Facebook
TwitterNote: Note: Starting October 10th, 2025 this dataset is deprecated and is no longer being updated. As of April 27, 2023 updates changed from daily to weekly. Summary The cumulative number of confirmed COVID-19 deaths among Maryland residents by age: 0-9; 10-19; 20-29; 30-39; 40-49; 50-59; 60-69; 70-79; 80+; Unknown. Description The MD COVID-19 - Confirmed Deaths by Age Distribution data layer is a collection of the statewide confirmed COVID-19 related deaths that have been reported each day by the Vital Statistics Administration by designated age ranges. A death is classified as confirmed if the person had a laboratory-confirmed positive COVID-19 test result. Some data on deaths may be unavailable due to the time lag between the death, typically reported by a hospital or other facility, and the submission of the complete death certificate. Probable deaths are available from the MD COVID-19 - Probable Deaths by Age Distribution data layer. Terms of Use The Spatial Data, and the information therein, (collectively the "Data") is provided "as is" without warranty of any kind, either expressed, implied, or statutory. The user assumes the entire risk as to quality and performance of the Data. No guarantee of accuracy is granted, nor is any responsibility for reliance thereon assumed. In no event shall the State of Maryland be liable for direct, indirect, incidental, consequential or special damages of any kind. The State of Maryland does not accept liability for any damages or misrepresentation caused by inaccuracies in the Data or as a result to changes to the Data, nor is there responsibility assumed to maintain the Data in any manner or form. The Data can be freely distributed as long as the metadata entry is not modified or deleted. Any data derived from the Data must acknowledge the State of Maryland in the metadata.
Facebook
TwitterThe New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.
Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.
We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.
The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.
Facebook
Twitterhttps://www.usa.gov/government-workshttps://www.usa.gov/government-works
Effective September 27, 2023, this dataset will no longer be updated. Similar data are accessible from wonder.cdc.gov.
Deaths involving COVID-19, pneumonia, and influenza reported to NCHS by sex, age group, and jurisdiction of occurrence.
Facebook
TwitterNote: Data elements were retired from HERDS on 10/6/23 and this dataset was archived.
This dataset includes the cumulative number and percent of healthcare facility-reported fatalities for patients with lab-confirmed COVID-19 disease by reporting date and age group. This dataset does not include fatalities related to COVID-19 disease that did not occur at a hospital, nursing home, or adult care facility. The primary goal of publishing this dataset is to provide users with information about healthcare facility fatalities among patients with lab-confirmed COVID-19 disease.
The information in this dataset is also updated daily on the NYS COVID-19 Tracker at https://www.ny.gov/covid-19tracker.
The data source for this dataset is the daily COVID-19 survey through the New York State Department of Health (NYSDOH) Health Electronic Response Data System (HERDS). Hospitals, nursing homes, and adult care facilities are required to complete this survey daily. The information from the survey is used for statewide surveillance, planning, resource allocation, and emergency response activities. Hospitals began reporting for the HERDS COVID-19 survey in March 2020, while Nursing Homes and Adult Care Facilities began reporting in April 2020. It is important to note that fatalities related to COVID-19 disease that occurred prior to the first publication dates are also included.
The fatality numbers in this dataset are calculated by assigning age groups to each patient based on the patient age, then summing the patient fatalities within each age group, as of each reporting date. The statewide total fatality numbers are calculated by summing the number of fatalities across all age groups, by reporting date. The fatality percentages are calculated by dividing the number of fatalities in each age group by the statewide total number of fatalities, by reporting date. The fatality numbers represent the cumulative number of fatalities that have been reported as of each reporting date.
Facebook
TwitterNotice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.
April 9, 2020
April 20, 2020
April 29, 2020
September 1st, 2020
February 12, 2021
new_deaths column.February 16, 2021
The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.
The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.
The AP is updating this dataset hourly at 45 minutes past the hour.
To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.
Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic
Filter cases by state here
Rank states by their status as current hotspots. Calculates the 7-day rolling average of new cases per capita in each state: https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker/workspace/query?queryid=481e82a4-1b2f-41c2-9ea1-d91aa4b3b1ac
Find recent hotspots within your state by running a query to calculate the 7-day rolling average of new cases by capita in each county: https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker/workspace/query?queryid=b566f1db-3231-40fe-8099-311909b7b687&showTemplatePreview=true
Join county-level case data to an earlier dataset released by AP on local hospital capacity here. To find out more about the hospital capacity dataset, see the full details.
Pull the 100 counties with the highest per-capita confirmed cases here
Rank all the counties by the highest per-capita rate of new cases in the past 7 days here. Be aware that because this ranks per-capita caseloads, very small counties may rise to the very top, so take into account raw caseload figures as well.
The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.
@(https://datawrapper.dwcdn.net/nRyaf/15/)
<iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>
Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here
This data should be credited to Johns Hopkins University COVID-19 tracking project
Facebook
TwitterThis dataset contains global COVID-19 case and death data by country, collected directly from the official World Health Organization (WHO) COVID-19 Dashboard. It provides a comprehensive view of the pandemic’s impact worldwide, covering the period up to 2025. The dataset is intended for researchers, analysts, and anyone interested in understanding the progression and global effects of COVID-19 through reliable, up-to-date information.
The World Health Organization is the United Nations agency responsible for international public health. The WHO COVID-19 Dashboard is a trusted source that aggregates official reports from countries and territories around the world, providing daily updates on cases, deaths, and other key metrics related to COVID-19.
This dataset can be used for: - Tracking the spread and trends of COVID-19 globally and by country - Modeling and forecasting pandemic progression - Comparative analysis of the pandemic’s impact across countries and regions - Visualization and reporting
The data is sourced from the WHO, widely regarded as the most authoritative source for global health statistics. However, reporting practices and data completeness may vary by country and may be subject to revision as new information becomes available.
Special thanks to the WHO for making this data publicly available and to all those working to collect, verify, and report COVID-19 statistics.
Facebook
TwitterIn collaboration with the Public Health Agency of Canada (PHAC), this table provides Canadians and researchers with data to monitor only the confirmed cases of coronavirus (COVID-19) in Canada. This table will provide an aggregate summary of the data available in the publication 13-26-0003.
Facebook
TwitterDue to changes in the collection and availability of data on COVID-19 this page will no longer be updated. The webpage will no longer be available as of 11 May 2023. On-going, reliable sources of data for COVID-19 are available via the COVID-19 dashboard, Office for National Statistics, and the UKHSA
This page provides a weekly summary of data on deaths related to COVID-19 published by NHS England and the Office for National Statistics. More frequent reporting on COVID-19 deaths is now available here, alongside data on cases, hospitalisations, and vaccinations. This update contains data on deaths related to COVID-19 from:
NHS England COVID-19 Daily Deaths - last updated on 28 June 2022 with data up to and including 27 June 2022.
ONS weekly deaths by Local Authority - last updated on 16 August 2022 with data up to and including 05 August 2022.
Summary notes about each these sources are provided at the end of this document.
Note on interpreting deaths data: statistics from the available sources differ in definition, timing and completeness. It is important to understand these differences when interpreting the data or comparing between sources.
Weekly Key Points
An additional 24 deaths in London hospitals of patients who had tested positive for COVID-19 and an additional 5 where COVID-19 was mentioned on the death certificate were announced in the week ending 27 June 2022. This compares with 40 and 3 for the previous week. A total of 306 deaths in hospitals of patients who had tested positive for COVID-19 and 27 where COVID-19 was mentioned on the death certificate were announced for England as whole. This compares with 301 and 26 for the previous week. The total number of COVID-19 deaths reported in London hospitals of patients who had tested positive for COVID-19 is now 19,102. The total number of deaths in London hospitals where COVID-19 was mentioned on the death certificate is now 1,590. This compares to figures of 119,237 and 8,197 for English hospitals as a whole. Due to the delay between death occurrence and reporting, the estimated number of deaths to this point will be revised upwards over coming days These figures do not include deaths that occurred outside of hospitals. Data from ONS has indicated that the majority (79%) of COVID-19 deaths in London have taken place in hospitals.
Recently announced deaths in Hospitals
21 June 22 June 23 June 24 June 25 June 26 June 27 June London No positive test 0 0 1 4 0 0 0 London Positive test 3 7 2 10 0 0 2 Rest of England No positive test 2 6 4 4 0 0 6 Rest of England Positive test 47 49 41 58 6 0 81
16 May 23 May 30 May 06 June 13 June 20 June 27 June London No positive test 14 3 4 0 4 3 5 London Positive test 45 34 55 20 62 40 24 Rest of England No positive test 41 58 33 23 47 23 22 Rest of England Positive test 456 375 266 218 254 261 282 Deaths by date of occurrence
21 June 22 June 23 June 24 June 25 June 26 June 27 June London 20,683 20,686 20,690 20,691 20,692 20,692 20,692 Rest of England 106,604 106,635 106,679 106,697 106,713 106,733 106,742 Interpreting the data The data published by NHS England are incomplete due to:
delays in the occurrence and subsequent reporting of deaths deaths occurring outside of hospitals not being included
The total deaths reported up to a given point are therefore less than the actual number that have occurred by the same point. Delays in reporting NHS provide the following guidance regarding the delay between occurrence and reporting of deaths: Confirmation of COVID-19 diagnosis, death notification and reporting in central figures can take up to several days and the hospitals providing the data are under significant operational pressure. This means that the totals reported at 5pm on each day may not include all deaths that occurred on that day or on recent prior days. The data published by NHS England for reporting periods from April 1st onward includes both date of occurrence and date of reporting and so it is possible to illustrate the distribution of these reporting delays. This data shows that approximately 10% of COVID-19 deaths occurring in London hospitals are included in the reporting period ending on the same day, and that approximately two-thirds of deaths were reported by two days after the date of occurrence.
Deaths outside of hospitals The data published by NHS England does not include deaths that occur outside of hospitals, i.e. those in homes, hospices, and care homes. ONS have published data for deaths by place of occurrence. This shows that, up to 05 August, 79% of deaths in London recorded as involving COVID-19 occurred in hospitals (this compares with 44% for all causes of death). This would suggest that the NHS England data may underestimate overall deaths from COVID-19 by around 20%.
Comparison of data sources
Note on data sources
NHS England provides numbers of patients who have died in hos
Facebook
TwitterOpen Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
This dataset reports the daily reported number of the 7-day moving average rates of Deaths involving COVID-19 by vaccination status and by age group. Learn how the Government of Ontario is helping to keep Ontarians safe during the 2019 Novel Coronavirus outbreak. Effective November 14, 2024 this page will no longer be updated. Information about COVID-19 and other respiratory viruses is available on Public Health Ontario’s interactive respiratory virus tool: https://www.publichealthontario.ca/en/Data-and-Analysis/Infectious-Disease/Respiratory-Virus-Tool Data includes: * Date on which the death occurred * Age group * 7-day moving average of the last seven days of the death rate per 100,000 for those not fully vaccinated * 7-day moving average of the last seven days of the death rate per 100,000 for those fully vaccinated * 7-day moving average of the last seven days of the death rate per 100,000 for those vaccinated with at least one booster ##Additional notes As of June 16, all COVID-19 datasets will be updated weekly on Thursdays by 2pm. As of January 12, 2024, data from the date of January 1, 2024 onwards reflect updated population estimates. This update specifically impacts data for the 'not fully vaccinated' category. On November 30, 2023 the count of COVID-19 deaths was updated to include missing historical deaths from January 15, 2020 to March 31, 2023. CCM is a dynamic disease reporting system which allows ongoing update to data previously entered. As a result, data extracted from CCM represents a snapshot at the time of extraction and may differ from previous or subsequent results. Public Health Units continually clean up COVID-19 data, correcting for missing or overcounted cases and deaths. These corrections can result in data spikes and current totals being different from previously reported cases and deaths. Observed trends over time should be interpreted with caution for the most recent period due to reporting and/or data entry lags. The data does not include vaccination data for people who did not provide consent for vaccination records to be entered into the provincial COVaxON system. This includes individual records as well as records from some Indigenous communities where those communities have not consented to including vaccination information in COVaxON. “Not fully vaccinated” category includes people with no vaccine and one dose of double-dose vaccine. “People with one dose of double-dose vaccine” category has a small and constantly changing number. The combination will stabilize the results. Spikes, negative numbers and other data anomalies: Due to ongoing data entry and data quality assurance activities in Case and Contact Management system (CCM) file, Public Health Units continually clean up COVID-19, correcting for missing or overcounted cases and deaths. These corrections can result in data spikes, negative numbers and current totals being different from previously reported case and death counts. Public Health Units report cause of death in the CCM based on information available to them at the time of reporting and in accordance with definitions provided by Public Health Ontario. The medical certificate of death is the official record and the cause of death could be different. Deaths are defined per the outcome field in CCM marked as “Fatal”. Deaths in COVID-19 cases identified as unrelated to COVID-19 are not included in the Deaths involving COVID-19 reported. Rates for the most recent days are subject to reporting lags All data reflects totals from 8 p.m. the previous day. This dataset is subject to change.
Facebook
TwitterAttribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
Overview
The COVID-19 Patient Recovery Dataset is a synthetic collection of anonymized records for around 70,000 COVID-19 patients. It aims to assist with classification tasks in machine learning and epidemiological research. The dataset includes detailed clinical and demographic information, such as symptoms, existing health issues, vaccination status, COVID-19 variants, treatment details, and outcomes related to recovery or mortality. This dataset is great for predicting patient recovery (recovered), mortality (death), disease severity (severity), or the need for intensive care (icu_admission) using algorithms like Logistic Regression, Random Forest, XGBoost, or Neural Networks. It also allows for exploratory data analysis (EDA), statistical modeling, and time-series studies to find patterns in COVID-19 outcomes.
The data is synthetic and reflects realistic trends found in public health data, based on sources like WHO reports. It ensures privacy and follows ethical guidelines. Dates are provided in Excel serial format, meaning 44447 corresponds to September 8, 2021, and can be converted to standard dates using Python’s datetime or Excel. With 70,000 records and 28 columns, this dataset serves as a valuable resource for data scientists, researchers, and students interested in health-related machine learning or pandemic trends.
Data Source and Collection
Source: Synthetic data based on public health patterns from sources like the World Health Organization (WHO). It includes placeholder URLs.
Collection Period: Simulated from early 2020 to mid-2022, covering the Alpha, Delta, and Omicron waves.
Number of Records: 70,000.
File Format: CSV, which works with Pandas, R, Excel, and more.
Data Quality Notes:
About 5% of the values are missing in fields like symptoms_2, symptoms_3, treatment_given_2, and date.
There are rare inconsistencies, such as between recovery/death flags and dates, which may need some preprocessing.
Unique, anonymized patient IDs.
| Column Name | Data Type |
|---|---|
| patient_id | String |
| country | String |
| region/state | String |
| date_reported | Integer |
| age | Integer |
| gender | String |
| comorbidities | String |
| symptoms_1 | String |
| symptoms_2 | String |
| symptoms_3 | String |
| severity | String |
| hospitalized | Integer |
| icu_admission | Integer |
| ventilator_support | Integer |
| vaccination_status | String |
| variant | String |
| treatment_given_1 | String |
| treatment_given_2 | String |
| days_to_recovery | Integer |
| recovered | Integer |
| death | Integer |
| date_of_recovery | Integer |
| date_of_death | Integer |
| tests_conducted | Integer |
| test_type | String |
| hospital_name | String |
| doctor_assigned | String |
| source_url | String |
Key Column Details
patient_id: Unique identifier (e.g., P000001).
country: Reporting country (e.g., India, USA, Brazil, Germany, China, Pakistan, South Africa, UK).
region/state: Sub-national region (e.g., Sindh, California, São Paulo, Beijing).
date_reported, date_of_recovery, date_of_death: Excel serial dates (convert using datetime(1899,12,30) + timedelta(days=value)).
age: Patient age (1–100 years).
gender: Male or Female.
comorbidities: Pre-existing conditions (e.g., Diabetes, Hypertension, Cancer, Heart Disease, Asthma, None).
symptoms_1, symptoms_2, symptoms_3: Reported symptoms (e.g., Cough, Fever, Fatigue, Loss of Smell, Sore Throat, or empty).
severity: Case severity (Mild, Moderate, Severe, Critical).
hospitalized, icu_admission, ventilator_support: Binary (1 = Yes, 0 = No).
vaccination_status: None, Partial, Full, or Booster.
variant: COVID-19 variant (Omicron, Delta, Alpha).
treatment_given_1, treatment_given_2: Treatments administered (e.g., Antibiotics, Remdesivir, Oxygen, Steroids, Paracetamol, or empty).
days_to_recovery: Days from report to recovery (5–30, or empty if not recovered).
recovered, death: Binary outcomes (1 = Yes, 0 = No; generally mutually exclusive).
tests_conducted: Number of tests (1–5).
test_type: PCR or Antigen.
hospital_name: Fictional hospital (e.g., Aga Khan, Mayo Clinic, NHS Trust).
doctor_assigned: Fictional doctor name (e.g., Dr. Smith, Dr. Müller).
source_url: Placeholder.
Summary Statistics
Total Patients: 70,000.
Age: Mean ~50 years, Min 1, Max 100, evenly distributed.
Gender: ~50% Male, ~50% Female.
Top Countries: USA (20%), India (18%), Brazil (15%), China (12%), Germany (10%).
Comorbidities: Diabetes (25%), Hypertension (20%), Cancer (15%), Heart Disease (15%), Asthma (10%), None (15%).
Severity: Mild (60%), Moderate (25%), Severe (10%), Critical (5%).
Recovery Rate: ~60% recovered (recovered=1), ~30% deceased (death=1), ~10% unresolved (both 0).
Vaccination: None (40%), Full (30%), Partial (15%), Booster (15%).
Variants: Omicron (50%), Delt...
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Age-standardised mortality rates for deaths involving coronavirus (COVID-19), non-COVID-19 deaths and all deaths by vaccination status, broken down by age group.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Background: To develop an effective countermeasure and determine our susceptibilities to the outbreak of COVID-19 is challenging for a densely populated developing country like Bangladesh and a systematic review of the disease on a continuous basis is necessary.Methods: Publicly available and globally acclaimed datasets (4 March 2020–30 September 2020) from IEDCR, Bangladesh, JHU, and ECDC database are used for this study. Visual exploratory data analysis is used and we fitted a polynomial model for the number of deaths. A comparison of Bangladesh scenario over different time points as well as with global perspectives is made.Results: In Bangladesh, the number of active cases had decreased, after reaching a peak, with a constant pattern of death rate at from July to the end of September, 2020. Seventy-one percent of the cases and 77% of the deceased were males. People aged between 21 and 40 years were most vulnerable to the coronavirus and most of the fatalities (51.49%) were in the 60+ population. A strong positive correlation (0.93) between the number of tests and confirmed cases and a constant incidence rate (around 21%) from June 1 to August 31, 2020 was observed. The case fatality ratio was between 1 and 2. The number of cases and the number of deaths in Bangladesh were much lower compared to other countries.Conclusions: This study will help to understand the patterns of spread and transition in Bangladesh, possible measures, effectiveness of the preparedness, implementation gaps, and their consequences to gather vital information and prevent future pandemics.
Facebook
TwitterRank, number of deaths, percentage of deaths, and age-specific mortality rates for the leading causes of death, by age group and sex, 2000 to most recent year.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Abstract Mortality statistics due to COVID-19 worldwide are compared, by adjusting for the size of the population and the stage of the pandemic. Data from the European Centre for Disease Control and Prevention, and Our World in Data websites were used. Analyses are based on number of deaths per one million inhabitants. In order to account for the stage of the pandemic, the baseline date was defined as the day in which the 10th death was reported. The analyses included 78 countries and territories which reported 10 or more deaths by April 9. On day 10, India had 0.06 deaths per million, Belgium had 30.46 and San Marino 618.78. On day 20, India had 0.27 deaths per million, China had 0.71 and Spain 139.62. On day 30, four Asian countries had the lowest mortality figures, whereas eight European countries had the highest ones. In Italy and Spain, mortality on day 40 was greater than 250 per million, whereas in China and South Korea, mortality was below 4 per million. Mortality on day 10 was moderately correlated with life expectancy, but not with population density. Asian countries presented much lower mortality figures as compared to European ones. Life expectancy was found to be correlated with mortality.
Facebook
Twitterhttps://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F5505749%2F2b83271d61e47e2523e10dc9c28e545c%2F600x200.jpg?generation=1599042483103679&alt=media" alt="">
Daily global COVID-19 data for all countries, provided by Johns Hopkins University (JHU) Center for Systems Science and Engineering (CSSE). If you want to use the update version of the data, you can use our daily updated data with the help of api key by entering it via Altadata.
In this data product, you may find the latest and historical global daily data on the COVID-19 pandemic for all countries.
The COVID‑19 pandemic, also known as the coronavirus pandemic, is an ongoing global pandemic of coronavirus disease 2019 (COVID‑19), caused by severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2). The outbreak was first identified in December 2019 in Wuhan, China. The World Health Organization declared the outbreak a Public Health Emergency of International Concern on 30 January 2020 and a pandemic on 11 March. As of 12 August 2020, more than 20.2 million cases of COVID‑19 have been reported in more than 188 countries and territories, resulting in more than 741,000 deaths; more than 12.5 million people have recovered.
The Johns Hopkins Coronavirus Resource Center is a continuously updated source of COVID-19 data and expert guidance. They aggregate and analyze the best data available on COVID-19 - including cases, as well as testing, contact tracing and vaccine efforts - to help the public, policymakers and healthcare professionals worldwide respond to the pandemic.
Facebook
TwitterThe COVID-19 Vulnerability and Recovery Index uses Tract and ZIP Code-level data* to identify California communities most in need of immediate and long-term pandemic and economic relief. Specifically, the Index is comprised of three components — Risk, Severity, and Recovery Need with the last scoring the ability to recover from the health, economic, and social costs of the pandemic. Communities with higher Index scores face a higher risk of COVID-19 infection and death and a longer uphill economic recovery. Conversely, those with lower scores are less vulnerable.
The Index includes one overarching Index score as well as a score for each of the individual components. Each component includes a set of indicators we found to be associated with COVID-19 risk, severity, or recovery in our review of existing indices and independent analysis. The Risk component includes indicators related to the risk of COVID-19 infection. The Severity component includes indicators designed to measure the risk of severe illness or death from COVID-19. The Recovery Need component includes indicators that measure community needs related to economic and social recovery. The overarching Index score is designed to show level of need from Highest to Lowest with ZIP Codes in the Highest or High need categories, or top 20th or 40th percentiles of the Index, having the greatest need for support.
The Index was originally developed as a statewide tool but has been adapted to LA County for the purposes of the Board motion. To distinguish between the LA County Index and the original Statewide Index, we refer to the revised Index for LA County as the LA County ARPA Index.
*Zip Code data has been crosswalked to Census Tract using HUD methodology
Indicators within each component of the LA County ARPA Index are:Risk: Individuals without U.S. citizenship; Population Below 200% of the Federal Poverty Level (FPL); Overcrowded Housing Units; Essential Workers Severity: Asthma Hospitalizations (per 10,000); Population Below 200% FPL; Seniors 75 and over in Poverty; Uninsured Population; Heart Disease Hospitalizations (per 10,000); Diabetes Hospitalizations (per 10,000)Recovery Need: Single-Parent Households; Gun Injuries (per 10,000); Population Below 200% FPL; Essential Workers; Unemployment; Uninsured PopulationData are sourced from US Census American Communities Survey (ACS) and the OSHPD Patient Discharge Database. For ACS indicators, the tables and variables used are as follows:
Indicator
ACS Table/Years
Numerator
Denominator
Non-US Citizen
B05001, 2019-2023
b05001_006e
b05001_001e
Below 200% FPL
S1701, 2019-2023
s1701_c01_042e
s1701_c01_001e
Overcrowded Housing Units
B25014, 2019-2023
b25014_006e + b25014_007e + b25014_012e + b25014_013e
b25014_001e
Essential Workers
S2401, 2019-2023
s2401_c01_005e + s2401_c01_011e + s2401_c01_013e + s2401_c01_015e + s2401_c01_019e + s2401_c01_020e + s2401_c01_023e + s2401_c01_024e + s2401_c01_029e + s2401_c01_033e
s2401_c01_001
Seniors 75+ in Poverty
B17020, 2019-2023
b17020_008e + b17020_009e
b17020_008e + b17020_009e + b17020_016e + b17020_017e
Uninsured
S2701, 2019-2023
s2701_c05_001e
NA, rate published in source table
Single-Parent Households
S1101, 2019-2023
s1101_c03_005e + s1101_c04_005e
s1101_c01_001e
Unemployment
S2301, 2019-2023
s2301_c04_001e
NA, rate published in source table
The remaining indicators are based data requested and received by Advancement Project CA from the OSHPD Patient Discharge database. Data are based on records aggregated at the ZIP Code level:
Indicator
Years
Definition
Denominator
Asthma Hospitalizations
2017-2019
All ICD 10 codes under J45 (under Principal Diagnosis)
American Community Survey, 2015-2019, 5-Year Estimates, Table DP05
Gun Injuries
2017-2019
Principal/Other External Cause Code "Gun Injury" with a Disposition not "Died/Expired". ICD 10 Code Y38.4 and all codes under X94, W32, W33, W34, X72, X73, X74, X93, X95, Y22, Y23, Y35 [All listed codes with 7th digit "A" for initial encounter]
American Community Survey, 2015-2019, 5-Year Estimates, Table DP05
Heart Disease Hospitalizations
2017-2019
ICD 10 Code I46.2 and all ICD 10 codes under I21, I22, I24, I25, I42, I50 (under Principal Diagnosis)
American Community Survey, 2015-2019, 5-Year Estimates, Table DP05
Diabetes (Type 2) Hospitalizations
2017-2019
All ICD 10 codes under E11 (under Principal Diagnosis)
American Community Survey, 2015-2019, 5-Year Estimates, Table DP05
For more information about this dataset, please contact egis@isd.lacounty.gov.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Socioeconomic disparities play an important role in the development of severe clinical outcomes including deaths from COVID-19. However, the current scientific evidence in regard the association between measures of poverty and COVID-19 mortality in hospitalized patients is scant. The objective of this study was to investigate whether there is an association between the Colombian Multidimensional Poverty Index (CMPI) and mortality from COVID-19 in hospitalized patients in Colombia from May 1, 2020 to August 15, 2021. This was an ecological study using individual data on hospitalized patients from the National Institute of Health of Colombia (INS), and municipal level data from the High-Cost Account and the National Administrative Department of Statistics. The main outcome variable was mortality due to COVID-19. The main exposure variable was the CMPI that ranges from 0 to 100% and was categorized into five levels: (i) level I (0%−20%), (ii) level II (20%−40%), (iii) level III (40%−60%), (iv) level IV (60%−80%); and (v) level V (80%−100%). The higher the level, the higher the level of multidimensional poverty. A Bayesian multilevel logistic regression model was applied to estimate Odds Ratio (OR) and their corresponding 95% credible intervals (CI). In addition, a subgroup analysis was performed according to the epidemiological COVID-19 waves using the same model. The odds for dying from COVID-19 was 1.46 (95% CI 1.4–1.53) for level II, 1.41 (95% CI 1.33–1.49) for level III and 1.70 (95% CI 1.54–1.89) for level IV hospitalized COVID-19 patients compared with the least poor patients (CMPI level I). In addition, age and male sex also increased mortality in COVID-19 hospitalized patients. Patients between 26 and 50 years-of-age had 4.17-fold increased odds (95% CI 4.07–4.3) of death compared with younger than 26-years-old patients. The corresponding for 51–75 years-old patients and those above the age of 75 years were 9.17 (95% CI 8.93–9.41) and 17.1 (95% CI 16.63–17.56), respectively. Finally, the odds of death from COVID-19 in hospitalized patients gradually decreased as the pandemic evolved. In conclusion, socioeconomic disparities were a major risk factor for mortality in patients hospitalized for COVID-19 in Colombia.
Facebook
TwitterThe results presented in this COVID-19 Panel are obtained from the declaration of COVID-19 cases to the National Epidemiological Surveillance Network (RENAVE) through the SiViES (Surveillance System of Spain) computer platform via the Web. ) managed by the National Epidemiology Center (CNE). This information comes from the epidemiological case survey that each Autonomous Community carries out when a COVID-19 case is identified.
The COVID-19 Panel presents geographic information on cumulative incidence rates at 14 days and 7 days, for the general population and for those 65+ years of age, and indicators of the evolution of the pandemic's transmissibility. For the calculation of all the parameters, the date of onset of symptoms is used or, failing that, the date of diagnosis minus 6 days (from the start of the pandemic until May 10, 2020) or minus 3 days (from of May 11); for asymptomatic cases, the date of diagnosis is used. In those cases in which there is no date of onset of symptoms or diagnosis, the key date is used (date for statistics [It was lost to the autonomous communities to define the Key date as the date of onset of symptoms and in its absence the date of declaration to the AC, until May 10, 2020. From May 11 onwards, the Key date is the earliest of the dates of consultation or diagnosis. Occasionally it can be replaced by the date of sampling] ). Until May 10, 2020, cases diagnosed by a positive diagnostic test for active infection are included, as well as all those cases hospitalized, admitted to the ICU and deaths; As of May 11, cases confirmed by PCR, or by emergency tests, are included. The population used to calculate the incidence rates comes from the official population figures resulting from the revision of the municipal census as of January 1 of the National Institute of Statistics of 2020.
A regular update of the COVID-19 situation in Spain is carried out, after an extraction from the SiViES database from 3:00 p.m. to 4:00 p.m.
All of the data in this dataset has been sourced from https://cnecovid.isciii.es/covid19/ Should you choose to use said dataset, please cite the National Epidemiological Surveillance Network (RENAVE) and the SiViES (Surveillance System of Spain)
casos_diag_ccaadecl.csv: Number of cases by diagnostic technique and Autonomous Communities (declaration)
- ccaa_iso: Autonomous Communities ISO code of declaration
- fecha:The date of the diagnosis. In cases prior to May 11, the date of diagnosis is used, in his absence the date of declaration to the community and, in his absence, the key date (date used for statistics by the Autonomous Communities). In the cases after May 10, in the absence of a diagnosis date, the key date
- num_casos:Number of reported cases confirmed with a diagnostic test positive for active infection (PDIA) as established in the Strategy for early detection, surveillance and control of COVID-19 and also cases notified before May 11 that required hospitalization, admission in the ICU or died with a clinical diagnosis of COVID-19, according to the case definitions in force at any given time.
- num_casos_prueba_pcr: Number of cases with PCR laboratory test or molecular techniques
- num_casos_prueba_test_ac: Number of cases with laboratory rapid antibody test
- num_casos_prueba_ag: Number of cases with laboratory antigen detection test
- num_casos_prueba_elisa: Number of cases with high resolution serology laboratory test (ELISA/ECLIA/CLIA)
- num_casos_prueba_desconocida: Number of cases without information on the laboratory test
casos_hosp_uci_def_sexo_edad_provres.csv: Number of cases, hospitalizations, ICU admissions and deaths by sex, age and province of residence
- provincia_iso: ISO code of the province of residence. NC (not stated)
- sexo: Sex of the cases: H (man), M (woman), NC (not stated)
- grupo_edad: Age group to which the case belongs: 0-9, 10-19, 20-29, 30-39, 40-49, 50-59, 60-69, 70-79, ≥80 years. NC: not stated.
- fecha: Date of registry. Cases: In cases prior to May 11, the date of diagnosis is used, in its absence the date of declaration to the community and, in its absence, the key date (date used for statistics by the CCAA). In cases after May 10, in the absence of diagnosis date the key3 date is used. Hospitalizations, ICU admissions, deaths: hospitalized cases are represented by date of hospitalization (if not, the date of diagnosis, and in failing that, the key date, the ICU cases by date of admission to the ICU (failing that, the date of diagnosis, and failing that, the key date) and deaths by date of death (if not, the date of diagnosis, and if not, the key date.).
- num_casos: Number of confirmed reported cases with a positive diagnostic test for active infection (PDIA) as established in the Early Detection Strategy,...
Facebook
TwitterNumber of deaths and age-specific mortality rates for selected grouped causes, by age group and sex, 2000 to most recent year.
Facebook
TwitterFlorida COVID-19 Cases by County exported from the Florida Department of Health GIS Layer on date seen in file name. Archived by the University of South Florida Libraries, Digital Heritage and Humanities Collections. Contact: LibraryGIS@usf.edu.Please Cite Our GIS HUB. If you are a researcher or other utilizing our Florida COVID-19 HUB as a tool or accessing and utilizing the data provided herein, please provide an acknowledgement of such in any publication or re-publication. The following citation is suggested: University of South Florida Libraries, Digital Heritage and Humanities Collections. 2020. Florida COVID-19 Hub. Available at https://covid19-usflibrary.hub.arcgis.com/ . https://doi.org/10.5038/USF-COVID-19-GISLive FDOH DataSource: https://services1.arcgis.com/CY1LXxl9zlJeBuRZ/arcgis/rest/services/Florida_COVID19_Cases/FeatureServerFor data 5/10/2020 or after: Archived data was exported directly from the live FDOH layer into the archive. For data prior to 5/10/2020: Data was exported by the University of South Florida - Digital Heritage and Humanities Collection using ArcGIS Pro Software. Data was then converted to shapefile and csv and uploaded into ArcGIS Online archive. Up until 3/25 the FDOH Cases by County layer was updated twice a day, archives are taken from the 11AM update.For data definitions please visit the following box folder: https://usf.box.com/s/vfjwbczkj73ucj19yvwz53at6v6w614hData definition files names include the relative date they were published. The below information was taken from ancillary documents associated with the original layer from FDOH.Persons Under Investigation/Surveillance (PUI):Essentially, PUIs are any person who has been or is waiting to be tested. This includes: persons who are considered high-risk for COVID-19 due to recent travel, contact with a known case, exhibiting symptoms of COVID-19 as determined by a healthcare professional, or some combination thereof. PUI’s also include people who meet laboratory testing criteria based on symptoms and exposure, as well as confirmed cases with positive test results. PUIs include any person who is or was being tested, including those with negative and pending results. All PUIs fit into one of three residency types: 1. Florida residents tested in Florida2. Non-Florida residents tested in Florida3. Florida residents tested outside of Florida Florida Residents Tested Elsewhere: The total number of Florida residents with positive COVID-19 test results who were tested outside of Florida, and were not exposed/infectious in Florida.Non-Florida Residents Tested in Florida: The total number of people with positive COVID-19 test results who were tested, exposed, and/or infectious while in Florida, but are legal residents of another state. Total Cases: The total (sum) number of Persons Under Investigation (PUI) who tested positive for COVID-19 while in Florida, as well as Florida residents who tested positive or were exposed/contagious while outside of Florida, and out-of-state residents who were exposed, contagious and/or tested in Florida.Deaths: The Deaths by Day chart shows the total number of Florida residents with confirmed COVID-19 that died on each calendar day (12:00 AM - 11:59 PM). Caution should be used in interpreting recent trends, as deaths are added as they are reported to the Department. Death data often has significant delays in reporting, so data within the past two weeks will be updated frequently.Prefix guide: "PUI" = PUI: Persons under surveillance (any person for which we have data about)"T_ " = Testing: Testing information for all PUIs and cases."C_" = Cases only: Information about cases, which are those persons who have COVID-19 positive test results on file“W_” = Surveillance and syndromic dataKey Data about Testing:T_negative : Testing: Total negative persons tested for all Florida and non-Florida residents, including Florida residents tested outside of the state, and those tested at private facilities.T_positive : Testing: Total positive persons tested for all Florida and non-Florida resident types, including Florida residents tested outside of the state, and those tested at private facilities.PUILab_Yes : All persons tested with lab results on file, including negative, positive and inconclusive. This total does NOT include those who are waiting to be tested or have submitted tests to labs for which results are still pending.Key Data about Confirmed COVID-19 Positive Cases: CasesAll: Cases only: The sum total of all positive cases, including Florida residents in Florida, Florida residents outside Florida, and non-Florida residents in FloridaFLResDeaths: Deaths of Florida ResidentsC_Hosp_Yes : Cases (confirmed positive) with a hospital admission notedC_AgeRange Cases Only: Age range for all cases, regardless of residency typeC_AgeMedian: Cases Only: Median range for all cases, regardless of residency typeC_AllResTypes : Cases Only: Sum of COVID-19 positive Florida Residents; includes in and out of state Florida residents, but does not include out-of-state residents who were treated/tested/isolated in Florida. All questions regarding this dataset should be directed to the Florida Department of Health.
Facebook
TwitterNote: Note: Starting October 10th, 2025 this dataset is deprecated and is no longer being updated. As of April 27, 2023 updates changed from daily to weekly. Summary The cumulative number of confirmed COVID-19 deaths among Maryland residents by age: 0-9; 10-19; 20-29; 30-39; 40-49; 50-59; 60-69; 70-79; 80+; Unknown. Description The MD COVID-19 - Confirmed Deaths by Age Distribution data layer is a collection of the statewide confirmed COVID-19 related deaths that have been reported each day by the Vital Statistics Administration by designated age ranges. A death is classified as confirmed if the person had a laboratory-confirmed positive COVID-19 test result. Some data on deaths may be unavailable due to the time lag between the death, typically reported by a hospital or other facility, and the submission of the complete death certificate. Probable deaths are available from the MD COVID-19 - Probable Deaths by Age Distribution data layer. Terms of Use The Spatial Data, and the information therein, (collectively the "Data") is provided "as is" without warranty of any kind, either expressed, implied, or statutory. The user assumes the entire risk as to quality and performance of the Data. No guarantee of accuracy is granted, nor is any responsibility for reliance thereon assumed. In no event shall the State of Maryland be liable for direct, indirect, incidental, consequential or special damages of any kind. The State of Maryland does not accept liability for any damages or misrepresentation caused by inaccuracies in the Data or as a result to changes to the Data, nor is there responsibility assumed to maintain the Data in any manner or form. The Data can be freely distributed as long as the metadata entry is not modified or deleted. Any data derived from the Data must acknowledge the State of Maryland in the metadata.