38 datasets found
  1. i

    Illinois Cities by Population

    • illinois-demographics.com
    Updated Jun 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kristen Carney (2024). Illinois Cities by Population [Dataset]. https://www.illinois-demographics.com/cities_by_population
    Explore at:
    Dataset updated
    Jun 20, 2024
    Dataset provided by
    Cubit Planning, Inc.
    Authors
    Kristen Carney
    License

    https://www.illinois-demographics.com/terms_and_conditionshttps://www.illinois-demographics.com/terms_and_conditions

    Area covered
    Illinois
    Description

    A dataset listing Illinois cities by population for 2024.

  2. w

    Washington Cities by Population

    • washington-demographics.com
    Updated Jun 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kristen Carney (2024). Washington Cities by Population [Dataset]. https://www.washington-demographics.com/cities_by_population
    Explore at:
    Dataset updated
    Jun 20, 2024
    Dataset provided by
    Cubit Planning, Inc.
    Authors
    Kristen Carney
    License

    https://www.washington-demographics.com/terms_and_conditionshttps://www.washington-demographics.com/terms_and_conditions

    Area covered
    Washington
    Description

    A dataset listing Washington cities by population for 2024.

  3. f

    Florida Cities by Population

    • florida-demographics.com
    Updated Jun 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kristen Carney (2024). Florida Cities by Population [Dataset]. https://www.florida-demographics.com/cities_by_population
    Explore at:
    Dataset updated
    Jun 20, 2024
    Dataset provided by
    Cubit Planning, Inc.
    Authors
    Kristen Carney
    License

    https://www.florida-demographics.com/terms_and_conditionshttps://www.florida-demographics.com/terms_and_conditions

    Area covered
    Florida City, Florida
    Description

    A dataset listing Florida cities by population for 2024.

  4. n

    A dataset of 5 million city trees from 63 US cities: species, location,...

    • data.niaid.nih.gov
    • data-staging.niaid.nih.gov
    • +2more
    zip
    Updated Aug 31, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dakota McCoy; Benjamin Goulet-Scott; Weilin Meng; Bulent Atahan; Hana Kiros; Misako Nishino; John Kartesz (2022). A dataset of 5 million city trees from 63 US cities: species, location, nativity status, health, and more. [Dataset]. http://doi.org/10.5061/dryad.2jm63xsrf
    Explore at:
    zipAvailable download formats
    Dataset updated
    Aug 31, 2022
    Dataset provided by
    Harvard University
    Stanford University
    Worcester Polytechnic Institute
    The Biota of North America Program (BONAP)
    Cornell University
    Authors
    Dakota McCoy; Benjamin Goulet-Scott; Weilin Meng; Bulent Atahan; Hana Kiros; Misako Nishino; John Kartesz
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Area covered
    United States
    Description

    Sustainable cities depend on urban forests. City trees -- a pillar of urban forests -- improve our health, clean the air, store CO2, and cool local temperatures. Comparatively less is known about urban forests as ecosystems, particularly their spatial composition, nativity statuses, biodiversity, and tree health. Here, we assembled and standardized a new dataset of N=5,660,237 trees from 63 of the largest US cities. The data comes from tree inventories conducted at the level of cities and/or neighborhoods. Each data sheet includes detailed information on tree location, species, nativity status (whether a tree species is naturally occurring or introduced), health, size, whether it is in a park or urban area, and more (comprising 28 standardized columns per datasheet). This dataset could be analyzed in combination with citizen-science datasets on bird, insect, or plant biodiversity; social and demographic data; or data on the physical environment. Urban forests offer a rare opportunity to intentionally design biodiverse, heterogenous, rich ecosystems. Methods See eLife manuscript for full details. Below, we provide a summary of how the dataset was collected and processed.

    Data Acquisition We limited our search to the 150 largest cities in the USA (by census population). To acquire raw data on street tree communities, we used a search protocol on both Google and Google Datasets Search (https://datasetsearch.research.google.com/). We first searched the city name plus each of the following: street trees, city trees, tree inventory, urban forest, and urban canopy (all combinations totaled 20 searches per city, 10 each in Google and Google Datasets Search). We then read the first page of google results and the top 20 results from Google Datasets Search. If the same named city in the wrong state appeared in the results, we redid the 20 searches adding the state name. If no data were found, we contacted a relevant state official via email or phone with an inquiry about their street tree inventory. Datasheets were received and transformed to .csv format (if they were not already in that format). We received data on street trees from 64 cities. One city, El Paso, had data only in summary format and was therefore excluded from analyses.

    Data Cleaning All code used is in the zipped folder Data S5 in the eLife publication. Before cleaning the data, we ensured that all reported trees for each city were located within the greater metropolitan area of the city (for certain inventories, many suburbs were reported - some within the greater metropolitan area, others not). First, we renamed all columns in the received .csv sheets, referring to the metadata and according to our standardized definitions (Table S4). To harmonize tree health and condition data across different cities, we inspected metadata from the tree inventories and converted all numeric scores to a descriptive scale including “excellent,” “good”, “fair”, “poor”, “dead”, and “dead/dying”. Some cities included only three points on this scale (e.g., “good”, “poor”, “dead/dying”) while others included five (e.g., “excellent,” “good”, “fair”, “poor”, “dead”). Second, we used pandas in Python (W. McKinney & Others, 2011) to correct typos, non-ASCII characters, variable spellings, date format, units used (we converted all units to metric), address issues, and common name format. In some cases, units were not specified for tree diameter at breast height (DBH) and tree height; we determined the units based on typical sizes for trees of a particular species. Wherever diameter was reported, we assumed it was DBH. We standardized health and condition data across cities, preserving the highest granularity available for each city. For our analysis, we converted this variable to a binary (see section Condition and Health). We created a column called “location_type” to label whether a given tree was growing in the built environment or in green space. All of the changes we made, and decision points, are preserved in Data S9. Third, we checked the scientific names reported using gnr_resolve in the R library taxize (Chamberlain & Szöcs, 2013), with the option Best_match_only set to TRUE (Data S9). Through an iterative process, we manually checked the results and corrected typos in the scientific names until all names were either a perfect match (n=1771 species) or partial match with threshold greater than 0.75 (n=453 species). BGS manually reviewed all partial matches to ensure that they were the correct species name, and then we programmatically corrected these partial matches (for example, Magnolia grandifolia-- which is not a species name of a known tree-- was corrected to Magnolia grandiflora, and Pheonix canariensus was corrected to its proper spelling of Phoenix canariensis). Because many of these tree inventories were crowd-sourced or generated in part through citizen science, such typos and misspellings are to be expected. Some tree inventories reported species by common names only. Therefore, our fourth step in data cleaning was to convert common names to scientific names. We generated a lookup table by summarizing all pairings of common and scientific names in the inventories for which both were reported. We manually reviewed the common to scientific name pairings, confirming that all were correct. Then we programmatically assigned scientific names to all common names (Data S9). Fifth, we assigned native status to each tree through reference to the Biota of North America Project (Kartesz, 2018), which has collected data on all native and non-native species occurrences throughout the US states. Specifically, we determined whether each tree species in a given city was native to that state, not native to that state, or that we did not have enough information to determine nativity (for cases where only the genus was known). Sixth, some cities reported only the street address but not latitude and longitude. For these cities, we used the OpenCageGeocoder (https://opencagedata.com/) to convert addresses to latitude and longitude coordinates (Data S9). OpenCageGeocoder leverages open data and is used by many academic institutions (see https://opencagedata.com/solutions/academia). Seventh, we trimmed each city dataset to include only the standardized columns we identified in Table S4. After each stage of data cleaning, we performed manual spot checking to identify any issues.

  5. n

    New Mexico Cities by Population

    • newmexico-demographics.com
    Updated Jun 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kristen Carney (2024). New Mexico Cities by Population [Dataset]. https://www.newmexico-demographics.com/cities_by_population
    Explore at:
    Dataset updated
    Jun 20, 2024
    Dataset provided by
    Cubit Planning, Inc.
    Authors
    Kristen Carney
    License

    https://www.newmexico-demographics.com/terms_and_conditionshttps://www.newmexico-demographics.com/terms_and_conditions

    Area covered
    New Mexico
    Description

    A dataset listing New Mexico cities by population for 2024.

  6. s

    South Carolina Cities by Population

    • southcarolina-demographics.com
    Updated Jun 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kristen Carney (2024). South Carolina Cities by Population [Dataset]. https://www.southcarolina-demographics.com/cities_by_population
    Explore at:
    Dataset updated
    Jun 20, 2024
    Dataset provided by
    Cubit Planning, Inc.
    Authors
    Kristen Carney
    License

    https://www.southcarolina-demographics.com/terms_and_conditionshttps://www.southcarolina-demographics.com/terms_and_conditions

    Area covered
    South Carolina
    Description

    A dataset listing South Carolina cities by population for 2024.

  7. t

    Tennessee Cities by Population

    • tennessee-demographics.com
    Updated Jun 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kristen Carney (2024). Tennessee Cities by Population [Dataset]. https://www.tennessee-demographics.com/cities_by_population
    Explore at:
    Dataset updated
    Jun 20, 2024
    Dataset provided by
    Cubit Planning, Inc.
    Authors
    Kristen Carney
    License

    https://www.tennessee-demographics.com/terms_and_conditionshttps://www.tennessee-demographics.com/terms_and_conditions

    Area covered
    Tennessee
    Description

    A dataset listing Tennessee cities by population for 2024.

  8. m

    Montana Cities by Population

    • montana-demographics.com
    Updated Jun 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kristen Carney (2024). Montana Cities by Population [Dataset]. https://www.montana-demographics.com/cities_by_population
    Explore at:
    Dataset updated
    Jun 20, 2024
    Dataset provided by
    Cubit Planning, Inc.
    Authors
    Kristen Carney
    License

    https://www.montana-demographics.com/terms_and_conditionshttps://www.montana-demographics.com/terms_and_conditions

    Area covered
    Montana
    Description

    A dataset listing Montana cities by population for 2024.

  9. world_population

    • kaggle.com
    zip
    Updated Feb 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    farzam ajili (2023). world_population [Dataset]. https://www.kaggle.com/datasets/farzamajili/world-population
    Explore at:
    zip(16061 bytes)Available download formats
    Dataset updated
    Feb 8, 2023
    Authors
    farzam ajili
    Area covered
    World
    Description

    Context The current US Census Bureau world population estimate in June 2019 shows that the current global population is 7,577,130,400 people on earth, which far exceeds the world population of 7.2 billion in 2015. Our own estimate based on UN data shows the world's population surpassing 7.7 billion.

    China is the most populous country in the world with a population exceeding 1.4 billion. It is one of just two countries with a population of more than 1 billion, with India being the second. As of 2018, India has a population of over 1.355 billion people, and its population growth is expected to continue through at least 2050. By the year 2030, the country of India is expected to become the most populous country in the world. This is because India’s population will grow, while China is projected to see a loss in population.

    The following 11 countries that are the most populous in the world each have populations exceeding 100 million. These include the United States, Indonesia, Brazil, Pakistan, Nigeria, Bangladesh, Russia, Mexico, Japan, Ethiopia, and the Philippines. Of these nations, all are expected to continue to grow except Russia and Japan, which will see their populations drop by 2030 before falling again significantly by 2050.

    Many other nations have populations of at least one million, while there are also countries that have just thousands. The smallest population in the world can be found in Vatican City, where only 801 people reside.

    In 2018, the world’s population growth rate was 1.12%. Every five years since the 1970s, the population growth rate has continued to fall. The world’s population is expected to continue to grow larger but at a much slower pace. By 2030, the population will exceed 8 billion. In 2040, this number will grow to more than 9 billion. In 2055, the number will rise to over 10 billion, and another billion people won’t be added until near the end of the century. The current annual population growth estimates from the United Nations are in the millions - estimating that over 80 million new lives are added each year.

    This population growth will be significantly impacted by nine specific countries which are situated to contribute to the population growing more quickly than other nations. These nations include the Democratic Republic of the Congo, Ethiopia, India, Indonesia, Nigeria, Pakistan, Uganda, the United Republic of Tanzania, and the United States of America. Particularly of interest, India is on track to overtake China's position as the most populous country by 2030. Additionally, multiple nations within Africa are expected to double their populations before fertility rates begin to slow entirely.

    Content In this Dataset, we have Historical Population data for every Country/Territory in the world by different parameters like Area Size of the Country/Territory, Name of the Continent, Name of the Capital, Density, Population Growth Rate, Ranking based on Population, World Population Percentage, etc.

  10. m

    Mississippi Cities by Population

    • mississippi-demographics.com
    Updated Jun 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kristen Carney (2024). Mississippi Cities by Population [Dataset]. https://www.mississippi-demographics.com/cities_by_population
    Explore at:
    Dataset updated
    Jun 20, 2024
    Dataset provided by
    Cubit Planning, Inc.
    Authors
    Kristen Carney
    License

    https://www.mississippi-demographics.com/terms_and_conditionshttps://www.mississippi-demographics.com/terms_and_conditions

    Area covered
    Mississippi
    Description

    A dataset listing Mississippi cities by population for 2024.

  11. N

    New York City Population by Borough, 1950 - 2040

    • data.cityofnewyork.us
    • data.ny.gov
    • +3more
    csv, xlsx, xml
    Updated Apr 29, 2014
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of City Planning (DCP) (2014). New York City Population by Borough, 1950 - 2040 [Dataset]. https://data.cityofnewyork.us/City-Government/New-York-City-Population-by-Borough-1950-2040/xywu-7bv9
    Explore at:
    csv, xlsx, xmlAvailable download formats
    Dataset updated
    Apr 29, 2014
    Dataset authored and provided by
    Department of City Planning (DCP)
    Area covered
    New York
    Description

    Unadjusted decennial census data from 1950-2000 and projected figures from 2010-2040: summary table of New York City population numbers and percentage share by Borough, including school-age (5 to 17), 65 and Over, and total population.

  12. d

    2019 Cartographic Boundary Shapefile, Current New England City and Town Area...

    • catalog.data.gov
    • s.cnmilf.com
    Updated Jan 15, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). 2019 Cartographic Boundary Shapefile, Current New England City and Town Area for United States, 1:500,000 [Dataset]. https://catalog.data.gov/dataset/2019-cartographic-boundary-shapefile-current-new-england-city-and-town-area-for-united-states-1
    Explore at:
    Dataset updated
    Jan 15, 2021
    Area covered
    New England, United States
    Description

    The 2019 cartographic boundary shapefiles are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. In New England (Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, and Vermont), the Office of Management and Budget (OMB) has defined an alternative county subdivision (generally cities and towns) based definition of Core Based Statistical Areas (CBSAs) known as New England City and Town Areas (NECTAs). NECTAs are defined using the same criteria as Metropolitan Statistical Areas and Micropolitan Statistical Areas and are identified as either metropolitan or micropolitan, based, respectively, on the presence of either an urban area of 50,000 or more population or an urban cluster of at least 10,000 and less than 50,000 population. A NECTA containing a single core urban area with a population of at least 2.5 million may be subdivided to form smaller groupings of cities and towns referred to as NECTA Divisions. The generalized boundaries in this file are based on those defined by OMB based on the 2010 Census, published in 2013, and updated in 2015, 2017, and 2018.

  13. 2020 Cartographic Boundary File (KML), Current New England City and Town...

    • catalog.data.gov
    • s.cnmilf.com
    Updated Dec 14, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Commerce, U.S. Census Bureau, Geography Division, Customer Engagement Branch (Point of Contact) (2023). 2020 Cartographic Boundary File (KML), Current New England City and Town Area for United States, 1:500,000 [Dataset]. https://catalog.data.gov/dataset/2020-cartographic-boundary-file-kml-current-new-england-city-and-town-area-for-united-states-1-
    Explore at:
    Dataset updated
    Dec 14, 2023
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Area covered
    New England, United States
    Description

    The 2020 cartographic boundary KMLs are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. In New England (Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, and Vermont), the Office of Management and Budget (OMB) has defined an alternative county subdivision (generally cities and towns) based definition of Core Based Statistical Areas (CBSAs) known as New England City and Town Areas (NECTAs). NECTAs are defined using the same criteria as Metropolitan Statistical Areas and Micropolitan Statistical Areas and are identified as either metropolitan or micropolitan, based, respectively, on the presence of either an urban area of 50,000 or more population or an urban cluster of at least 10,000 and less than 50,000 population. A NECTA containing a single core urban area with a population of at least 2.5 million may be subdivided to form smaller groupings of cities and towns referred to as NECTA Divisions. The generalized boundaries in this file are based on those defined by OMB based on the 2010 Census, published in 2013, and updated in 2018.

  14. a

    Alabama Cities by Population

    • alabama-demographics.com
    Updated Jun 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kristen Carney (2024). Alabama Cities by Population [Dataset]. https://www.alabama-demographics.com/cities_by_population
    Explore at:
    Dataset updated
    Jun 20, 2024
    Dataset provided by
    Cubit Planning, Inc.
    Authors
    Kristen Carney
    License

    https://www.alabama-demographics.com/terms_and_conditionshttps://www.alabama-demographics.com/terms_and_conditions

    Area covered
    Alabama, Huntsville
    Description

    A dataset listing Alabama cities by population for 2024.

  15. a

    Arkansas Cities by Population

    • arkansas-demographics.com
    Updated Jun 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kristen Carney (2024). Arkansas Cities by Population [Dataset]. https://www.arkansas-demographics.com/cities_by_population
    Explore at:
    Dataset updated
    Jun 20, 2024
    Dataset provided by
    Cubit Planning, Inc.
    Authors
    Kristen Carney
    License

    https://www.arkansas-demographics.com/terms_and_conditionshttps://www.arkansas-demographics.com/terms_and_conditions

    Area covered
    Arkansas
    Description

    A dataset listing Arkansas cities by population for 2024.

  16. World Population Live Dataset 2022

    • kaggle.com
    zip
    Updated Sep 10, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aman Chauhan (2022). World Population Live Dataset 2022 [Dataset]. https://www.kaggle.com/datasets/whenamancodes/world-population-live-dataset/code
    Explore at:
    zip(10169 bytes)Available download formats
    Dataset updated
    Sep 10, 2022
    Authors
    Aman Chauhan
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    World
    Description

    The current US Census Bureau world population estimate in June 2019 shows that the current global population is 7,577,130,400 people on earth, which far exceeds the world population of 7.2 billion from 2015. Our own estimate based on UN data shows the world's population surpassing 7.7 billion.

    China is the most populous country in the world with a population exceeding 1.4 billion. It is one of just two countries with a population of more than 1 billion, with India being the second. As of 2018, India has a population of over 1.355 billion people, and its population growth is expected to continue through at least 2050. By the year 2030, the country of India is expected to become the most populous country in the world. This is because India’s population will grow, while China is projected to see a loss in population.

    The next 11 countries that are the most populous in the world each have populations exceeding 100 million. These include the United States, Indonesia, Brazil, Pakistan, Nigeria, Bangladesh, Russia, Mexico, Japan, Ethiopia, and the Philippines. Of these nations, all are expected to continue to grow except Russia and Japan, which will see their populations drop by 2030 before falling again significantly by 2050.

    Many other nations have populations of at least one million, while there are also countries that have just thousands. The smallest population in the world can be found in Vatican City, where only 801 people reside.

    In 2018, the world’s population growth rate was 1.12%. Every five years since the 1970s, the population growth rate has continued to fall. The world’s population is expected to continue to grow larger but at a much slower pace. By 2030, the population will exceed 8 billion. In 2040, this number will grow to more than 9 billion. In 2055, the number will rise to over 10 billion, and another billion people won’t be added until near the end of the century. The current annual population growth estimates from the United Nations are in the millions - estimating that over 80 million new lives are added each year.

    This population growth will be significantly impacted by nine specific countries which are situated to contribute to the population growth more quickly than other nations. These nations include the Democratic Republic of the Congo, Ethiopia, India, Indonesia, Nigeria, Pakistan, Uganda, the United Republic of Tanzania, and the United States of America. Particularly of interest, India is on track to overtake China's position as the most populous country by the year 2030. Additionally, multiple nations within Africa are expected to double their populations before fertility rates begin to slow entirely.

    Global life expectancy has also improved in recent years, increasing the overall population life expectancy at birth to just over 70 years of age. The projected global life expectancy is only expected to continue to improve - reaching nearly 77 years of age by the year 2050. Significant factors impacting the data on life expectancy include the projections of the ability to reduce AIDS/HIV impact, as well as reducing the rates of infectious and non-communicable diseases.

    Population aging has a massive impact on the ability of the population to maintain what is called a support ratio. One key finding from 2017 is that the majority of the world is going to face considerable growth in the 60 plus age bracket. This will put enormous strain on the younger age groups as the elderly population is becoming so vast without the number of births to maintain a healthy support ratio.

    Although the number given above seems very precise, it is important to remember that it is just an estimate. It simply isn't possible to be sure exactly how many people there are on the earth at any one time, and there are conflicting estimates of the global population in 2016.

    Some, including the UN, believe that a population of 7 billion was reached in October 2011. Others, including the US Census Bureau and World Bank, believe that the total population of the world reached 7 billion in 2012, around March or April.

    ColumnsDescription
    CCA33 Digit Country/Territories Code
    NameName of the Country/Territories
    2022Population of the Country/Territories in the year 2022.
    2020Population of the Country/Territories in the year 2020.
    2015Population of the Country/Territories in the year 2015.
    2010Population of the Country/Territories in the year 2010.
    2000Population of the Country/Territories in the year 2000.
    1990Population of the Country/Territories in the year 1990.
    1980Population of the Country/Territories in the year 1980.
    1970Population of the Country/Territories in the year 1970.
    Area (km²)Area size of the Country/Territories in square kilometer.
    Density (per km²)Population Density per square kilometer.
    Grow...
  17. d

    Data from: The Urban Energy-Water Nexus: Utility-Level Water Flows and...

    • catalog.data.gov
    • data.openei.org
    • +2more
    Updated Aug 13, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    University of Illinois at Urbana-Champaign (2025). The Urban Energy-Water Nexus: Utility-Level Water Flows and Embedded Energy [Dataset]. https://catalog.data.gov/dataset/the-urban-energy-water-nexus-utility-level-water-flows-and-embedded-energy-6e27d
    Explore at:
    Dataset updated
    Aug 13, 2025
    Dataset provided by
    University of Illinois at Urbana-Champaign
    Description

    There are limited open source data available for determining water production/treatment and required energy for cities across the United States. This database represents the culmination of a two-year effort to obtain data from cities across the United States via open records requests in order to determine the state of the U.S. urban energy-water nexus. Data were requested at the daily or monthly scale when available for 127 cities across the United States, represented by 253 distinct water and sewer districts. Data were requested from cities larger than 100,000 people and from each state. In the case of states that did not have cities that met these criteria, the largest cities in those states were selected. The resulting database represents a drinking water service population of 81.4 million and a wastewater service population of 86.2 million people. Average daily demands for the United States were calculated to be 560 liters per capita for drinking water and 500 liters per capita of wastewater. The embedded energy within each of these resources is 340 kWh/1000 m3 and 430 kWh/1000 m3, respectively. Drinking water data at the annual scale are available for production volume (89 cities) and for embedded energy (73 cities). Annual wastewater data are available for treated volume (104 cities) and embedded energy (90 cities). Monthly data are available for drinking water volume and embedded energy (73 and 56 cities) and wastewater volume and embedded energy (88 and 70 cities). Please see the two related papers for this metadata are included with this submission. Each folder name is a city that contributed data to the collection effort (City+State Abbreviation). Within each folder is a .csv file with drinking water and wastewater volume and energy data. A READ-ME file within each folder details the contents of the folder within any relevant information pertaining to data collection. Data are on the order of a monthly timescale when available, and yearly if not. Please cite the following papers when using the database: Chini, C.M. and Stillwell, A.S. (2017). The State of U.S. Urban Water: Data and the Energy-Water Nexus. Water Resources Research. 54(3). DOI: https://doi.org/10.1002/2017WR022265 Chini, C.M., and Stillwell, A. (2016). Where are all the data? The case for a comprehensive water and wastewater utility database. Journal of Water Resources Planning and Management. 143(3). DOI: 10.1061/(ASCE)WR.1943-5452.0000739

  18. d

    2015 Cartographic Boundary File, New England City and Town Area for United...

    • catalog.data.gov
    • s.cnmilf.com
    Updated Jan 13, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). 2015 Cartographic Boundary File, New England City and Town Area for United States, 1:500,000 [Dataset]. https://catalog.data.gov/dataset/2015-cartographic-boundary-file-new-england-city-and-town-area-for-united-states-1-500000
    Explore at:
    Dataset updated
    Jan 13, 2021
    Area covered
    New England, United States
    Description

    The 2015 cartographic boundary KMLs are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. In New England (Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, and Vermont), the Office of Management and Budget (OMB) has defined an alternative county subdivision (generally cities and towns) based definition of Core Based Statistical Areas (CBSAs) known as New England City and Town Areas (NECTAs). NECTAs are defined using the same criteria as Metropolitan Statistical Areas and Micropolitan Statistical Areas and are identified as either metropolitan or micropolitan, based, respectively, on the presence of either an urban area of 50,000 or more population or an urban cluster of at least 10,000 and less than 50,000 population. A NECTA containing a single core urban area with a population of at least 2.5 million may be subdivided to form smaller groupings of cities and towns referred to as NECTA Divisions. The generalized NECTA boundaries in this file are based on those defined by OMB based on the 2010 Census and published in 2013.

  19. Global City Data

    • ckan.publishing.service.gov.uk
    • data.europa.eu
    Updated Mar 23, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.publishing.service.gov.uk (2017). Global City Data [Dataset]. https://ckan.publishing.service.gov.uk/dataset/global-city-data
    Explore at:
    Dataset updated
    Mar 23, 2017
    Dataset provided by
    CKANhttps://ckan.org/
    Description

    A range of indicators for a selection of cities from the New York City Global City database. Dataset includes the following: Geography City Area (km2) Metro Area (km2) People City Population (millions) Metro Population (millions) Foreign Born Annual Population Growth Economy GDP Per Capita (thousands $, PPP rates, per resident) Primary Industry Secondary Industry Share of Global 500 Companies (%) Unemployment Rate Poverty Rate Transportation Public Transportation Mass Transit Commuters Major Airports Major Ports Education Students Enrolled in Higher Education Percent of Population with Higher Education (%) Higher Education Institutions Tourism Total Tourists Annually (millions) Foreign Tourists Annually (millions) Domestic Tourists Annually (millions) Annual Tourism Revenue ($US billions) Hotel Rooms (thousands) Health Infant Mortality (Deaths per 1,000 Births) Life Expectancy in Years (Male) Life Expectancy in Years (Female) Physicians per 100,000 People Number of Hospitals Anti-Smoking Legislation Culture Number of Museums Number of Cultural and Arts Organizations Environment Green Spaces (km2) Air Quality Laws or Regulations to Improve Energy Efficiency Retrofitted City Vehicle Fleet Bike Share Program

  20. d

    2019 Cartographic Boundary KML, Current New England City and Town Area for...

    • catalog.data.gov
    • s.cnmilf.com
    Updated Jan 15, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). 2019 Cartographic Boundary KML, Current New England City and Town Area for United States, 1:500,000 [Dataset]. https://catalog.data.gov/dataset/2019-cartographic-boundary-kml-current-new-england-city-and-town-area-for-united-states-1-50000
    Explore at:
    Dataset updated
    Jan 15, 2021
    Area covered
    New England, United States
    Description

    The 2019 cartographic boundary KMLs are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. In New England (Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, and Vermont), the Office of Management and Budget (OMB) has defined an alternative county subdivision (generally cities and towns) based definition of Core Based Statistical Areas (CBSAs) known as New England City and Town Areas (NECTAs). NECTAs are defined using the same criteria as Metropolitan Statistical Areas and Micropolitan Statistical Areas and are identified as either metropolitan or micropolitan, based, respectively, on the presence of either an urban area of 50,000 or more population or an urban cluster of at least 10,000 and less than 50,000 population. A NECTA containing a single core urban area with a population of at least 2.5 million may be subdivided to form smaller groupings of cities and towns referred to as NECTA Divisions. The generalized boundaries in this file are based on those defined by OMB based on the 2010 Census, published in 2013, and updated in 2015, 2017, and 2018.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Kristen Carney (2024). Illinois Cities by Population [Dataset]. https://www.illinois-demographics.com/cities_by_population

Illinois Cities by Population

Explore at:
5 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jun 20, 2024
Dataset provided by
Cubit Planning, Inc.
Authors
Kristen Carney
License

https://www.illinois-demographics.com/terms_and_conditionshttps://www.illinois-demographics.com/terms_and_conditions

Area covered
Illinois
Description

A dataset listing Illinois cities by population for 2024.

Search
Clear search
Close search
Google apps
Main menu