68 datasets found
  1. d

    2015-2016 Physical Education - PE Instruction - District Level

    • catalog.data.gov
    Updated Nov 29, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofnewyork.us (2024). 2015-2016 Physical Education - PE Instruction - District Level [Dataset]. https://catalog.data.gov/dataset/2015-2016-physical-education-pe-instruction-district-level
    Explore at:
    Dataset updated
    Nov 29, 2024
    Dataset provided by
    data.cityofnewyork.us
    Description

    Background, Methodology: Local Law 102 enacted in 2015 requires the Department of Education of the New York City School District to submit to the Council an annual report concerning physical education for the prior school year. This report provides information about average frequency and average total minutes per week of physical education as defined in Local Law 102 as reported through the 2015-2016 STARS database. It is important to note that schools self-report their scheduling information in STARS. The report also includes information regarding the number and ratio of certified physical education instructors and designated physical education instructional space. This report consists of six tabs: PE Instruction Borough-Level PE Instruction District-Level PE Instruction School-Level Certified PE Teachers PE Space Supplemental Programs PE Instruction Borough-Level This tab includes the average frequency and average total minutes per week of physical education by borough, disaggregated by grade, race and ethnicity, gender, special education status and English language learner status. This report only includes students who were enrolled in the same school across all academic terms in the 2015-16 school year. Data on students with disabilities and English language learners are as of the end of the 2015-16 school year. Data on adaptive PE is based on individualized education programs (IEP) finalized on or before 05/31/2016. PE Instruction District-Level This tab includes the average frequency and average total minutes per week of physical education by district, disaggregated by grade, race and ethnicity, gender, special education status and English language learner status. This report only includes students who were enrolled in the same school across all academic terms in the 2015-16 school year. Data on students with disabilities and English language learners are as of the end of the 2015-16 school year. Data on adaptive PE is based on individualized education programs (IEP) finalized on or before 05/31/2016. PE Instruction School-Level This tab includes the average frequency and average total minutes per week of physical education by school, disaggregated by grade, race and ethnicity, gender, special education status and English language learner status. This report only includes students who were enrolled in the same school across all academic terms in the 2015-16 school year. Data on students with disabilities and English language learners are as of the end of the 2015-16 school year. Data on adaptive PE is based on individualized education programs (IEP) finalized on or before 05/31/2016. Certified PE Teachers This tab provides the number of designated full-time and part-time physical education certified instructors. Does not include elementary, early childhood and K-8 physical education teachers that provide physical education instruction under a common branches license. Also includes ratio of full time instructors teaching in a physical education license to students by school. Data reported is for the 2015-2016 school year as of 10/31/2015. PE Space This tab provides information on all designated indoor, outdoor and off-site spaces used by the school for physical education as reported through the Principal Annual Space Survey and the Outdoor Yard Report. It is important to note that information on each room category is self-reported by principals, and principals determine how each room is classified. Data captures if the PE space is co-located, used by another school or used for another purpose. Includes gyms, athletic fields, auxiliary exercise spaces, dance rooms, field houses, multipurpose spaces, outdoor yards, off-site locations, playrooms, swimming pools and weight rooms as designated PE Space. Supplemental Programs This tab provides information on the department's supplemental physical education

  2. T

    District Expenditures by Spending Category

    • educationtocareer.data.mass.gov
    csv, xlsx, xml
    Updated May 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Elementary and Secondary Education (2025). District Expenditures by Spending Category [Dataset]. https://educationtocareer.data.mass.gov/Finance-and-Budget/District-Expenditures-by-Spending-Category/er3w-dyti
    Explore at:
    csv, xlsx, xmlAvailable download formats
    Dataset updated
    May 8, 2025
    Dataset authored and provided by
    Department of Elementary and Secondary Education
    Description

    This dataset includes expenditure data reported by school districts, charter schools, and virtual schools starting with fiscal year 2009. It also includes student enrollment, demographic, and performance indicators as well as teacher salary and staffing data.

    In addition to showing the overall cost per pupil, this dataset provides detail about how much districts spend in major functional areas such as administration, teaching, and maintenance. For more information about the data and how to interpret it, please visit the School Finance Dashboard.

    Economically Disadvantaged was used 2015-2021. Low Income was used prior to 2015, and a different version of Low Income has been used since 2022. Please see the DESE Researcher's Guide for more information.

    This dataset is one of three containing the same data that is also published in the School Finance Dashboard: District Expenditures by Spending Category District Expenditures by Function Code School Expenditures by Spending Category

    List of Indicators by Category

    Student Enrollment

    • In-District FTE Pupils
    • Out-of-District FTE Pupils
    • Total FTE Pupils
    Student Demographics
    • Student Headcount
    • Low-Income % Headcount
    • English Learner % Headcount
    • Students with Disabilities % Headcount
    Teacher Salaries
    • Teacher FTE
    • Teachers per 100 FTE Students
    • Average Teacher Salary
    Other Staff
    • Instructional Coach FTE
    • Instructional Support FTE
    • Special Education Instructional Support FTE
    • Paraprofessional FTE
    MCAS Performance
    • ELA Grades 3-8 % Meets Exceeds
    • Math Grades 3-8 % Meets Exceeds
    • ELA Grade 10 % Meets Exceeds
    • Math Grade 10 % Meets Exceeds
    Expenditures
    • Administration
    • Instructional Leadership
    • Teachers
    • Other Teaching Services
    • Professional Development
    • Instructional Materials, Equipment and Technology
    • Guidance, Counseling and Testing
    • Pupil Services
    • Operations and Maintenance
    • Insurance, Retirement Programs and Other
    • Total In-District Expenditures
    • Total Expenditures

  3. California School

    • kaggle.com
    zip
    Updated Jun 19, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Haines City (2023). California School [Dataset]. https://www.kaggle.com/datasets/hainescity/california-school
    Explore at:
    zip(28753 bytes)Available download formats
    Dataset updated
    Jun 19, 2023
    Authors
    Haines City
    Area covered
    California
    Description

    Description

    The dataset contains data on test performance, school characteristics and student demographic backgrounds for school districts in California.

    district: character. District code.

    school: character. School name.

    county: factor indicating county.

    grades: factor indicating grade span of district.

    students: Total enrollment.

    teachers: Number of teachers.

    calworks: Percent qualifying for CalWorks (income assistance).

    lunch: Percent qualifying for reduced-price lunch.

    computer: Number of computers.

    expenditure: Expenditure per student.

    income: District average income (in USD 1,000).

    english: Percent of English learners.

    read: Average reading score.

    Details

    The data used here are from all 420 K-6 and K-8 districts in California with data available for 1998 and 1999. Test scores are on the Stanford 9 standardized test administered to 5th grade students. School characteristics (averaged across the district) include enrollment, number of teachers (measured as “full-time equivalents”), number of computers per classroom, and expenditures per student. Demographic variables for the students are averaged across the district. The demographic variables include the percentage of students in the public assistance program CalWorks, the percentage of students that qualify for a reduced price lunch, and the percentage of students that are English learners (that is, students for whom English is a second language).

    Challenges

    Reading performance at CA’s schools Research goal: In this assignment, we aim at analysing the effect of different factors on the reading performance at Californian schools. Specifically, we will focus on education investment and students’ socio-economic environment. Your analysis should include the following steps: 1. Data-set unboxing: Perform the usual preliminary check of the data-set. 2. Closer look and setting of the key variable (ie. Reading performance): Analyse the frequency distribution of the variable. 3. Income: Family’s income is usually reported to have an influence on students’ performance in general. Can you check visually whether this is the case here? Describe and comment any possible pattern you identify. 4. Expenditure: Intuitively, we expect investment on education to affect students’ performance. So: a. Repeat the previous analysis with the variable ‘expenditure’. Describe any pattern you might identify. b. Let’s deepen on this issue. Higher investment in education can be invested in hiring teachers. So: i. Add a column to the dataset accounting for the ratio num. students / num. teachers ii. Incorporate this ratio in the figure studying the effect of expenditure. 5. English learning: Being or not an English native speaker might make a difference in our case study. Repeat the previous analysis with the variable ‘english’. Describe any pattern you might identify. 6. Correlations: a. Calculate, separately, the correlation between reading performance and family income on one side and English learning on the other. Choose the test carefully! b. According to the correlation results. What pair of variables is more closely related?

  4. StudentMathScores

    • kaggle.com
    zip
    Updated Jun 10, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Logan Henslee (2019). StudentMathScores [Dataset]. https://www.kaggle.com/loganhenslee/studentmathscores
    Explore at:
    zip(333321 bytes)Available download formats
    Dataset updated
    Jun 10, 2019
    Authors
    Logan Henslee
    Description

    CONTEXT

    Practice Scenario: The UIW School of Engineering wants to recruit more students into their program. They will recruit students with great math scores. Also, to increase the chances of recruitment,​ the department will look for students who qualify for financial aid. Students who qualify for financial aid more than likely come from low socio-economic backgrounds. One way to indicate this is to view how much federal revenue a school district receives through its state. High federal revenue for a school indicates that a large portion of the student base comes from low incomes families.

    The question we wish to ask is as follows: Name the school districts across the nation where their Child Nutrition Programs(c25) are federally funded between the amounts $30,000 and $50,000. And where the average math score for the school districts corresponding state is greater than or equal to the nations average score of 282.

    The SQL query below in 'Top5MathTarget.sql' can be used to answer this question in MySQL. To execute this process, one would need to install MySQL to their local system and load the attached datasets below from Kaggle into their MySQL schema. The SQL query below will then join the separate tables on various key identifiers.

    DATA SOURCE Data is sourced from The U.S Census Bureau and The Nations Report Card (using the NAEP Data Explorer).

    Finance: https://www.census.gov/programs-surveys/school-finances/data/tables.html

    Math Scores: https://www.nationsreportcard.gov/ndecore/xplore/NDE

    COLUMN NOTES

    All data comes from the school year 2017. Individual schools are not represented, only school districts within each state.

    FEDERAL FINANCE DATA DEFINITIONS

    t_fed_rev: Total federal revenue through the state to each school district.

    C14- Federal revenue through the state- Title 1 (no child left behind act).

    C25- Federal revenue through the state- Child Nutrition Act.

    Title 1 is a program implemented in schools to help raise academic achievement ​for all students. The program is available to schools where at least 40% of the students come from low inccom​​e families.

    Child Nutrition Programs ensure the children are getting the food they need to grow and learn. Schools with high federal revenue to these programs indicate students that also come from low income​ families.

    MATH SCORES DATA DEFINITIONS

    Note: Mathematics, Grade 8, 2017, All Students (Total)

    average_scale_score - The state's average score for eighth graders taking the NAEP math exam.

  5. p

    Data from: Green Bay Area Public School District

    • publicschoolreview.com
    json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Public School Review, Green Bay Area Public School District [Dataset]. https://www.publicschoolreview.com/wisconsin/green-bay-area-public-school-district/5505820-school-district
    Explore at:
    json, xmlAvailable download formats
    Dataset authored and provided by
    Public School Review
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1990 - Dec 31, 2025
    Area covered
    Green Bay Area School District
    Description

    Historical Dataset of Green Bay Area Public School District is provided by PublicSchoolReview and contain statistics on metrics:Comparison of Diversity Score Trends,Total Revenues Trends,Total Expenditure Trends,Average Revenue Per Student Trends,Average Expenditure Per Student Trends,Reading and Language Arts Proficiency Trends,Math Proficiency Trends,Science Proficiency Trends,Graduation Rate Trends,Overall School District Rank Trends,American Indian Student Percentage Comparison Over Years (1991-2023),Asian Student Percentage Comparison Over Years (1991-2023),Hispanic Student Percentage Comparison Over Years (1991-2023),Black Student Percentage Comparison Over Years (1993-2023),White Student Percentage Comparison Over Years (1991-2023),Two or More Races Student Percentage Comparison Over Years (2013-2023),Comparison of Students By Grade Trends

  6. o

    School information and student demographics

    • data.ontario.ca
    • datasets.ai
    • +1more
    xlsx
    Updated Oct 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Education (2025). School information and student demographics [Dataset]. https://data.ontario.ca/dataset/school-information-and-student-demographics
    Explore at:
    xlsx(1510697), xlsx(1529849), xlsx(1565910), xlsx(1550796), xlsx(1566878), xlsx(1565304), xlsx(1562805), xlsx(1459001), xlsx(1462006), xlsx(1460629), xlsx(1547704), xlsx(1567330), xlsx(1580734), xlsx(1462064)Available download formats
    Dataset updated
    Oct 23, 2025
    Dataset authored and provided by
    Education
    License

    https://www.ontario.ca/page/open-government-licence-ontariohttps://www.ontario.ca/page/open-government-licence-ontario

    Time period covered
    Oct 23, 2025
    Area covered
    Ontario
    Description

    Data includes: board and school information, grade 3 and 6 EQAO student achievements for reading, writing and mathematics, and grade 9 mathematics EQAO and OSSLT. Data excludes private schools, Education and Community Partnership Programs (ECPP), summer, night and continuing education schools.

    How Are We Protecting Privacy?

    Results for OnSIS and Statistics Canada variables are suppressed based on school population size to better protect student privacy. In order to achieve this additional level of protection, the Ministry has used a methodology that randomly rounds a percentage either up or down depending on school enrolment. In order to protect privacy, the ministry does not publicly report on data when there are fewer than 10 individuals represented.

      * Percentages depicted as 0 may not always be 0 values as in certain situations the values have been randomly rounded down or there are no reported results at a school for the respective indicator. * Percentages depicted as 100 are not always 100, in certain situations the values have been randomly rounded up.
    The school enrolment totals have been rounded to the nearest 5 in order to better protect and maintain student privacy.

    The information in the School Information Finder is the most current available to the Ministry of Education at this time, as reported by schools, school boards, EQAO and Statistics Canada. The information is updated as frequently as possible.

    This information is also available on the Ministry of Education's School Information Finder website by individual school.

    Descriptions for some of the data types can be found in our glossary.

    School/school board and school authority contact information are updated and maintained by school boards and may not be the most current version. For the most recent information please visit: https://data.ontario.ca/dataset/ontario-public-school-contact-information.

  7. C

    Pupil to Teacher Ratio

    • data.ccrpc.org
    csv
    Updated Dec 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Champaign County Regional Planning Commission (2024). Pupil to Teacher Ratio [Dataset]. https://data.ccrpc.org/dataset/pupil-to-teacher-ratio
    Explore at:
    csvAvailable download formats
    Dataset updated
    Dec 6, 2024
    Dataset authored and provided by
    Champaign County Regional Planning Commission
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Description

    The pupil to teacher ratio data includes figures for both elementary and high schools in Champaign County. This indicator includes the following school districts: Champaign Community Unit School District #4, Fisher Community Unit School District #1, Gifford Community Consolidated Grade School District #188, Ludlow Community Consolidated School District #142, Mahomet-Seymour Community Unit School District #3, Rantoul City School District #137, Rantoul Township High School District #193, St. Joseph Community Consolidated School District #169, St. Joseph-Ogden Community High School District #305, Tolono Community Unit School District #7, and Urbana School District #116. How many pupils per teacher there are in a district can reflect a number of other conditions. We included this indicator to provide some information on classroom size and instruction.

    The pupil to teacher ratio shifts slightly from year to year in most districts, but the changes are often relatively small. Most districts’ ratios hover between 15:1 and 25:1 for most or all of the measured time period, with a few districts consistently below 15:1. The average ratio for all Champaign County schools was 16:1 every year from 2008 through 2020, reaching a new low of 15:1 for three of the four years between 2021 and 2024. There is no county-wide unifying trend.

    This data, along with a variety of other school district data, is available on the Illinois Report Card, an Illinois State Board of Education and Northern Illinois University website.

    Sources: Illinois Report Card. (2023-2024). Champaign CUSD 4. Illinois State Board of Education. (Accessed 6 December 2024). Illinois Report Card. (2023-2024). Fisher CUSD 1. Illinois State Board of Education. (Accessed 6 December 2024). Illinois Report Card. (2023-2024). Gifford CCSD 188. Illinois State Board of Education. (Accessed 6 December 2024). Illinois Report Card. (2023-2024). Ludlow CCSD 142. Illinois State Board of Education. (Accessed 6 December 2024). Illinois Report Card. (2023-2024). Mahomet-Seymour CUSD 3. Illinois State Board of Education. (Accessed 6 December 2024). Illinois Report Card. (2023-2024). Prairieview-Ogden CCSD 197. Illinois State Board of Education. (Accessed 6 December 2024). Illinois Report Card. (2023-2024). Rantoul City SD 137. Illinois State Board of Education. (Accessed 6 December 2024). Illinois Report Card. (2023-2024). Rantoul Township HSD 193. Illinois State Board of Education. (Accessed 6 December 2024). Illinois Report Card. (2023-2024). St. Joseph CCSD 169. Illinois State Board of Education. (Accessed 6 December 2024). Illinois Report Card. (2023-2024). St. Joseph Ogden CHSD 305. Illinois State Board of Education. (Accessed 6 December 2024). Illinois Report Card. (2023-2024). Thomasboro CCSD 130. Illinois State Board of Education. (Accessed 6 December 2024). Illinois Report Card. (2023-2024). Tolono CUSD 7. Illinois State Board of Education. (Accessed 6 December 2024). Illinois Report Card. (2023-2024). Urbana SD 116. Illinois State Board of Education. (Accessed 6 December 2024).

  8. Electric School Bus (ESB) Adoption in the United States - May, 2022 ***

    • redivis.com
    application/jsonl +7
    Updated Jul 3, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Environmental Impact Data Collaborative (2023). Electric School Bus (ESB) Adoption in the United States - May, 2022 *** [Dataset]. https://redivis.com/datasets/y29n-14cwxamcw
    Explore at:
    spss, stata, parquet, arrow, sas, csv, avro, application/jsonlAvailable download formats
    Dataset updated
    Jul 3, 2023
    Dataset provided by
    Redivis Inc.
    Authors
    Environmental Impact Data Collaborative
    Area covered
    United States
    Description

    Abstract

    Dataset quality ***: High quality dataset that was quality-checked by the EIDC team

    This dataset tracks electric school bus (ESB) adoption across the United States. It tracks the number of “committed” ESBs at the school district level, as well as details about individual buses, including the bus manufacturer and funding source(s). It also tracks when each ESB passed through the phases of the adoption process and the current phase of each bus. The dataset contains school district socio-economic characteristics, like poverty rates, racial composition and air pollution to enable wider analysis including whether the transition to ESBs is happening equitably. This dataset was developed as part of WRI’s Electric School Bus Initiative.

    Methodology

    The dataset is organized by both school district and individual ESB and tracks the number of “committed” ESBs. An ESB is considered “committed” starting from the point when a school district or fleet operator has been awarded funding to purchase it or has made formal agreement to purchase it from a manufacturer or dealer. We would not consider an ESB “committed” if a school district or other fleet operator only expressed interest in ESBs or stated that they plan to acquire ESBs, without awarded funding or an agreement with a third party. The dataset also tracks the progress of each individual ESB through the four phases of the adoption process: “awarded,” “ordered,” “delivered,” and “operating.” It also contains school district characteristics including poverty, racial composition, air pollution, and locale (urban, suburban, town, or rural), to enable wider analysis of the adoption of ESBs, including the extent to which the transition to ESBs is happening equitably.

    ESB-related data were collected from a variety of publicly available sources, including news articles, school websites, industry publications like School Bus Fleet magazine, and social media posts. Other demographic and economic data come from reputable, public datasets including the Environmental Protection Agency (EPA), U.S. Census, and National Center for Education Statistics. This dataset will be updated quarterly over the life of WRI’s to include new ESB commitments and additional indicators.

    Usage

    This dataset is the result of new data collection by WRI’s Electric School Bus Initiative, and is sourced from hundreds of news articles, school district webpages, and other online sources. To the best of our knowledge, these data are up to date as of March 2022, but represent a snapshot in time, in a rapidly evolving space. We will update this dataset quarterly for the duration of WRI’s Electric School Bus Initiative.

    District-level Data on Electric School Bus Adoption:

    This category includes the base table of this dataset, which comes from the district directory of the National Center for Education Statistics (NCES) for the 2020–21 school year. The approximately 19,500 LEAs in the United States make up the rows of this dataset. There are nine types of LEAs, including several types of public education-related entities beyond what is typically referred to as a “school district,” such as a state-operated agency or a service agency. This ESB adoption dataset includes all LEA types because there may eventually be ESBs owned by any of these LEA types. The dataset also includes any other entities (without LEA IDs) that have obtained electric school buses (i.e., private schools and private fleet operators).

    The data also describe the social, economic, and demographic characteristics of the school district. As described in “Indicator Selection Criteria,” we tried to include data that would provide an adequately holistic understanding of socioeconomic and environmental health condition disparities among school districts, in alignment with wider thinking on the topic and what is relevant to ESBs, without including so many indicators that they burden nontechnical users with researching and selecting indicators. This section includes data on each school district’s number of enrolled students, whether the district is controlled by an Indian Tribe or the Bureau of Indian Education (Bureau of Indian Education n.d.), median household income, percentage of households below the federal poverty level, the distribution of the population among race and ethnic categories, the number of school students with a disability, and whether the school district was qualified for ESB funding from the American Rescue Plan. Also included are the variables; percent low-income, percent non-white and/or Hispanic, average ozone concentration (parts per billion, ppb), and average concentration of fine particulate matter (PM2.5, measured in micrograms per cubic meter, μg/ m3).

    Utilities:

    This category includes information on the electric power utilities operating in each school district. The “Utility name” variables include the names of all utility companies that operate within the boundaries of the school

  9. m

    USA POI & Foot Traffic Enriched Geospatial Dataset by Predik Data-Driven

    • app.mobito.io
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    USA POI & Foot Traffic Enriched Geospatial Dataset by Predik Data-Driven [Dataset]. https://app.mobito.io/data-product/usa-enriched-geospatial-framework-dataset
    Explore at:
    Area covered
    United States
    Description

    Our dataset provides detailed and precise insights into the business, commercial, and industrial aspects of any given area in the USA (Including Point of Interest (POI) Data and Foot Traffic. The dataset is divided into 150x150 sqm areas (geohash 7) and has over 50 variables. - Use it for different applications: Our combined dataset, which includes POI and foot traffic data, can be employed for various purposes. Different data teams use it to guide retailers and FMCG brands in site selection, fuel marketing intelligence, analyze trade areas, and assess company risk. Our dataset has also proven to be useful for real estate investment.- Get reliable data: Our datasets have been processed, enriched, and tested so your data team can use them more quickly and accurately.- Ideal for trainning ML models. The high quality of our geographic information layers results from more than seven years of work dedicated to the deep understanding and modeling of geospatial Big Data. Among the features that distinguished this dataset is the use of anonymized and user-compliant mobile device GPS location, enriched with other alternative and public data.- Easy to use: Our dataset is user-friendly and can be easily integrated to your current models. Also, we can deliver your data in different formats, like .csv, according to your analysis requirements. - Get personalized guidance: In addition to providing reliable datasets, we advise your analysts on their correct implementation.Our data scientists can guide your internal team on the optimal algorithms and models to get the most out of the information we provide (without compromising the security of your internal data).Answer questions like: - What places does my target user visit in a particular area? Which are the best areas to place a new POS?- What is the average yearly income of users in a particular area?- What is the influx of visits that my competition receives?- What is the volume of traffic surrounding my current POS?This dataset is useful for getting insights from industries like:- Retail & FMCG- Banking, Finance, and Investment- Car Dealerships- Real Estate- Convenience Stores- Pharma and medical laboratories- Restaurant chains and franchises- Clothing chains and franchisesOur dataset includes more than 50 variables, such as:- Number of pedestrians seen in the area.- Number of vehicles seen in the area.- Average speed of movement of the vehicles seen in the area.- Point of Interest (POIs) (in number and type) seen in the area (supermarkets, pharmacies, recreational locations, restaurants, offices, hotels, parking lots, wholesalers, financial services, pet services, shopping malls, among others). - Average yearly income range (anonymized and aggregated) of the devices seen in the area.Notes to better understand this dataset:- POI confidence means the average confidence of POIs in the area. In this case, POIs are any kind of location, such as a restaurant, a hotel, or a library. - Category confidences, for example"food_drinks_tobacco_retail_confidence" indicates how confident we are in the existence of food/drink/tobacco retail locations in the area. - We added predictions for The Home Depot and Lowe's Home Improvement stores in the dataset sample. These predictions were the result of a machine-learning model that was trained with the data. Knowing where the current stores are, we can find the most similar areas for new stores to open.How efficient is a Geohash?Geohash is a faster, cost-effective geofencing option that reduces input data load and provides actionable information. Its benefits include faster querying, reduced cost, minimal configuration, and ease of use.Geohash ranges from 1 to 12 characters. The dataset can be split into variable-size geohashes, with the default being geohash7 (150m x 150m).

  10. IRS US Income Data by Zip Code

    • kaggle.com
    zip
    Updated Jan 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). IRS US Income Data by Zip Code [Dataset]. https://www.kaggle.com/datasets/thedevastator/2013-irs-us-income-data-by-zip-code
    Explore at:
    zip(2000149 bytes)Available download formats
    Dataset updated
    Jan 12, 2023
    Authors
    The Devastator
    Area covered
    United States
    Description

    IRS US Income Data by Zip Code

    Number of Returns, Adjusted Gross Income, Total Income, and Taxable Income

    By Jon Loyens [source]

    About this dataset

    This dataset provides a unique insight into the US income patterns in 2013, by zip code. With this data, you can explore how taxes and adjusted gross income (AGI) vary according to geographic area. The data includes total and average incomes reported, number of returns filed in each ZIP code and taxable incomes reported. This dataset is ideal for studying how economic trends have shifted geographically over time or examining regional economic disparities within the US. In addition, this dataset has been cleansed from data removed from items such as ZIP codes with fewer than 100 returns or those identified as a single building or nonresidential ZIP codes that were categorized as “other” (99999) by the IRS. Finally, dollar amounts for all variables are in thousands for better accuracy

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    Research Ideas

    • Using this dataset to identify potential locations for commercial developments by maping taxable incomes, total income amounts, and average incomes in different zip codes.
    • Comparing the number of returns with total income, taxes payable, and income variance between different zip codes to gain insights into areas with higher financial prosperity or disparities between zip codes due to wider economic trends.
    • Analyzing average adjusted gross incomes on a state-by-state basis to identify states where high net worth citizens or individuals earning high wages live in order to target marketing campaigns or develop high-end service offerings

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    License: Dataset copyright by authors - You are free to: - Share - copy and redistribute the material in any medium or format for any purpose, even commercially. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original. - Keep intact - all notices that refer to this license, including copyright notices.

    Columns

    File: IRSIncomeByZipCode.csv | Column name | Description | |:------------------------------------------|:-------------------------------------------------------------------------------------| | STATE | The two-letter abbreviation for the state in which the zip code is located. (String) | | ZIPCODE | The five-digit US zip code. (Integer) | | Number of returns | The total number of tax returns filed in the zip code. (Integer) | | Adjusted gross income (AGI) | The total amount of adjusted gross income reported in the zip code. (Integer) | | Avg AGI | The average amount of adjusted gross income reported in the zip code. (Integer) | | Number of returns with total income | The total number of returns with total income reported in the zip code. (Integer) | | Total income amount | The total amount of income reported in the zip code. (Integer) | | Avg total income | The average amount of total income reported in the zip code. (Integer) | | Number of returns with taxable income | The total number of returns with taxable income reported in the zip code. (Integer) | | Taxable income amount | The total amount of taxable income reported in the zip code. (Integer) | | Avg taxable income | The average amount of taxable income reported in the zip code. (Integer) |

    File: IRSIncomeByZipCode_NoStateTotalsNoSmallZips.csv | Column name | Description | |:------------------------------------------|:-------------------------------------------------------------------------------------| | STATE | The two-letter abb...

  11. a

    Levels of obesity and inactivity related illnesses (physical and mental...

    • hub.arcgis.com
    • data.catchmentbasedapproach.org
    Updated Apr 6, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Rivers Trust (2021). Levels of obesity and inactivity related illnesses (physical and mental illnesses): Summary (England) [Dataset]. https://hub.arcgis.com/maps/theriverstrust::levels-of-obesity-and-inactivity-related-illnesses-physical-and-mental-illnesses-summary-england
    Explore at:
    Dataset updated
    Apr 6, 2021
    Dataset authored and provided by
    The Rivers Trust
    Area covered
    Description

    SUMMARYThis analysis, designed and executed by Ribble Rivers Trust, identifies areas across England with the greatest levels of physical and mental illnesses that are linked with obesity and inactivity. Please read the below information to gain a full understanding of what the data shows and how it should be interpreted.ANALYSIS METHODOLOGYThe analysis was carried out using Quality and Outcomes Framework (QOF) data, derived from NHS Digital, relating to:- Asthma (in persons of all ages)- Cancer (in persons of all ages)- Chronic kidney disease (in adults aged 18+)- Coronary heart disease (in persons of all ages)- Depression (in adults aged 18+)- Diabetes mellitus (in persons aged 17+)- Hypertension (in persons of all ages)- Stroke and transient ischaemic attack (in persons of all ages)This information was recorded at the GP practice level. However, GP catchment areas are not mutually exclusive: they overlap, with some areas covered by 30+ GP practices. Therefore, to increase the clarity and usability of the data, the GP-level statistics were converted into statistics based on Middle Layer Super Output Area (MSOA) census boundaries.For each of the above illnesses, the percentage of each MSOA’s population with that illness was estimated. This was achieved by calculating a weighted average based on:- The percentage of the MSOA area that was covered by each GP practice’s catchment area- Of the GPs that covered part of that MSOA: the percentage of patients registered with each GP that have that illness The estimated percentage of each MSOA’s population with each illness was then combined with Office for National Statistics Mid-Year Population Estimates (2019) data for MSOAs, to estimate the number of people in each MSOA with each illness, within the relevant age range.For each illness, each MSOA was assigned a relative score between 1 and 0 (1 = worst, 0 = best) based on:A) the PERCENTAGE of the population within that MSOA who are estimated to have that illnessB) the NUMBER of people within that MSOA who are estimated to have that illnessAn average of scores A & B was taken, and converted to a relative score between 1 and 0 (1= worst, 0 = best). The closer to 1 the score, the greater both the number and percentage of the population in the MSOA predicted to have that illness, compared to other MSOAs. In other words, those are areas where a large number of people are predicted to suffer from an illness, and where those people make up a large percentage of the population, indicating there is a real issue with that illness within the population and the investment of resources to address that issue could have the greatest benefits.The scores for each of the 8 illnesses were added together then converted to a relative score between 1 – 0 (1 = worst, 0 = best), to give an overall score for each MSOA: a score close to 1 would indicate that an area has high predicted levels of all obesity/inactivity-related illnesses, and these are areas where the local population could benefit the most from interventions to address those illnesses. A score close to 0 would indicate very low predicted levels of obesity/inactivity-related illnesses and therefore interventions might not be required.LIMITATIONS1. GPs do not have catchments that are mutually exclusive from each other: they overlap, with some geographic areas being covered by 30+ practices. This dataset should be viewed in combination with the ‘Health and wellbeing statistics (GP-level, England): Missing data and potential outliers’ dataset to identify where there are areas that are covered by multiple GP practices but at least one of those GP practices did not provide data. Results of the analysis in these areas should be interpreted with caution, particularly if the levels of obesity/inactivity-related illnesses appear to be significantly lower than the immediate surrounding areas.2. GP data for the financial year 1st April 2018 – 31st March 2019 was used in preference to data for the financial year 1st April 2019 – 31st March 2020, as the onset of the COVID19 pandemic during the latter year could have affected the reporting of medical statistics by GPs. However, for 53 GPs (out of 7670) that did not submit data in 2018/19, data from 2019/20 was used instead. Note also that some GPs (997 out of 7670) did not submit data in either year. This dataset should be viewed in conjunction with the ‘Health and wellbeing statistics (GP-level, England): Missing data and potential outliers’ dataset, to determine areas where data from 2019/20 was used, where one or more GPs did not submit data in either year, or where there were large discrepancies between the 2018/19 and 2019/20 data (differences in statistics that were > mean +/- 1 St.Dev.), which suggests erroneous data in one of those years (it was not feasible for this study to investigate this further), and thus where data should be interpreted with caution. Note also that there are some rural areas (with little or no population) that do not officially fall into any GP catchment area (although this will not affect the results of this analysis if there are no people living in those areas).3. Although all of the obesity/inactivity-related illnesses listed can be caused or exacerbated by inactivity and obesity, it was not possible to distinguish from the data the cause of the illnesses in patients: obesity and inactivity are highly unlikely to be the cause of all cases of each illness. By combining the data with data relating to levels of obesity and inactivity in adults and children (see the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset), we can identify where obesity/inactivity could be a contributing factor, and where interventions to reduce obesity and increase activity could be most beneficial for the health of the local population.4. It was not feasible to incorporate ultra-fine-scale geographic distribution of populations that are registered with each GP practice or who live within each MSOA. Populations might be concentrated in certain areas of a GP practice’s catchment area or MSOA and relatively sparse in other areas. Therefore, the dataset should be used to identify general areas where there are high levels of obesity/inactivity-related illnesses, rather than interpreting the boundaries between areas as ‘hard’ boundaries that mark definite divisions between areas with differing levels of these illnesses. TO BE VIEWED IN COMBINATION WITH:This dataset should be viewed alongside the following datasets, which highlight areas of missing data and potential outliers in the data:- Health and wellbeing statistics (GP-level, England): Missing data and potential outliersDOWNLOADING THIS DATATo access this data on your desktop GIS, download the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset.DATA SOURCESThis dataset was produced using:Quality and Outcomes Framework data: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.GP Catchment Outlines. Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital. Data was cleaned by Ribble Rivers Trust before use.COPYRIGHT NOTICEThe reproduction of this data must be accompanied by the following statement:© Ribble Rivers Trust 2021. Analysis carried out using data that is: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.CaBA HEALTH & WELLBEING EVIDENCE BASEThis dataset forms part of the wider CaBA Health and Wellbeing Evidence Base.

  12. Global Country Information Dataset 2023

    • kaggle.com
    zip
    Updated Jul 8, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nidula Elgiriyewithana ⚡ (2023). Global Country Information Dataset 2023 [Dataset]. https://www.kaggle.com/datasets/nelgiriyewithana/countries-of-the-world-2023
    Explore at:
    zip(24063 bytes)Available download formats
    Dataset updated
    Jul 8, 2023
    Authors
    Nidula Elgiriyewithana ⚡
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Description

    This comprehensive dataset provides a wealth of information about all countries worldwide, covering a wide range of indicators and attributes. It encompasses demographic statistics, economic indicators, environmental factors, healthcare metrics, education statistics, and much more. With every country represented, this dataset offers a complete global perspective on various aspects of nations, enabling in-depth analyses and cross-country comparisons.

    DOI

    Key Features

    • Country: Name of the country.
    • Density (P/Km2): Population density measured in persons per square kilometer.
    • Abbreviation: Abbreviation or code representing the country.
    • Agricultural Land (%): Percentage of land area used for agricultural purposes.
    • Land Area (Km2): Total land area of the country in square kilometers.
    • Armed Forces Size: Size of the armed forces in the country.
    • Birth Rate: Number of births per 1,000 population per year.
    • Calling Code: International calling code for the country.
    • Capital/Major City: Name of the capital or major city.
    • CO2 Emissions: Carbon dioxide emissions in tons.
    • CPI: Consumer Price Index, a measure of inflation and purchasing power.
    • CPI Change (%): Percentage change in the Consumer Price Index compared to the previous year.
    • Currency_Code: Currency code used in the country.
    • Fertility Rate: Average number of children born to a woman during her lifetime.
    • Forested Area (%): Percentage of land area covered by forests.
    • Gasoline_Price: Price of gasoline per liter in local currency.
    • GDP: Gross Domestic Product, the total value of goods and services produced in the country.
    • Gross Primary Education Enrollment (%): Gross enrollment ratio for primary education.
    • Gross Tertiary Education Enrollment (%): Gross enrollment ratio for tertiary education.
    • Infant Mortality: Number of deaths per 1,000 live births before reaching one year of age.
    • Largest City: Name of the country's largest city.
    • Life Expectancy: Average number of years a newborn is expected to live.
    • Maternal Mortality Ratio: Number of maternal deaths per 100,000 live births.
    • Minimum Wage: Minimum wage level in local currency.
    • Official Language: Official language(s) spoken in the country.
    • Out of Pocket Health Expenditure (%): Percentage of total health expenditure paid out-of-pocket by individuals.
    • Physicians per Thousand: Number of physicians per thousand people.
    • Population: Total population of the country.
    • Population: Labor Force Participation (%): Percentage of the population that is part of the labor force.
    • Tax Revenue (%): Tax revenue as a percentage of GDP.
    • Total Tax Rate: Overall tax burden as a percentage of commercial profits.
    • Unemployment Rate: Percentage of the labor force that is unemployed.
    • Urban Population: Percentage of the population living in urban areas.
    • Latitude: Latitude coordinate of the country's location.
    • Longitude: Longitude coordinate of the country's location.

    Potential Use Cases

    • Analyze population density and land area to study spatial distribution patterns.
    • Investigate the relationship between agricultural land and food security.
    • Examine carbon dioxide emissions and their impact on climate change.
    • Explore correlations between economic indicators such as GDP and various socio-economic factors.
    • Investigate educational enrollment rates and their implications for human capital development.
    • Analyze healthcare metrics such as infant mortality and life expectancy to assess overall well-being.
    • Study labor market dynamics through indicators such as labor force participation and unemployment rates.
    • Investigate the role of taxation and its impact on economic development.
    • Explore urbanization trends and their social and environmental consequences.

    Data Source: This dataset was compiled from multiple data sources

    If this was helpful, a vote is appreciated ❤️ Thank you 🙂

  13. c

    Cancer (in persons of all ages): England

    • data.catchmentbasedapproach.org
    • hub.arcgis.com
    Updated Apr 6, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Rivers Trust (2021). Cancer (in persons of all ages): England [Dataset]. https://data.catchmentbasedapproach.org/datasets/cancer-in-persons-of-all-ages-england
    Explore at:
    Dataset updated
    Apr 6, 2021
    Dataset authored and provided by
    The Rivers Trust
    Area covered
    Description

    SUMMARYThis analysis, designed and executed by Ribble Rivers Trust, identifies areas across England with the greatest levels of cancer (in persons of all ages). Please read the below information to gain a full understanding of what the data shows and how it should be interpreted.ANALYSIS METHODOLOGYThe analysis was carried out using Quality and Outcomes Framework (QOF) data, derived from NHS Digital, relating to cancer (in persons of all ages).This information was recorded at the GP practice level. However, GP catchment areas are not mutually exclusive: they overlap, with some areas covered by 30+ GP practices. Therefore, to increase the clarity and usability of the data, the GP-level statistics were converted into statistics based on Middle Layer Super Output Area (MSOA) census boundaries.The percentage of each MSOA’s population (all ages) with cancer was estimated. This was achieved by calculating a weighted average based on:The percentage of the MSOA area that was covered by each GP practice’s catchment areaOf the GPs that covered part of that MSOA: the percentage of registered patients that have that illness The estimated percentage of each MSOA’s population with cancer was then combined with Office for National Statistics Mid-Year Population Estimates (2019) data for MSOAs, to estimate the number of people in each MSOA with cancer, within the relevant age range.Each MSOA was assigned a relative score between 1 and 0 (1 = worst, 0 = best) based on:A) the PERCENTAGE of the population within that MSOA who are estimated to have cancerB) the NUMBER of people within that MSOA who are estimated to have cancerAn average of scores A & B was taken, and converted to a relative score between 1 and 0 (1= worst, 0 = best). The closer to 1 the score, the greater both the number and percentage of the population in the MSOA that are estimated to have cancer, compared to other MSOAs. In other words, those are areas where it’s estimated a large number of people suffer from cancer, and where those people make up a large percentage of the population, indicating there is a real issue with cancer within the population and the investment of resources to address that issue could have the greatest benefits.LIMITATIONS1. GP data for the financial year 1st April 2018 – 31st March 2019 was used in preference to data for the financial year 1st April 2019 – 31st March 2020, as the onset of the COVID19 pandemic during the latter year could have affected the reporting of medical statistics by GPs. However, for 53 GPs (out of 7670) that did not submit data in 2018/19, data from 2019/20 was used instead. Note also that some GPs (997 out of 7670) did not submit data in either year. This dataset should be viewed in conjunction with the ‘Health and wellbeing statistics (GP-level, England): Missing data and potential outliers’ dataset, to determine areas where data from 2019/20 was used, where one or more GPs did not submit data in either year, or where there were large discrepancies between the 2018/19 and 2019/20 data (differences in statistics that were > mean +/- 1 St.Dev.), which suggests erroneous data in one of those years (it was not feasible for this study to investigate this further), and thus where data should be interpreted with caution. Note also that there are some rural areas (with little or no population) that do not officially fall into any GP catchment area (although this will not affect the results of this analysis if there are no people living in those areas).2. Although all of the obesity/inactivity-related illnesses listed can be caused or exacerbated by inactivity and obesity, it was not possible to distinguish from the data the cause of the illnesses in patients: obesity and inactivity are highly unlikely to be the cause of all cases of each illness. By combining the data with data relating to levels of obesity and inactivity in adults and children (see the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset), we can identify where obesity/inactivity could be a contributing factor, and where interventions to reduce obesity and increase activity could be most beneficial for the health of the local population.3. It was not feasible to incorporate ultra-fine-scale geographic distribution of populations that are registered with each GP practice or who live within each MSOA. Populations might be concentrated in certain areas of a GP practice’s catchment area or MSOA and relatively sparse in other areas. Therefore, the dataset should be used to identify general areas where there are high levels of cancer, rather than interpreting the boundaries between areas as ‘hard’ boundaries that mark definite divisions between areas with differing levels of cancer.TO BE VIEWED IN COMBINATION WITH:This dataset should be viewed alongside the following datasets, which highlight areas of missing data and potential outliers in the data:Health and wellbeing statistics (GP-level, England): Missing data and potential outliersLevels of obesity, inactivity and associated illnesses (England): Missing dataDOWNLOADING THIS DATATo access this data on your desktop GIS, download the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset.DATA SOURCESThis dataset was produced using:Quality and Outcomes Framework data: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.GP Catchment Outlines. Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital. Data was cleaned by Ribble Rivers Trust before use.MSOA boundaries: © Office for National Statistics licensed under the Open Government Licence v3.0. Contains OS data © Crown copyright and database right 2021.Population data: Mid-2019 (June 30) Population Estimates for Middle Layer Super Output Areas in England and Wales. © Office for National Statistics licensed under the Open Government Licence v3.0. © Crown Copyright 2020.COPYRIGHT NOTICEThe reproduction of this data must be accompanied by the following statement:© Ribble Rivers Trust 2021. Analysis carried out using data that is: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital; © Office for National Statistics licensed under the Open Government Licence v3.0. Contains OS data © Crown copyright and database right 2021. © Crown Copyright 2020.CaBA HEALTH & WELLBEING EVIDENCE BASEThis dataset forms part of the wider CaBA Health and Wellbeing Evidence Base.

  14. World Lakes

    • kaggle.com
    zip
    Updated Dec 4, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    mehrdad (2022). World Lakes [Dataset]. https://www.kaggle.com/datasets/mehrdat/world-lakes
    Explore at:
    zip(84859176 bytes)Available download formats
    Dataset updated
    Dec 4, 2022
    Authors
    mehrdad
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Area covered
    World
    Description

    Property Description

    Hylak_id Unique lake identifier. Values range from 1 to 1,427,688.

    **Lake_name ** Name of lake or reservoir. This field is currently only populated for lakes with an area of at least 500 km2; for large reservoirs where a name was available in the GRanD database; and for smaller lakes where a name was available in the GLWD database.

    Country Country that the lake (or reservoir) is located in. International or transboundary lakes are assigned to the country in which its corresponding lake pour point is located and may be arbitrary for pour points that fall on country boundaries.

    Continent Continent that the lake (or reservoir) is located in. Geographic continent: Africa, Asia, Europe, North America, South America, or Oceania (Australia and Pacific Islands)

    Poly_src The name of datasets that were used in the column. Source of original lake polygon: CanVec; SWBD; MODIS; NHD; ECRINS; GLWD; GRanD; or Other More information on these data sources can be found in Table 1.

    Lake_type Indicator for lake type: 1: Lake 2: Reservoir 3: Lake control (i.e. natural lake with regulation structure) Note that the default value for all water bodies is 1, and only those water bodies explicitly identified as other types (mostly based on information from the GRanD database) have other values; hence the type ‘Lake’ also includes all unidentified smaller human-made reservoirs and regulated lakes.

    Grand_id ID of the corresponding reservoir in the GRanD database, or value 0 for no corresponding GRanD record. This field can be used to join additional attributes from the GRanD database.

    Lake_area Lake surface area (i.e. polygon area), in square kilometers.

    Shore_len Length of shoreline (i.e. polygon outline), in kilometers.

    Shore_dev Shoreline development, measured as the ratio between shoreline length and the circumference of a circle with the same area. A lake with the shape of a perfect circle has a shoreline development of 1, while higher values indicate increasing shoreline complexity.

    Vol_total Total lake or reservoir volume, in million cubic meters (1 mcm = 0.001 km3). For most polygons, this value represents the total lake volume as estimated using the geostatistical modeling approach by Messager et al. (2016). However, where either a reported lake volume (for lakes ≥ 500 km2) or a reported reservoir volume (from GRanD database) existed, the total volume represents this reported value. In cases of regulated lakes, the total volume represents the larger value between reported reservoir and modeled or reported lake volume. Column ‘Vol_src’ provides additional information regarding these distinctions.

    Vol_res Reported reservoir volume, or storage volume of added lake regulation, in million cubic meters (1 mcm = 0.001 km3). 0: no reservoir volume

    Vol_src 1: ‘Vol_total’ is the reported total lake volume from literature 2: ‘Vol_total’ is the reported total reservoir volume from GRanD or literature 3: ‘Vol_total’ is the estimated total lake volume using the geostatistical modeling approach by Messager et al. (2016)

    Depth_avg Average lake depth, in meters. Average lake depth is defined as the ratio between total lake volume (‘Vol_total’) and lake area (‘Lake_area’).

    Dis_avg Average long-term discharge flowing through the lake, in cubic meters per second. This value is derived from modeled runoff and discharge estimates provided by the global hydrological model WaterGAP, downscaled to the 15 arc-second resolution of HydroSHEDS (see section 2.2 for more details) and is extracted at the location of the lake pour point. Note that these model estimates contain considerable uncertainty, in particular for very low flows. -9999: no data as lake pour point is not on HydroSHEDS landmask

    Res_time Average residence time of the lake water, in days. The average residence time is calculated as the ratio between total lake volume (‘Vol_total’) and average long-term discharge (‘Dis_avg’). Values below 0.1 are rounded up to 0.1 as shorter residence times seem implausible (and likely indicate model errors). -1: cannot be calculated as ‘Dis_avg’ is 0 -9999: no data as lake pour point is not on HydroSHEDS landmask

    Elevation Elevation of lake surface, in meters above sea level. This value was primarily derived from the EarthEnv-DEM90 digital elevation model at 90 m pixel resolution by calculating the majority pixel elevation found within the lake boundaries. To remove some artefacts inherent in this DEM for northern latitudes, all lake values that showed negative elevation for the area north of 60°N were substituted with results using the coarser GTOPO30 DEM of USGS at 1 km pixel resolution, which ensures land surfaces ≥0 in this region. Note that due to the remaining uncertainties in the EarthEnv-DEM90 some small negative values occur along the global oce...

  15. A

    ‘2006-07 Class Size - By Borough’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Jan 9, 2007
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2007). ‘2006-07 Class Size - By Borough’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/data-gov-2006-07-class-size-by-borough-215a/b392ef31/?iid=002-440&v=presentation
    Explore at:
    Dataset updated
    Jan 9, 2007
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘2006-07 Class Size - By Borough’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/f8619845-8968-433a-904b-5d7daf554d61 on 12 November 2021.

    --- Dataset description provided by original source is as follows ---

    Citywide Class Size Report, Borough, Program, and Grade or Service Category

    SOURCES: 10/31/06 Official Register (K-9) and 12/15/06 Register/Schedule (9-12)

    Grade 9 not in high schools

    Indicates how special class is delivered

    For schools with students in any grades between Kindergarten and 9th grade (where 9th grade is the termination grade for the school), class size is reported by four program areas: general education, special education self-contained class, collaborative team teaching and gifted and talented self-contained class. Within each program area class size is reported by grade or service category, which indicates how a special education self-contained class is delivered. Class size is calculated by dividing the number of students in a program and grade by the number of official classes in that program and grade.

    The following data is excluded from all the reports: District 75 schools, bridge classes which span more than one grade, classes with fewer than five students (for other than special education self-contained classes) and classes with one student (for special education self-contained classes). On the summary reports programs and grades with three or fewer classes are excluded from the citywide, borough and region reports and programs and grades with one class are excluded from the district report. For schools with students in any grades between 9th and 12th grade (where 9th grade is not the termination grade for the school), class size is reported by two program areas: general education and special education. For general education students class size is reported by grade for each core subject area: English, Math, Science and Social Studies. For special education students with a self-contained program recommendation, class size is reported by service category (self-contained or mainstream) for each core subject area. Since high school classes may contain students in multiple grades and programs, class size is calculated by taking a weighted average of all the classes in a core subject area with students in a particular grade or program. For example, there are 75 ninth graders enrolled at a high school. 25 ninth graders attend a Math class with 28 students, a second group of 25 ninth graders attend a Math class with 25 students, and a third group of 25 ninth graders attend a Math class with 30 students. Average class size for ninth grade Math equals: (25x28 + 25x25 + 25x30)/75 = 27.7.

    The Pupil Teacher Ratio is also provided on the school level report. Pupil Teacher Ratio is another means to evaluate the instructional resources provided at a school. Pupil Teacher Ratio for All Students is calculated by dividing the number of students at a school by the number of full-time equivalent teachers, including both teachers in classes taught by two teachers, “cluster” teachers providing instruction in specialized topics like art or science, and teachers providing special education instruction. Pupil Teacher Ratio Excluding Special Education is calculated by dividing the number of non-special education students at a school by the number of full-time equivalent non-special education teachers.

    --- Original source retains full ownership of the source dataset ---

  16. c

    Coronary heart disease (in persons of all ages): England

    • data.catchmentbasedapproach.org
    • hub.arcgis.com
    Updated Apr 7, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Rivers Trust (2021). Coronary heart disease (in persons of all ages): England [Dataset]. https://data.catchmentbasedapproach.org/items/832de0122e4b4bba9ff69cadc1bf53c4
    Explore at:
    Dataset updated
    Apr 7, 2021
    Dataset authored and provided by
    The Rivers Trust
    Area covered
    Description

    SUMMARYThis analysis, designed and executed by Ribble Rivers Trust, identifies areas across England with the greatest levels of coronary heart disease (in persons of all ages). Please read the below information to gain a full understanding of what the data shows and how it should be interpreted.ANALYSIS METHODOLOGYThe analysis was carried out using Quality and Outcomes Framework (QOF) data, derived from NHS Digital, relating to coronary heart disease (in persons of all ages).This information was recorded at the GP practice level. However, GP catchment areas are not mutually exclusive: they overlap, with some areas covered by 30+ GP practices. Therefore, to increase the clarity and usability of the data, the GP-level statistics were converted into statistics based on Middle Layer Super Output Area (MSOA) census boundaries.The percentage of each MSOA’s population (all ages) with coronary heart disease was estimated. This was achieved by calculating a weighted average based on:The percentage of the MSOA area that was covered by each GP practice’s catchment areaOf the GPs that covered part of that MSOA: the percentage of registered patients that have that illness The estimated percentage of each MSOA’s population with coronary heart disease was then combined with Office for National Statistics Mid-Year Population Estimates (2019) data for MSOAs, to estimate the number of people in each MSOA with coronary heart disease, within the relevant age range.Each MSOA was assigned a relative score between 1 and 0 (1 = worst, 0 = best) based on:A) the PERCENTAGE of the population within that MSOA who are estimated to have coronary heart diseaseB) the NUMBER of people within that MSOA who are estimated to have coronary heart diseaseAn average of scores A & B was taken, and converted to a relative score between 1 and 0 (1= worst, 0 = best). The closer to 1 the score, the greater both the number and percentage of the population in the MSOA that are estimated to have coronary heart disease, compared to other MSOAs. In other words, those are areas where it’s estimated a large number of people suffer from coronary heart disease, and where those people make up a large percentage of the population, indicating there is a real issue with coronary heart disease within the population and the investment of resources to address that issue could have the greatest benefits.LIMITATIONS1. GP data for the financial year 1st April 2018 – 31st March 2019 was used in preference to data for the financial year 1st April 2019 – 31st March 2020, as the onset of the COVID19 pandemic during the latter year could have affected the reporting of medical statistics by GPs. However, for 53 GPs (out of 7670) that did not submit data in 2018/19, data from 2019/20 was used instead. Note also that some GPs (997 out of 7670) did not submit data in either year. This dataset should be viewed in conjunction with the ‘Health and wellbeing statistics (GP-level, England): Missing data and potential outliers’ dataset, to determine areas where data from 2019/20 was used, where one or more GPs did not submit data in either year, or where there were large discrepancies between the 2018/19 and 2019/20 data (differences in statistics that were > mean +/- 1 St.Dev.), which suggests erroneous data in one of those years (it was not feasible for this study to investigate this further), and thus where data should be interpreted with caution. Note also that there are some rural areas (with little or no population) that do not officially fall into any GP catchment area (although this will not affect the results of this analysis if there are no people living in those areas).2. Although all of the obesity/inactivity-related illnesses listed can be caused or exacerbated by inactivity and obesity, it was not possible to distinguish from the data the cause of the illnesses in patients: obesity and inactivity are highly unlikely to be the cause of all cases of each illness. By combining the data with data relating to levels of obesity and inactivity in adults and children (see the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset), we can identify where obesity/inactivity could be a contributing factor, and where interventions to reduce obesity and increase activity could be most beneficial for the health of the local population.3. It was not feasible to incorporate ultra-fine-scale geographic distribution of populations that are registered with each GP practice or who live within each MSOA. Populations might be concentrated in certain areas of a GP practice’s catchment area or MSOA and relatively sparse in other areas. Therefore, the dataset should be used to identify general areas where there are high levels of coronary heart disease, rather than interpreting the boundaries between areas as ‘hard’ boundaries that mark definite divisions between areas with differing levels of coronary heart disease.TO BE VIEWED IN COMBINATION WITH:This dataset should be viewed alongside the following datasets, which highlight areas of missing data and potential outliers in the data:Health and wellbeing statistics (GP-level, England): Missing data and potential outliersLevels of obesity, inactivity and associated illnesses (England): Missing dataDOWNLOADING THIS DATATo access this data on your desktop GIS, download the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset.DATA SOURCESThis dataset was produced using:Quality and Outcomes Framework data: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.GP Catchment Outlines. Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital. Data was cleaned by Ribble Rivers Trust before use.COPYRIGHT NOTICEThe reproduction of this data must be accompanied by the following statement:© Ribble Rivers Trust 2021. Analysis carried out using data that is: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.CaBA HEALTH & WELLBEING EVIDENCE BASEThis dataset forms part of the wider CaBA Health and Wellbeing Evidence Base.

  17. TfL Rolling Origin and Destination Survey - Dataset - data.gov.uk

    • ckan.publishing.service.gov.uk
    Updated Jun 9, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.publishing.service.gov.uk (2025). TfL Rolling Origin and Destination Survey - Dataset - data.gov.uk [Dataset]. https://ckan.publishing.service.gov.uk/dataset/tfl-rolling-origin-and-destination-survey
    Explore at:
    Dataset updated
    Jun 9, 2025
    Dataset provided by
    CKANhttps://ckan.org/
    Description

    The Rolling O&D survey (RODS) is a rolling programme to capture information about journeys on the LUL network. Warning: It is important to note that these data are reconciled to November counts and represent the number of people travelling on a typical (or average) weekday. Therefore, year-on-year RODS fluctuations do not necessarily reflect whole-year annual demand changes. Furthermore, these data are adjusted to remove the effect of any abnormal circumstances that may effect demand such as industrial action or long-term closures.The RODS dataset comprises information about: -Boarders and alighters by station, line, and time of day -Line loading by section, line, and time of day -Station flows by station and time of day -Origin-destination matrix by station, zone, and time of day -Route choice by origin-destination pair -Journeys involving interchange by zone, and number of interchanges -National Rail and DLR journeys to and from each LU station by zone and time of day -Total entries and exits by borough and time of day -Access and egress mode by entry/exit station, zone, and time of day -Age, gender, and mobility category split by entry/exit station, zone, and time of day -Average journey time by entry/exit station, zone, and time of day -Distance travelled by entry/exit station by zone, line, journey purpose, time of day, and ticket type -Journey frequency by entry/exit station, zone, journey purpose, time of day, and ticket type -Journey purpose by entry/exit station by zone, time of day, and ticket type -Ticket type by entry/exit station, zone, and time of dayPlease note that you will need to register (for free) as a data feed user on the TfL website to be able to access this information.Find out more about the feeds available from Transport for London here

  18. 2023 Census totals by topic for dwellings by statistical area 1

    • datafinder.stats.govt.nz
    csv, dwg, geodatabase +6
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stats NZ, 2023 Census totals by topic for dwellings by statistical area 1 [Dataset]. https://datafinder.stats.govt.nz/layer/120759-2023-census-totals-by-topic-for-dwellings-by-statistical-area-1/
    Explore at:
    csv, mapinfo mif, dwg, shapefile, kml, geopackage / sqlite, mapinfo tab, geodatabase, pdfAvailable download formats
    Dataset provided by
    Statistics New Zealandhttp://www.stats.govt.nz/
    Authors
    Stats NZ
    License

    https://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/

    Area covered
    Description

    Dataset contains counts and measures for dwellings from the 2013, 2018, and 2023 Censuses. Data is available by statistical area 1.

    The variables included in this dataset are for occupied private dwellings (unless otherwise stated). All data is for level 1 of the classification (unless otherwise stated):

    • Access to basic amenities (total responses)
    • Dwelling dampness
    • Dwelling mould
    • Dwelling occupancy status for all dwellings for levels 1 and 2
    • Dwelling type for occupied dwellings for levels 1 and 2
    • Fuel types used to heat dwellings (total responses)
    • Main types of heating used (total responses)
    • Number of bedrooms
    • Average number of bedrooms
    • Number of rooms
    • Average number of rooms.

    Download lookup file from Stats NZ ArcGIS Online or embedded attachment in Stats NZ geographic data service. Download data table (excluding the geometry column for CSV files) using the instructions in the Koordinates help guide.

    Footnotes

    Geographical boundaries

    Statistical standard for geographic areas 2023 (updated December 2023) has information about geographic boundaries as of 1 January 2023. Address data from 2013 and 2018 Censuses was updated to be consistent with the 2023 areas. Due to the changes in area boundaries and coding methodologies, 2013 and 2018 counts published in 2023 may be slightly different to those published in 2013 or 2018.

    Caution using time series

    Time series data should be interpreted with care due to changes in census methodology and differences in response rates between censuses. The 2023 and 2018 Censuses used a combined census methodology (using census responses and administrative data), while the 2013 Census used a full-field enumeration methodology (with no use of administrative data).

    About the 2023 Census dataset

    For information on the 2023 dataset see Using a combined census model for the 2023 Census. We combined data from the census forms with administrative data to create the 2023 Census dataset, which meets Stats NZ's quality criteria for population structure information. We added real data about real people to the dataset where we were confident the people who hadn’t completed a census form (which is known as admin enumeration) will be counted. We also used data from the 2018 and 2013 Censuses, administrative data sources, and statistical imputation methods to fill in some missing characteristics of people and dwellings.

    Data quality

    The quality of data in the 2023 Census is assessed using the quality rating scale and the quality assurance framework to determine whether data is fit for purpose and suitable for release. Data quality assurance in the 2023 Census has more information.

    Concept descriptions and quality ratings

    Data quality ratings for 2023 Census variables has additional details about variables found within totals by topic, for example, definitions and data quality.

    Using data for good

    Stats NZ expects that, when working with census data, it is done so with a positive purpose, as outlined in the Māori Data Governance Model (Data Iwi Leaders Group, 2023). This model states that "data should support transformative outcomes and should uplift and strengthen our relationships with each other and with our environments. The avoidance of harm is the minimum expectation for data use. Māori data should also contribute to iwi and hapū tino rangatiratanga”.

    Confidentiality

    The 2023 Census confidentiality rules have been applied to 2013, 2018, and 2023 data. These rules protect the confidentiality of individuals, families, households, dwellings, and undertakings in 2023 Census data. Counts are calculated using fixed random rounding to base 3 (FRR3) and suppression of ‘sensitive’ counts less than six, where tables report multiple geographic variables and/or small populations. Individual figures may not always sum to stated totals. Applying confidentiality rules to 2023 Census data and summary of changes since 2018 and 2013 Censuses has more information about 2023 Census confidentiality rules.

    Measures

    Measures like averages, medians, and other quantiles are calculated from unrounded counts, with input noise added to or subtracted from each contributing value during measures calculations. Averages and medians based on less than six units (e.g. individuals, dwellings, households, families, or extended families) are suppressed. This suppression threshold changes for other quantiles. Where the cells have been suppressed, a placeholder value has been used.

    Percentages

    To calculate percentages, divide the figure for the category of interest by the figure for 'Total stated' where this applies.

    Symbol

    -999 Confidential

    Inconsistencies in definitions

    Please note that there may be differences in definitions between census classifications and those used for other data collections.

  19. s

    Hectares BC Data - Dataset - Skeena Salmon Data Catalogue

    • data.skeenasalmon.info
    Updated Oct 25, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Hectares BC Data - Dataset - Skeena Salmon Data Catalogue [Dataset]. https://data.skeenasalmon.info/dataset/hectares-bc-data
    Explore at:
    Dataset updated
    Oct 25, 2022
    Area covered
    British Columbia
    Description

    HectaresBC provided web browser based access to visualize and analyze geospatial data that is grid based (100 meter X 100 meter cells). The system allowed users to easily create simple queries that combine multiple datasets and quantify values for different areas. This functionality allowed users to ask questions like “Where are the old pine forests that have more than 5 tons per hectare of biomass, within 500 meters of a road, on slopes with a gradient of 30 percent or less? What is this total biomass by forest district?” or “What is the total area covered by each Health Authority and how much of this area is within 800 meters of the coastline and has an average winter temperature below 5 Celsius?” The website is no longer available.

  20. School Enrollment (by Atlanta City Council District) 2019

    • fultoncountyopendata-fulcogis.opendata.arcgis.com
    • gisdata.fultoncountyga.gov
    • +2more
    Updated Feb 26, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2021). School Enrollment (by Atlanta City Council District) 2019 [Dataset]. https://fultoncountyopendata-fulcogis.opendata.arcgis.com/datasets/GARC::school-enrollment-by-atlanta-city-council-district-2019
    Explore at:
    Dataset updated
    Feb 26, 2021
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This dataset was developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau.For a deep dive into the data model including every specific metric, see the Infrastructure Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics.Naming conventions:Prefixes: None Countp Percentr Ratem Mediana Mean (average)t Aggregate (total)ch Change in absolute terms (value in t2 - value in t1)pch Percent change ((value in t2 - value in t1) / value in t1)chp Change in percent (percent in t2 - percent in t1)s Significance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computed Suffixes: _e19 Estimate from 2014-19 ACS_m19 Margin of Error from 2014-19 ACS_00_v19 Decennial 2000, re-estimated to 2019 geography_00_19 Change, 2000-19_e10_v19 2006-10 ACS, re-estimated to 2019 geography_m10_v19 Margin of Error from 2006-10 ACS, re-estimated to 2019 geography_e10_19 Change, 2010-19The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2015-2019). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2015-2019Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the manifest: https://www.arcgis.com/sharing/rest/content/items/3d489c725bb24f52a987b302147c46ee/data

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
data.cityofnewyork.us (2024). 2015-2016 Physical Education - PE Instruction - District Level [Dataset]. https://catalog.data.gov/dataset/2015-2016-physical-education-pe-instruction-district-level

2015-2016 Physical Education - PE Instruction - District Level

Explore at:
Dataset updated
Nov 29, 2024
Dataset provided by
data.cityofnewyork.us
Description

Background, Methodology: Local Law 102 enacted in 2015 requires the Department of Education of the New York City School District to submit to the Council an annual report concerning physical education for the prior school year. This report provides information about average frequency and average total minutes per week of physical education as defined in Local Law 102 as reported through the 2015-2016 STARS database. It is important to note that schools self-report their scheduling information in STARS. The report also includes information regarding the number and ratio of certified physical education instructors and designated physical education instructional space. This report consists of six tabs: PE Instruction Borough-Level PE Instruction District-Level PE Instruction School-Level Certified PE Teachers PE Space Supplemental Programs PE Instruction Borough-Level This tab includes the average frequency and average total minutes per week of physical education by borough, disaggregated by grade, race and ethnicity, gender, special education status and English language learner status. This report only includes students who were enrolled in the same school across all academic terms in the 2015-16 school year. Data on students with disabilities and English language learners are as of the end of the 2015-16 school year. Data on adaptive PE is based on individualized education programs (IEP) finalized on or before 05/31/2016. PE Instruction District-Level This tab includes the average frequency and average total minutes per week of physical education by district, disaggregated by grade, race and ethnicity, gender, special education status and English language learner status. This report only includes students who were enrolled in the same school across all academic terms in the 2015-16 school year. Data on students with disabilities and English language learners are as of the end of the 2015-16 school year. Data on adaptive PE is based on individualized education programs (IEP) finalized on or before 05/31/2016. PE Instruction School-Level This tab includes the average frequency and average total minutes per week of physical education by school, disaggregated by grade, race and ethnicity, gender, special education status and English language learner status. This report only includes students who were enrolled in the same school across all academic terms in the 2015-16 school year. Data on students with disabilities and English language learners are as of the end of the 2015-16 school year. Data on adaptive PE is based on individualized education programs (IEP) finalized on or before 05/31/2016. Certified PE Teachers This tab provides the number of designated full-time and part-time physical education certified instructors. Does not include elementary, early childhood and K-8 physical education teachers that provide physical education instruction under a common branches license. Also includes ratio of full time instructors teaching in a physical education license to students by school. Data reported is for the 2015-2016 school year as of 10/31/2015. PE Space This tab provides information on all designated indoor, outdoor and off-site spaces used by the school for physical education as reported through the Principal Annual Space Survey and the Outdoor Yard Report. It is important to note that information on each room category is self-reported by principals, and principals determine how each room is classified. Data captures if the PE space is co-located, used by another school or used for another purpose. Includes gyms, athletic fields, auxiliary exercise spaces, dance rooms, field houses, multipurpose spaces, outdoor yards, off-site locations, playrooms, swimming pools and weight rooms as designated PE Space. Supplemental Programs This tab provides information on the department's supplemental physical education

Search
Clear search
Close search
Google apps
Main menu