ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
This dataset shows the location of Higher Education (HE) and Further Education (FE) institutes in the Great Britain. This should cover Universities and Colleges. Many institutes have more than one campus and where possible this is refelcted in the data so a University may have more than one entry. Postcodes have also been included for instities where possible. This data was collected from various sources connected with HEFE in the UK including JISC and EDINA. This represents the fullest list that the author could compile from various sources. If you spot a missing institution, please contact the author and they will add it to the dataset. GIS vector data. This dataset was first accessioned in the EDINA ShareGeo Open repository on 2011-02-01 and migrated to Edinburgh DataShare on 2017-02-21.
This large, international dataset contains survey responses from N = 12,570 students from 100 universities in 35 countries, collected in 21 languages. We measured anxieties (statistics, mathematics, test, trait, social interaction, performance, creativity, intolerance of uncertainty, and fear of negative evaluation), self-efficacy, persistence, and the cognitive reflection test, and collected demographics, previous mathematics grades, self-reported and official statistics grades, and statistics module details. Data reuse potential is broad, including testing links between anxieties and statistics/mathematics education factors, and examining instruments’ psychometric properties across different languages and contexts. Note that the pre-registration can be found here: https://osf.io/xs5wf
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The information refers to NI domiciled students gaining higher education qualifications from UK higher education institutions. The dataset is collected annually and is based on students obtaining a qualification at UK higher education institutions. The dataset is collected by the Higher Education Statistics Agency from higher education institutions throughout the UK and provided to the Department for Employment and Learning, Northern Ireland, for analysis. For 2013/14, NI Domiciled enrolments and qualifications at Open University are available. In previous years, these figures were included in NI students studying in England, as the administrative centre of the Open University is located in England.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is the dataset derived from the sistematic review describes at https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=330361
We have previously found that the psychoeducational 'Science of Happiness' course has a beneficial effect on participant well-being (Hood et al, 2021; Hobbs et al, 2022). In this study, we examine whether these benefits are sustained 1-2 years post course.
Data product is provided by ASL Marketing. It contains current college students who are attending colleges and universities nationwide. Connect with this market by: Class Year Field of Study Home/School address College Attending Ethnicity School Type Region Sports Conference Gender eSports Email
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The information refers to NI domiciled students enrolled at higher education institutions in the UK. The dataset is collected annually and is based on enrolments in higher education institutions in the UK on 1st December each year. The dataset is collected by the Higher Education Statistics Agency from higher education institutions throughout the UK and provided to the Department for Employment and Learning, Northern Ireland, for analysis. For 2013/14, NI Domiciled enrolments and qualifications at Open University are available. In previous years, these figures were included in NI students studying in England, as the administrative centre of the Open University is located in England. The specification of the HESA Standard Registration Population has changed for 2007/08 enrolments onwards. Writing up and sabbatical students are now excluded from this population where they were previously included in published enrolment data and therefore 2007/08 data onwards cannot be directly compared to previous years.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This dataset provides Census 2021 estimates that classify schoolchildren and full-time students aged 5 years and over in England and Wales by student accommodation and by age. The estimates are as at Census Day, 21 March 2021.
Estimates for single year of age between ages 90 and 100+ are less reliable than other ages. Estimation and adjustment at these ages was based on the age range 90+ rather than five-year age bands. Read more about this quality notice.
Area type
Census 2021 statistics are published for a number of different geographies. These can be large, for example the whole of England, or small, for example an output area (OA), the lowest level of geography for which statistics are produced.
For higher levels of geography, more detailed statistics can be produced. When a lower level of geography is used, such as output areas (which have a minimum of 100 persons), the statistics produced have less detail. This is to protect the confidentiality of people and ensure that individuals or their characteristics cannot be identified.
Coverage
Census 2021 statistics are published for the whole of England and Wales. Data are also available in these geographic types:
Student accommodation type
Combines the living situation of students and school children in full-time education, whether they are living:
It also includes whether these households contain one or multiple families.
This variable is comparable with the student accommodation variable but splits the communal establishment type into “university” and “other” categories.
Age
A person’s age on Census Day, 21 March 2021 in England and Wales. Infants aged under 1 year are classified as 0 years of age.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The data article presents the relationship between university league tables and teaching qualification in the UK. Data were collected from the university and subject league tables (Complete University Guide) and teaching qualification (The Higher Education Academy - HEA), and Higher Education Funding Council for England - Hefce), UK.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Open University (OU) dataset is an open database containing student demographic and click-stream interaction with the virtual learning platform. The available data are structured in different CSV files. You can find more information about the original dataset at the following link: https://analyse.kmi.open.ac.uk/open_dataset.
We extracted a subset of the original dataset that focuses on student information. 25,819 records were collected referring to a specific student, course and semester. Each record is described by the following 20 attributes: code_module, code_presentation, gender, highest_education, imd_band, age_band, num_of_prev_attempts, studies_credits, disability, resource, homepage, forum, glossary, outcontent, subpage, url, outcollaborate, quiz, AvgScore, count.
Two target classes were considered, namely Fail and Pass, combining the original four classes (Fail and Withdrawn and Pass and Distinction, respectively). The final_result attribute contains the target values.
All features have been converted to numbers for automatic processing.
Below is the mapping used to convert categorical values to numeric:
code_module: 'AAA'=0, 'BBB'=1, 'CCC'=2, 'DDD'=3, 'EEE'=4, 'FFF'=5, 'GGG'=6
code_presentation: '2013B'=0, '2013J'=1, '2014B'=2, '2014J'=3
gender: 'F'=0, 'M'=1
highest_education: 'No_Formal_quals'=0, 'Post_Graduate_Qualification'=1, 'HE_Qualification'=2, 'Lower_Than_A_Level'=3, 'A_level_or_Equivalent'=4
IMBD_band: 'unknown'=0, 'between_0_and_10_percent'=1, 'between_10_and_20_percent'=2, 'between_20_and_30_percent'=3, 'between_30_and_40_percent'=4, 'between_40_and_50_percent'=5, 'between_50_and_60_percent'=6, 'between_60_and_70_percent'=7, 'between_70_and_80_percent'=8, 'between_80_and_90_percent'=9, 'between_90_and_100_percent'=10
age_band: 'between_0_and_35'=0, 'between_35_and_55'=1, 'higher_than_55'=2
disability: 'N'=0, 'Y'=1
student's outcome: 'Fail'=0, 'Pass'=1
For more detailed information, please refer to:
Casalino G., Castellano G., Vessio G. (2021) Exploiting Time in Adaptive Learning from Educational Data. In: Agrati L.S. et al. (eds) Bridges and Mediation in Higher Distance Education. HELMeTO 2020. Communications in Computer and Information Science, vol 1344. Springer, Cham. https://doi.org/10.1007/978-3-030-67435-9_1
The datasets provided by UK based online learning university "Open University". More about the dataset: https://analyse.kmi.open.ac.uk/open_dataset
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This dataset provides Census 2022 estimates for distance travelled to place of study of people aged 4 and over studying by age (in 4 categories) in Scotland.
A person's age on Census Day, 20 March 2022. Infants aged under 1 year are classified as 0 years of age.
The distance between a person’s home address and their main place of work or study (Grouped).
Address of place of work or study is used (along with home address) to explore the relationship between where people live and where they work or study. Used in conjunction with information from the method of travel question, the data helps to identify commuter patterns and routes and provide a reliable indicator for the demands placed on public and private transport.
It is used to inform the balance of housing and jobs in particular areas and assess the need for services such as new schools. Information on where people live and work is used by government departments to define “Travel to Work Areas” - these are approximations of self-contained labour markets and are the smallest areas for which unemployment rates are published. Collecting information on both work and study address enables a more accurate count of daytime populations to be obtained, which is particularly useful for areas accommodating universities and businesses. It also allows the differences in travel patterns between these groups to be compared.
Details of classification can be found here
The quality assurance report can be found here
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This Data contains Reviews of University of Exeter, UK from www.studentcrowd.com with Ratings. StudentCrowd was started in 2015 by three graduates who were frustrated with the lack of real and helpful information about aspects of their student experience.
The dataset contains information about the date review was added, the review itself added by the student, overall rating, and other ratings like Facilities, Wifi, Societies, etc of the university
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The LSC (Leicester Scientific Corpus)
April 2020 by Neslihan Suzen, PhD student at the University of Leicester (ns433@leicester.ac.uk) Supervised by Prof Alexander Gorban and Dr Evgeny MirkesThe data are extracted from the Web of Science [1]. You may not copy or distribute these data in whole or in part without the written consent of Clarivate Analytics.[Version 2] A further cleaning is applied in Data Processing for LSC Abstracts in Version 1*. Details of cleaning procedure are explained in Step 6.* Suzen, Neslihan (2019): LSC (Leicester Scientific Corpus). figshare. Dataset. https://doi.org/10.25392/leicester.data.9449639.v1.Getting StartedThis text provides the information on the LSC (Leicester Scientific Corpus) and pre-processing steps on abstracts, and describes the structure of files to organise the corpus. This corpus is created to be used in future work on the quantification of the meaning of research texts and make it available for use in Natural Language Processing projects.LSC is a collection of abstracts of articles and proceeding papers published in 2014, and indexed by the Web of Science (WoS) database [1]. The corpus contains only documents in English. Each document in the corpus contains the following parts:1. Authors: The list of authors of the paper2. Title: The title of the paper 3. Abstract: The abstract of the paper 4. Categories: One or more category from the list of categories [2]. Full list of categories is presented in file ‘List_of _Categories.txt’. 5. Research Areas: One or more research area from the list of research areas [3]. Full list of research areas is presented in file ‘List_of_Research_Areas.txt’. 6. Total Times cited: The number of times the paper was cited by other items from all databases within Web of Science platform [4] 7. Times cited in Core Collection: The total number of times the paper was cited by other papers within the WoS Core Collection [4]The corpus was collected in July 2018 online and contains the number of citations from publication date to July 2018. We describe a document as the collection of information (about a paper) listed above. The total number of documents in LSC is 1,673,350.Data ProcessingStep 1: Downloading of the Data Online
The dataset is collected manually by exporting documents as Tab-delimitated files online. All documents are available online.Step 2: Importing the Dataset to R
The LSC was collected as TXT files. All documents are extracted to R.Step 3: Cleaning the Data from Documents with Empty Abstract or without CategoryAs our research is based on the analysis of abstracts and categories, all documents with empty abstracts and documents without categories are removed.Step 4: Identification and Correction of Concatenate Words in AbstractsEspecially medicine-related publications use ‘structured abstracts’. Such type of abstracts are divided into sections with distinct headings such as introduction, aim, objective, method, result, conclusion etc. Used tool for extracting abstracts leads concatenate words of section headings with the first word of the section. For instance, we observe words such as ConclusionHigher and ConclusionsRT etc. The detection and identification of such words is done by sampling of medicine-related publications with human intervention. Detected concatenate words are split into two words. For instance, the word ‘ConclusionHigher’ is split into ‘Conclusion’ and ‘Higher’.The section headings in such abstracts are listed below:
Background Method(s) Design Theoretical Measurement(s) Location Aim(s) Methodology Process Abstract Population Approach Objective(s) Purpose(s) Subject(s) Introduction Implication(s) Patient(s) Procedure(s) Hypothesis Measure(s) Setting(s) Limitation(s) Discussion Conclusion(s) Result(s) Finding(s) Material (s) Rationale(s) Implications for health and nursing policyStep 5: Extracting (Sub-setting) the Data Based on Lengths of AbstractsAfter correction, the lengths of abstracts are calculated. ‘Length’ indicates the total number of words in the text, calculated by the same rule as for Microsoft Word ‘word count’ [5].According to APA style manual [6], an abstract should contain between 150 to 250 words. In LSC, we decided to limit length of abstracts from 30 to 500 words in order to study documents with abstracts of typical length ranges and to avoid the effect of the length to the analysis.
Step 6: [Version 2] Cleaning Copyright Notices, Permission polices, Journal Names and Conference Names from LSC Abstracts in Version 1Publications can include a footer of copyright notice, permission policy, journal name, licence, author’s right or conference name below the text of abstract by conferences and journals. Used tool for extracting and processing abstracts in WoS database leads to attached such footers to the text. For example, our casual observation yields that copyright notices such as ‘Published by Elsevier ltd.’ is placed in many texts. To avoid abnormal appearances of words in further analysis of words such as bias in frequency calculation, we performed a cleaning procedure on such sentences and phrases in abstracts of LSC version 1. We removed copyright notices, names of conferences, names of journals, authors’ rights, licenses and permission policies identified by sampling of abstracts.Step 7: [Version 2] Re-extracting (Sub-setting) the Data Based on Lengths of AbstractsThe cleaning procedure described in previous step leaded to some abstracts having less than our minimum length criteria (30 words). 474 texts were removed.Step 8: Saving the Dataset into CSV FormatDocuments are saved into 34 CSV files. In CSV files, the information is organised with one record on each line and parts of abstract, title, list of authors, list of categories, list of research areas, and times cited is recorded in fields.To access the LSC for research purposes, please email to ns433@le.ac.uk.References[1]Web of Science. (15 July). Available: https://apps.webofknowledge.com/ [2]WoS Subject Categories. Available: https://images.webofknowledge.com/WOKRS56B5/help/WOS/hp_subject_category_terms_tasca.html [3]Research Areas in WoS. Available: https://images.webofknowledge.com/images/help/WOS/hp_research_areas_easca.html [4]Times Cited in WoS Core Collection. (15 July). Available: https://support.clarivate.com/ScientificandAcademicResearch/s/article/Web-of-Science-Times-Cited-accessibility-and-variation?language=en_US [5]Word Count. Available: https://support.office.com/en-us/article/show-word-count-3c9e6a11-a04d-43b4-977c-563a0e0d5da3 [6]A. P. Association, Publication manual. American Psychological Association Washington, DC, 1983.
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
The nature of designing as well as the professional characteristics of many designers leave them vulnerable to the delay of tasks and decisions also known as procrastination. Procrastination is not discussed in design literature. Procrastination is defined as the voluntary delay or inability to complete a task or make a decision. It is often linked to the individual being overwhelmed. The dataset submitted was from a questionnaire that asked about the frequency and form of procrastination; and, influences on their behaviour when trying to undertake stages of a design process was completed by 155 design students and staff within a UK design and creative arts school. The stages included: literature review, ideation, prototyping, and report writing. The outcomes suggested chronic procrastination related to all stages of a design process, with a frequency of more than once a week. Additional questions highlighted multiple tasks were likely to overwhelm the respondents, whilst distractions such as new projects were likely to result in completing alternative tasks. An additional open question provided qualifying comments suggesting procrastination wasn’t explicitly addressed in academic design training. Two key activities to reduce the effects of procrastination were suggested: 1) prioritise tasks; and 2) reduce complexity of each task. Additional advice included: development of professional self-confidence, realistic goal planning, minimising external stimulus, controlling workflows, working in study groups, developing virtuous routines at optimal times during the day, the management of reward and consequence; and use of technology to optimise self-regulation.
Abstract copyright UK Data Service and data collection copyright owner.
Next Steps (also known as the Longitudinal Study of Young People in England (LSYPE1)) is a major longitudinal cohort study following a nationally representative group of around 16,000 who were in Year 9 attending state and independent schools in England in 2004, a cohort born in 1989-90.
The first seven sweeps of the study were conducted annually (2004-2010) when the study was funded and managed by the Department for Education (DfE). The study mainly focused on the educational and early labour market experiences of young people.
In 2015 Next Steps was restarted, under the management of the Centre for Longitudinal Studies (CLS) at the UCL Faculty of Education and Society (IOE) and funded by the Economic and Social Research Council. The Next Steps Age 25 survey was aimed at increasing the understanding of the lives of young adults growing up today and the transitions out of education and into early adult life.
The Next Steps Age 32 Survey took place between April 2022 and September 2023 and is the ninth sweep of the study. The Age 32 Survey aimed to provide data for research and policy on the lives of this generation of adults in their early 30s. This sweep also collected information on many wider aspects of cohort members' lives including health and wellbeing, politics and social participation, identity and attitudes as well as capturing personality, resilience, working memory and financial literacy.
Next Steps survey data is also linked to the National Pupil Database (NPD), the Hospital Episode Statistics (HES), the Individualised Learner Records (ILR) and the Student Loans Company (SLC).
There are now two separate studies that began under the LSYPE programme. The second study, Our Future (LSYPE2) (available at the UK Data Service under GN 2000110), began in 2013 and will track a sample of over 13,000 young people annually from ages 13/14 through to age 20.
Further information about Next Steps may be found on the CLS website.
Secure Access datasets:
Secure Access versions of Next Steps have more restrictive access conditions than Safeguarded versions available under the standard End User Licence (see 'Access' section).
Secure Access versions of the Next Steps include:
When researchers are approved/accredited to access a Secure Access version of Next Steps, the Safeguarded (EUL) version of the study - Next Steps: Sweeps 1-9, 2004-2023 (SN 5545) - will be automatically provided alongside.
The Student Loans Company (SLC) is a non-profit making government-owned organisation that administers loans and grants to students in colleges and universities in the UK. The Next Steps: Linked Administrative Datasets (Student Loans Company Records), 2007 - 2021: Secure Access includes data on higher education loans for those Next Steps participant who provided consent to SLC linkage in the age 25 sweep. The matched SLC data contains information about participant's applications for student finance, payment transactions posted to participant's accounts, repayment details and overseas assessment details.
The study includes four datasets:
Applicant: SLC data on cohort member’s application for student finance between academic years 2007 and 2020
Payments: SLC data on payment transactions made to cohort member between financial years 2007 and 2021.
Repayments: SLC data on cohort member’s repayment transactions between financial years 2009 and 2021.
Overseas: SLC data on overseas assessment for cohort member between 2007 and 2020
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This data relates to careers advice and guidance to year 11 and 12 pupils in Northern Ireland and their university aspirations. Data is presented for year 11 and 12 pupils on their confidence making career decisions, the support they require to achieve their career goals, their awareness of the all-age Careers Service, their knowledge of how to contact a Careers Adviser outside school and also their university aspirations. The data is derived from the Young Persons’ Behaviour and Attitudes Survey, carried out between September 2019 and February 2020.
Understanding Society, (UK Household Longitudinal Study), which began in 2009, is conducted by the Institute for Social and Economic Research (ISER) at the University of Essex and the survey research organisations Verian Group (formerly Kantar Public) and NatCen. It builds on and incorporates, the British Household Panel Survey (BHPS), which began in 1991.
The Understanding Society: Calendar Year Dataset, 2022, is designed for analysts to conduct cross-sectional analysis for the 2022 calendar year. The Calendar Year datasets combine data collected in a specific year from across multiple waves and these are released as separate calendar year studies, with appropriate analysis weights, starting with the 2020 Calendar Year dataset. Each subsequent year, an additional yearly study is released.
The Calendar Year data is designed to enable timely cross-sectional analysis of individuals and households in a calendar year. Such analysis can, however, only involve variables that are collected in every wave (excluding rotating content, which is only collected in some of the waves). Due to overlapping fieldwork, the data files combine data collected in the three waves that make up a calendar year. Analysis cannot be restricted to data collected in one wave during a calendar year, as this subset will not be representative of the population. Further details and guidance on this study can be found in the document 9333_main_survey_calendar_year_user_guide_2022.
These calendar year datasets should be used for cross-sectional analysis only. For those interested in longitudinal analyses using Understanding Society please access the main survey datasets: End User Licence version or Special Licence version.
Understanding Society: the UK Household Longitudinal Study, started in 2009 with a general population sample (GPS) of UK residents living in private households of around 26,000 households and an ethnic minority boost sample (EMBS) of 4,000 households. All members of these responding households and their descendants became part of the core sample who were eligible to be interviewed every year. Anyone who joined these households after this initial wave was also interviewed as long as they lived with these core sample members to provide the household context. At each annual interview, some basic demographic information was collected about every household member, information about the household is collected from one household member, all 16+-year-old household members are eligible for adult interviews, 10-15-year-old household members are eligible for youth interviews, and some information is collected about 0-9 year-olds from their parents or guardians. Since 1991 until 2008/9 a similar survey, the British Household Panel Survey (BHPS), was fielded. The surviving members of this survey sample were incorporated into Understanding Society in 2010. In 2015, an immigrant and ethnic minority boost sample (IEMBS) of around 2,500 households was added. In 2022, a GPS boost sample (GPS2) of around 5,700 households was added. To know more about the sample design, following rules, interview modes, incentives, consent, and questionnaire content, please see the study overview and user guide.
Co-funders
In addition to the Economic and Social Research Council, co-funders for the study included the Department of Work and Pensions, the Department for Education, the Department for Transport, the Department of Culture, Media and Sport, the Department for Community and Local Government, the Department of Health, the Scottish Government, the Welsh Assembly Government, the Northern Ireland Executive, the Department of Environment and Rural Affairs, and the Food Standards Agency.
End User Licence and Special Licence versions:
There are two versions of the Calendar Year 2022 data. One is available under the standard End User Licence (EUL) agreement (SN 9333), and the other is a Special Licence (SL) version (SN 9334). The SL version contains month and year of birth variables instead of just age, more detailed country and occupation coding for a number of variables and various income variables have not been top-coded (see document 9333_eul_vs_sl_variable_differences for more details). Users are advised first to obtain the standard EUL version of the data to see if they are sufficient for their research requirements. The SL data have more restrictive access conditions; prospective users of the SL version will need to complete an extra application form and demonstrate to the data owners exactly why they need access to the additional variables in order to get permission to use that version. The main longitudinal versions of the Understanding Society study may be found under SNs 6614 (EUL) and 6931 (SL).
Low- and Medium-level geographical identifiers produced for the mainstage longitudinal dataset can be used with this Calendar Year 2022 dataset, subject to SL access conditions. See the User Guide for further details.
Suitable data analysis software
These data are provided by the depositor in Stata format. Users are strongly advised to analyse them in Stata. Transfer to other formats may result in unforeseen issues. Stata SE or MP software is needed to analyse the larger files, which contain about 1,800 variables.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The census is undertaken by the Office for National Statistics every 10 years and gives us a picture of all the people and households in England and Wales. The most recent census took place in March of 2021.The census asks every household questions about the people who live there and the type of home they live in. In doing so, it helps to build a detailed snapshot of society. Information from the census helps the government and local authorities to plan and fund local services, such as education, doctors' surgeries and roads.Key census statistics for Leicester are published on the open data platform to make information accessible to local services, voluntary and community groups, and residents. There is also a dashboard published showcasing various datasets from the census allowing users to view data for Leicester and compare this with national statistics.Further information about the census and full datasets can be found on the ONS website - https://www.ons.gov.uk/census/aboutcensus/censusproductsPopulation by household and communal establishmentThis dataset provides Census 2021 estimates that classify the population into residents of households and those residing in communal establishments. The estimates are as at Census Day, 21 March 2021.Definitions: Households - one person or a group of people (not necessarily related) living at the same address who share cooking facilities and share a living room or sitting room, or dining area. Examples include: A house or flatA caravan or other mobile or temporary structureSheltered accommodation units within an establishmentCommunal establishments - A place that provides managed full-time or part-time supervision of residential accommodation. Examples include:University halls of residence and boarding schoolsCare homes, hospitals, hospices and maternity unitsPrisons and other secure facilitiesNew communal establishments do not count as new households. For example, the building of a new block of supervised student flats would not count as an increase in the number of households.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Dataset accompanying the data descriptor for publication in Scientific Data entitled: Data on the prevalence of psychiatric symptoms in UK university students. More specifically, the current data provides crucial information concerning the prevalence of anxiety, depression, mania, insomnia, stress, suicidal ideation, psychotic experiences and loneliness amongst a sample of N=1408 UK university students. A cross-sectional online questionnaire-based study was implemented. Online recruitment for this dataset began on September 17th, 2018, and ended on the 30th July 2019. Eight validated measures were used: Generalized Anxiety Disorder Scale; Patient Health Questionnaire; The Mood Disorder Questionnaire; The Sleep Condition Indicator; The Perceived Stress Scale; Suicidal Behaviours Questionnaire-Revised; The Prodromal Questionnaire 16 (PQ-16); and the University of California Loneliness Scale.
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
This dataset shows the location of Higher Education (HE) and Further Education (FE) institutes in the Great Britain. This should cover Universities and Colleges. Many institutes have more than one campus and where possible this is refelcted in the data so a University may have more than one entry. Postcodes have also been included for instities where possible. This data was collected from various sources connected with HEFE in the UK including JISC and EDINA. This represents the fullest list that the author could compile from various sources. If you spot a missing institution, please contact the author and they will add it to the dataset. GIS vector data. This dataset was first accessioned in the EDINA ShareGeo Open repository on 2011-02-01 and migrated to Edinburgh DataShare on 2017-02-21.