creating a measure that aggregates the hazard from individual disasters, the increased hazard that results from exposure to multiple natural disasters can be better understood. The multiple hazard index represents the aggregate of hazard from eleven individual disasters. Layers displaying the hazard from each individual disaster are also included.

    The hazard index is displayed visually as a choropleth map, with the color blue representing areas with less hazard and red representing areas with higher hazard. Users can click on each county to view its hazard index value, and the level of hazard for each individual disaster. Layers describing the relative level of hazard from each individual disaster are also available as choropleth maps with red areas representing high, orange representing medium, and yellow representing low levels of hazard.Methodology and Data CitationsMultiple Hazard Index

    The multiple hazard index was created by coding the individual hazard classifications and summing the coded values for each United States County. Each individual hazard is weighted equally in the multiple hazard index. Alaska and Hawaii were excluded from analysis because one third of individual hazard datasets only describe the coterminous United States.

    Avalanche Hazard

    University of South Carolina Hazards and Vulnerability Research Institute. “Spatial Hazard Events and Losses Database”. United States Counties. “Avalanches United States 2001-2009”. < http://hvri.geog.sc.edu/SHELDUS/

    Downloaded 06/2016.

    Classification

    Avalanche hazard was classified by dividing counties based upon the number of avalanches they experienced over the nine year period in the dataset. Avalanche hazard was not normalized by total county area because it caused an over-emphasis on small counties, and because avalanches are a highly local hazard.

    None = 0 AvalanchesLow = 1 AvalancheMedium = 2-5 AvalanchesHigh = 6-10 Avalanches

    Earthquake Hazard

    United States Geological Survey. “Earthquake Hazard Maps”. 1:2,000,000. “Peak Ground Acceleration 2% in 50 Years”. < http://earthquake.usgs.gov/hazards/products/conterminous/

    . Downloaded 07/2016.

    Classification

    Peak ground acceleration (% gravity) with a 2% likelihood in 50 years was averaged by United States County, and the earthquake hazard of counties was classified based upon this average.

    Low = 0 - 14.25 % gravity peak ground accelerationMedium = 14.26 - 47.5 % gravity peak ground accelerationHigh = 47.5+ % gravity peak ground acceleration

    Flood Hazard

    United States Federal Emergency Management Administration. “National Flood Hazard Layer”. 1:10,000. “0.2 Percent Annual Flood Area”. < https://data.femadata.com/FIMA/Risk_MAP/NFHL/

    . Downloaded 07/2016.

    Classification

    The National Flood Hazard Layer 0.2 Percent Annual Flood Area was spatially intersected with the United States Counties layer, splitting flood areas by county and adding county information to flood areas. Flood area was aggregated by county, expressed as a fraction of the total county land area, and flood hazard was classified based upon percentage of land that is susceptible to flooding. National Flood Hazard Layer does not cover the entire United States; coverage is focused on populated areas. Areas not included in National Flood Hazard Layer were assigned flood risk of Low in order to include these areas in further analysis.

    Low = 0-.001% area susceptibleMedium = .00101 % - .005 % area susceptibleHigh = .00501+ % area susceptible

    Heat Wave Hazard

    United States Center for Disease Control and Prevention. “National Climate Assessment”. Contiguous United States Counties. “Extreme Heat Events: Heat Wave Days in May - September for years 1981-2010”. Downloaded 06/2016.

    Classification

    Heat wave was classified by dividing counties based upon the number of heat wave days they experienced over the 30 year time period described in the dataset.

    Low = 126 - 171 Heat wave DaysMedium = 172 – 187 Heat wave DaysHigh = 188 – 255 Heat wave Days

    Hurricane Hazard

    National Oceanic and Atmospheric Administration. Coastal Services Center. “Historical North Atlantic Tropical Cyclone Tracks, 1851-2004”. 1: 2,000,000. < https://catalog.data.gov/dataset/historical-north-atlantic-tropical-cyclone-tracks-1851-2004-direct-download

    . Downloaded 06/2016.

    National Oceanic and Atmospheric Administration. Coastal Services Center. “Historical North Pacific Tropical Cyclone Tracks, 1851-2004”. 1: 2,000,000. < https://catalog.data.gov/dataset/historical-north-atlantic-tropical-cyclone-tracks-1851-2004-direct-download

    . Downloaded 06/2016.

    Classification

    Atlantic and Pacific datasets were merged. Tropical storm and disturbance tracks were filtered out leaving hurricane tracks. Each hurricane track was assigned the value of the category number that describes that event. Weighting each event by intensity ensures that areas with higher intensity events are characterized as being more hazardous. Values describing each hurricane event were aggregated by United States County, normalized by total county area, and the hurricane hazard of counties was classified based upon the normalized value.

    Landslide Hazard

    United States Geological Survey. “Landslide Overview Map of the United States”. 1:4,000,000. “Landslide Incidence and Susceptibility in the Conterminous United States”. < https://catalog.data.gov/dataset/landslide-incidence-and-susceptibility-in-the-conterminous-united-states-direct-download

    . Downloaded 07/2016.

    Classification

    The classifications of High, Moderate, and Low landslide susceptibility and incidence from the study were numerically coded, the average value was computed for each county, and the landslide hazard was classified based upon the average value.

    Long-Term Drought Hazard

    United States Drought Monitor, Drought Mitigation Center, United States Department of Agriculture, National Oceanic and Atmospheric Administration. “Drought Monitor Summary Map”. “Long-Term Drought Impact”. < http://droughtmonitor.unl.edu/MapsAndData/GISData.aspx >. Downloaded 06/2016.

    Classification

    Short-term drought areas were filtered from the data; leaving only long-term drought areas. United States Counties were assigned the average U.S. Drought Monitor Classification Scheme Drought Severity Classification value that characterizes the county area. County long-term drought hazard was classified based upon average Drought Severity Classification value.

    Low = 1 – 1.75 average Drought Severity Classification valueMedium = 1.76 -3.0 average Drought Severity Classification valueHigh = 3.0+ average Drought Severity Classification value

    Snowfall Hazard

    United States National Oceanic and Atmospheric Administration. “1981-2010 U.S. Climate Normals”. 1: 2,000,000. “Annual Snow Normal”. < http://www1.ncdc.noaa.gov/pub/data/normals/1981-2010/products/precipitation/

    . Downloaded 08/2016.

    Classification

    Average yearly snowfall was joined with point location of weather measurement stations, and stations without valid snowfall measurements were filtered out (leaving 6233 stations). Snowfall was interpolated using least squared distance interpolation to create a .05 degree raster describing an estimate of yearly snowfall for the United States. The average yearly snowfall raster was aggregated by county to yield the average yearly snowfall per United States County. The snowfall risk of counties was classified by average snowfall.

    None = 0 inchesLow = .01- 10 inchesMedium = 10.01- 50 inchesHigh = 50.01+ inches

    Tornado Hazard

    United States National Oceanic and Atmospheric Administration Storm Prediction Center. “Severe Thunderstorm Database and Storm Data Publication”. 1: 2,000,000. “United States Tornado Touchdown Points 1950-2004”. < https://catalog.data.gov/dataset/united-states-tornado-touchdown-points-1950-2004-direct-download

    . Downloaded 07/2016.

    Classification

    Each tornado touchdown point was assigned the value of the Fujita Scale that describes that event. Weighting each event by intensity ensures that areas with higher intensity events are characterized as more hazardous. Values describing each tornado event were aggregated by United States County, normalized by total county area, and the tornado hazard of counties was classified based upon the normalized value.

    Volcano Hazard

    Smithsonian Institution National Volcanism Program. “Volcanoes of the World”. “Holocene Volcanoes”. < http://volcano.si.edu/search_volcano.cfm

    . Downloaded 07/2016.

    Classification

    Volcano coordinate locations from spreadsheet were mapped and aggregated by United States County. Volcano count was normalized by county area, and the volcano hazard of counties was classified based upon the number of volcanoes present per unit area.

    None = 0 volcanoes/100 kilometersLow = 0.000915 - 0.007611 volcanoes / 100 kilometersMedium = 0.007612 - 0.018376 volcanoes / 100 kilometersHigh = 0.018377- 0.150538 volcanoes / 100 kilometers

    Wildfire Hazard

    United States Department of Agriculture, Forest Service, Fire, Fuel, and Smoke Science Program. “Classified 2014 Wildfire Hazard Potential”. 270 meters. < http://www.firelab.org/document/classified-2014-whp-gis-data-and-maps

    . Downloaded 06/2016.

    Classification

    The classifications of Very High, High, Moderate, Low, Very Low, and Non-Burnable/Water wildfire hazard from the study were numerically coded, the average value was computed for each county, and the wildfire hazard was classified based upon the average value.

  7. n

    Indiana Climate Data from the Indiana State Climate Office

    • access.earthdata.nasa.gov
    • cmr.earthdata.nasa.gov
    Updated Dec 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Indiana Climate Data from the Indiana State Climate Office [Dataset]. https://access.earthdata.nasa.gov/collections/C1214608442-SCIOPS
    Explore at:
    Dataset updated
    Dec 19, 2024
    Time period covered
    Jan 1, 1960 - Present
    Area covered
    Description

    The Indiana State Climate Office (INClimate) is the state archive of official daily and hourly weather observations recorded throughout Indiana. INClimate maintains an online archive of many recent daily and hourly observations from both manual and automated networks. Older observations are being converted to an online database as part of an ongoing national effort.

    INClimate was established in 1956 to document and study the climate of Indiana. Ever since, it has been catering to the needs of different users, namely individuals, businesses, and government agencies. INClimate not only assists in providing climate observations and summaries but also interprets and applies this data to solve climate related problems at hand.

    Primary users of Climate data belong to sectors such as agriculture, attorneys, construction, environmental monitoring, forensics, government insurance, news media, research, education and utilities.

  8. a

    Census Tract

    • impactmap-smudallas.hub.arcgis.com
    Updated Mar 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SMU (2024). Census Tract [Dataset]. https://impactmap-smudallas.hub.arcgis.com/datasets/census-tract-1
    Explore at:
    Dataset updated
    Mar 18, 2024
    Dataset authored and provided by
    SMU
    Area covered
    Description

    National Risk Index Version: March 2023 (1.19.0)A Tornado is a narrow, violently rotating column of air that extends from the base of a thunderstorm to the ground and is visible only if it forms a condensation funnel made up of water droplets, dust and debris. Annualized frequency values for Tornadoes are in units of events per year.The National Risk Index is a dataset and online tool that helps to illustrate the communities most at risk for 18 natural hazards across the United States and territories: Avalanche, Coastal Flooding, Cold Wave, Drought, Earthquake, Hail, Heat Wave, Hurricane, Ice Storm, Landslide, Lightning, Riverine Flooding, Strong Wind, Tornado, Tsunami, Volcanic Activity, Wildfire, and Winter Weather. The National Risk Index provides Risk Index values, scores and ratings based on data for Expected Annual Loss due to natural hazards, Social Vulnerability, and Community Resilience. Separate values, scores and ratings are also provided for Expected Annual Loss, Social Vulnerability, and Community Resilience. For the Risk Index and Expected Annual Loss, values, scores and ratings can be viewed as a composite score for all hazards or individually for each of the 18 hazard types.Sources for Expected Annual Loss data include: Alaska Department of Natural Resources, Arizona State University’s (ASU) Center for Emergency Management and Homeland Security (CEMHS), California Department of Conservation, California Office of Emergency Services California Geological Survey, Colorado Avalanche Information Center, CoreLogic’s Flood Services, Federal Emergency Management Agency (FEMA) National Flood Insurance Program, Humanitarian Data Exchange (HDX), Iowa State University's Iowa Environmental Mesonet, Multi-Resolution Land Characteristics (MLRC) Consortium, National Aeronautics and Space Administration’s (NASA) Cooperative Open Online Landslide Repository (COOLR), National Earthquake Hazards Reduction Program (NEHRP), National Oceanic and Atmospheric Administration’s National Centers for Environmental Information (NCEI), National Oceanic and Atmospheric Administration's National Hurricane Center, National Oceanic and Atmospheric Administration's National Weather Service (NWS), National Oceanic and Atmospheric Administration's Office for Coastal Management, National Oceanic and Atmospheric Administration's National Geophysical Data Center, National Oceanic and Atmospheric Administration's Storm Prediction Center, Oregon Department of Geology and Mineral Industries, Pacific Islands Ocean Observing System, Puerto Rico Seismic Network, Smithsonian Institution's Global Volcanism Program, State of Hawaii’s Office of Planning’s Statewide GIS Program, U.S. Army Corps of Engineers’ Cold Regions Research and Engineering Laboratory (CRREL), U.S. Census Bureau, U.S. Department of Agriculture's (USDA) National Agricultural Statistics Service (NASS), U.S. Forest Service's Fire Modeling Institute's Missoula Fire Sciences Lab, U.S. Forest Service's National Avalanche Center (NAC), U.S. Geological Survey (USGS), U.S. Geological Survey's Landslide Hazards Program, United Nations Office for Disaster Risk Reduction (UNDRR), University of Alaska – Fairbanks' Alaska Earthquake Center, University of Nebraska-Lincoln's National Drought Mitigation Center (NDMC), University of Southern California's Tsunami Research Center, and Washington State Department of Natural Resources.Data for Social Vulnerability are provided by the Centers for Disease Control (CDC) Agency for Toxic Substances and Disease Registry (ATSDR) Social Vulnerability Index, and data for Community Resilience are provided by University of South Carolina's Hazards and Vulnerability Research Institute’s (HVRI) 2020 Baseline Resilience Indicators for Communities.The source of the boundaries for counties and Census tracts are based on the U.S. Census Bureau’s 2021 TIGER/Line shapefiles. Building value and population exposures for communities are based on FEMA’s Hazus 6.0. Agriculture values are based on the USDA 2017 Census of Agriculture.

  9. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Esri U.S. Federal Datasets (2020). Tornado Tracks [Dataset]. https://gis-fema.hub.arcgis.com/datasets/fedmaps::tornado-tracks-1/about
Organization logo

Data from: Tornado Tracks

Related Article
Explore at:
Dataset updated
Feb 7, 2020
Dataset provided by
Esrihttp://esri.com/
Authors
Esri U.S. Federal Datasets
Area covered
Description

Tornado TracksThis feature layer, utilizing data from the National Oceanic and Atmospheric Administration (NOAA), displays tornadoes in the United States, Puerto Rico and U.S. Virgin Islands between 1950 and 2024. A tornado track shows the route of a tornado. Per NOAA, "A tornado is a narrow, violently rotating column of air that extends from a thunderstorm to the ground. Because wind is invisible, it is hard to see a tornado unless it forms a condensation funnel made up of water droplets, dust and debris. Tornadoes can be among the most violent phenomena of all atmospheric storms we experience. The most destructive tornadoes occur from supercells, which are rotating thunderstorms with a well-defined radar circulation called a mesocyclone. (Supercells can also produce damaging hail, severe non-tornadic winds, frequent lightning, and flash floods.)"EF-5 Tornado Track (May 3, 1999) near Oklahoma City, OklahomaData currency: December 30, 2024Data source: Storm Prediction CenterData modifications: Added field "Date_Calc"For more information: Severe Weather 101 - Tornadoes; NSSL Research: TornadoesSupport documentation: SPC Tornado, Hail, and Wind Database Format SpecificationFor feedback, please contact: ArcGIScomNationalMaps@esri.comNational Oceanic and Atmospheric AdministrationPer NOAA, its mission is "To understand and predict changes in climate, weather, ocean, and coasts, to share that knowledge and information with others, and to conserve and manage coastal and marine ecosystems and resources."

Search
Clear search
Close search
Google apps
Main menu