Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the United States population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for United States. The dataset can be utilized to understand the population distribution of United States by age. For example, using this dataset, we can identify the largest age group in United States.
Key observations
The largest age group in United States was for the group of age 30 to 34 years years with a population of 22.71 million (6.86%), according to the ACS 2018-2022 5-Year Estimates. At the same time, the smallest age group in United States was the 80 to 84 years years with a population of 6.25 million (1.89%). Source: U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for United States Population by Age. You can refer the same here
Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
The estimated median age gives an idea of the age distribution of the population in a given area. A greater median age would suggest that the area of interest has a relatively large number of older residents, while a lower median age suggests that the area has a relatively large number of younger residents.
Champaign County’s estimated median age has risen for over a decade, but has always stayed between 28 and 31. Year-to-year changes from 2017 to 2019 were statistically significant, but not from 2019 to 2023. The Champaign County estimated median age has been consistently younger than the estimated median ages of the United States and State of Illinois. Champaign County’s figure is likely impacted to some degree by the large student population associated with the University of Illinois.
The estimated median age does not provide a significant amount of detail, and it does not provide any information on why the estimated median age is what it is. However, when placed in the context of other pieces of data and other indicators, it is a valuable starting point in understanding county demographics.
Estimated median age data was sourced from the U.S. Census Bureau’s American Community Survey (ACS) 1-Year Estimates, which are released annually.
As with any datasets that are estimates rather than exact counts, it is important to take into account the margins of error (listed in the column beside each figure) when drawing conclusions from the data.
Due to the impact of the COVID-19 pandemic, instead of providing the standard 1-year data products, the Census Bureau released experimental estimates from the 1-year data in 2020. This includes a limited number of data tables for the nation, states, and the District of Columbia. The Census Bureau states that the 2020 ACS 1-year experimental tables use an experimental estimation methodology and should not be compared with other ACS data. For these reasons, and because data is not available for Champaign County, no data for 2020 is included in this Indicator.
For interested data users, the 2020 ACS 1-Year Experimental data release includes a dataset on Median Age by Sex.
Sources: U.S. Census Bureau; American Community Survey, 2023 American Community Survey 1-Year Estimates, Table S0101; generated by CCRPC staff; using data.census.gov; (8 October 2024).; U.S. Census Bureau; American Community Survey, 2022 American Community Survey 1-Year Estimates, Table S0101; generated by CCRPC staff; using data.census.gov; (6 October 2023).; U.S. Census Bureau; American Community Survey, 2021 American Community Survey 1-Year Estimates, Table S0101; generated by CCRPC staff; using data.census.gov; (13 October 2022).; U.S. Census Bureau; American Community Survey, 2019 American Community Survey 1-Year Estimates, Table S0101; generated by CCRPC staff; using data.census.gov; (7 April 2021).; U.S. Census Bureau; American Community Survey, 2018 American Community Survey 1-Year Estimates, Table S0101; generated by CCRPC staff; using data.census.gov; (7 April 2021).; U.S. Census Bureau; American Community Survey, 2017 American Community Survey 1-Year Estimates, Table S0101; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2016 American Community Survey 1-Year Estimates, Table S0101; generated by CCRPC staff; using American FactFinder; (14 September 2017).; U.S. Census Bureau; American Community Survey, 2015 American Community Survey 1-Year Estimates, Table S0101; generated by CCRPC staff; using American FactFinder; (19 September 2016).; U.S. Census Bureau; American Community Survey, 2014 American Community Survey 1-Year Estimates, Table S0101; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2013 American Community Survey 1-Year Estimates, Table S0101; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2012 American Community Survey 1-Year Estimates, Table S0101; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2011 American Community Survey 1-Year Estimates, Table S0101; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2010 American Community Survey 1-Year Estimates, Table S0101; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2009 American Community Survey 1-Year Estimates, Table S0101; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2008 American Community Survey 1-Year Estimates, Table S0101; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2007 American Community Survey 1-Year Estimates, Table S0101; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2006 American Community Survey 1-Year Estimates, Table S0101; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2005 American Community Survey 1-Year Estimates, Table S0101; generated by CCRPC staff; using American FactFinder; (16 March 2016).
By Amber Thomas [source]
This dataset provides an estimation of broadband usage in the United States, focusing on how many people have access to broadband and how many are actually using it at broadband speeds. Through data collected by Microsoft from our services, including package size and total time of download, we can estimate the throughput speed of devices connecting to the internet across zip codes and counties.
According to Federal Communications Commission (FCC) estimates, 14.5 million people don't have access to any kind of broadband connection. This data set aims to address this contrast between those with estimated availability but no actual use by providing more accurate usage numbers downscaled to county and zip code levels. Who gets counted as having access is vastly important -- it determines who gets included in public funding opportunities dedicated solely toward closing this digital divide gap. The implications can be huge: millions around this country could remain invisible if these number aren't accurately reported or used properly in decision-making processes.
This dataset includes aggregated information about these locations with less than 20 devices for increased accuracy when estimating Broadband Usage in the United States-- allowing others to use it for developing solutions that improve internet access or label problem areas accurately where no real or reliable connectivity exists among citizens within communities large and small throughout the US mainland.. Please review the license terms before using these data so that you may adhere appropriately with stipulations set forth under Microsoft's Open Use Of Data Agreement v1.0 agreement prior to utilizing this dataset for your needs-- both professional and educational endeavors alike!
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
How to Use the US Broadband Usage Dataset
This dataset provides broadband usage estimates in the United States by county and zip code. It is ideally suited for research into how broadband connects households, towns and cities. Understanding this information is vital for closing existing disparities in access to high-speed internet, and for devising strategies for making sure all Americans can stay connected in a digital world.
The dataset contains six columns: - County – The name of the county for which usage statistics are provided. - Zip Code (5-Digit) – The 5-digit zip code from which usage data was collected from within that county or metropolitan area/micro area/divisions within states as reported by the US Census Bureau in 2018[2].
- Population (Households) – Estimated number of households defined according to [3] based on data from the US Census Bureau American Community Survey's 5 Year Estimates[4].
- Average Throughput (Mbps)- Average Mbps download speed derived from a combination of data collected anonymous devices connected through Microsoft services such as Windows Update, Office 365, Xbox Live Core Services, etc.[5]
- Percent Fast (> 25 Mbps)- Percentage of machines with throughput greater than 25 Mbps calculated using [6]. 6) Percent Slow (< 3 Mbps)- Percentage of machines with throughput less than 3Mbps calculated using [7].
- Targeting marketing campaigns based on broadband use. Companies can use the geographic and demographic data in this dataset to create targeted advertising campaigns that are tailored to individuals living in areas where broadband access is scarce or lacking.
- Creating an educational platform for those without reliable access to broadband internet. By leveraging existing technologies such as satellite internet, media streaming services like Netflix, and platforms such as Khan Academy or EdX, those with limited access could gain access to new educational options from home.
- Establishing public-private partnerships between local governments and telecom providers need better data about gaps in service coverage and usage levels in order to make decisions about investments into new infrastructure buildouts for better connectivity options for rural communities
If you use this dataset in your research, please credit the original authors. Data Source
See the dataset description for more information.
File: broadband_data_2020October.csv
If you use this dataset in your research,...
https://github.com/nytimes/covid-19-data/blob/master/LICENSEhttps://github.com/nytimes/covid-19-data/blob/master/LICENSE
The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.
Since the first reported coronavirus case in Washington State on Jan. 21, 2020, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.
We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.
The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.
List of the data tables as part of the Immigration system statistics Home Office release. Summary and detailed data tables covering the immigration system, including out-of-country and in-country visas, asylum, detention, and returns.
If you have any feedback, please email MigrationStatsEnquiries@homeoffice.gov.uk.
The Microsoft Excel .xlsx files may not be suitable for users of assistive technology.
If you use assistive technology (such as a screen reader) and need a version of these documents in a more accessible format, please email MigrationStatsEnquiries@homeoffice.gov.uk
Please tell us what format you need. It will help us if you say what assistive technology you use.
Immigration system statistics, year ending June 2025
Immigration system statistics quarterly release
Immigration system statistics user guide
Publishing detailed data tables in migration statistics
Policy and legislative changes affecting migration to the UK: timeline
Immigration statistics data archives
https://assets.publishing.service.gov.uk/media/689efececc5ef8b4c5fc448c/passenger-arrivals-summary-jun-2025-tables.ods">Passenger arrivals summary tables, year ending June 2025 (ODS, 31.3 KB)
‘Passengers refused entry at the border summary tables’ and ‘Passengers refused entry at the border detailed datasets’ have been discontinued. The latest published versions of these tables are from February 2025 and are available in the ‘Passenger refusals – release discontinued’ section. A similar data series, ‘Refused entry at port and subsequently departed’, is available within the Returns detailed and summary tables.
https://assets.publishing.service.gov.uk/media/689efd8307f2cc15c93572d8/electronic-travel-authorisation-datasets-jun-2025.xlsx">Electronic travel authorisation detailed datasets, year ending June 2025 (MS Excel Spreadsheet, 57.1 KB)
ETA_D01: Applications for electronic travel authorisations, by nationality
ETA_D02: Outcomes of applications for electronic travel authorisations, by nationality
https://assets.publishing.service.gov.uk/media/68b08043b430435c669c17a2/visas-summary-jun-2025-tables.ods">Entry clearance visas summary tables, year ending June 2025 (ODS, 56.1 KB)
https://assets.publishing.service.gov.uk/media/689efda51fedc616bb133a38/entry-clearance-visa-outcomes-datasets-jun-2025.xlsx">Entry clearance visa applications and outcomes detailed datasets, year ending June 2025 (MS Excel Spreadsheet, 29.6 MB)
Vis_D01: Entry clearance visa applications, by nationality and visa type
Vis_D02: Outcomes of entry clearance visa applications, by nationality, visa type, and outcome
Additional data relating to in country and overseas Visa applications can be fo
VITAL SIGNS INDICATOR Migration (EQ4)
FULL MEASURE NAME Migration flows
LAST UPDATED December 2018
DESCRIPTION Migration refers to the movement of people from one location to another, typically crossing a county or regional boundary. Migration captures both voluntary relocation – for example, moving to another region for a better job or lower home prices – and involuntary relocation as a result of displacement. The dataset includes metropolitan area, regional, and county tables.
DATA SOURCE American Community Survey County-to-County Migration Flows 2012-2015 5-year rolling average http://www.census.gov/topics/population/migration/data/tables.All.html
CONTACT INFORMATION vitalsigns.info@bayareametro.gov
METHODOLOGY NOTES (across all datasets for this indicator) Data for migration comes from the American Community Survey; county-to-county flow datasets experience a longer lag time than other standard datasets available in FactFinder. 5-year rolling average data was used for migration for all geographies, as the Census Bureau does not release 1-year annual data. Data is not available at any geography below the county level; note that flows that are relatively small on the county level are often within the margin of error. The metropolitan area comparison was performed for the nine-county San Francisco Bay Area, in addition to the primary MSAs for the nine other major metropolitan areas, by aggregating county data based on current metropolitan area boundaries. Data prior to 2011 is not available on Vital Signs due to inconsistent Census formats and a lack of net migration statistics for prior years. Only counties with a non-negligible flow are shown in the data; all other pairs can be assumed to have zero migration.
Given that the vast majority of migration out of the region was to other counties in California, California counties were bundled into the following regions for simplicity: Bay Area: Alameda, Contra Costa, Marin, Napa, San Francisco, San Mateo, Santa Clara, Solano, Sonoma Central Coast: Monterey, San Benito, San Luis Obispo, Santa Barbara, Santa Cruz Central Valley: Fresno, Kern, Kings, Madera, Merced, Tulare Los Angeles + Inland Empire: Imperial, Los Angeles, Orange, Riverside, San Bernardino, Ventura Sacramento: El Dorado, Placer, Sacramento, Sutter, Yolo, Yuba San Diego: San Diego San Joaquin Valley: San Joaquin, Stanislaus Rural: all other counties (23)
One key limitation of the American Community Survey migration data is that it is not able to track emigration (movement of current U.S. residents to other countries). This is despite the fact that it is able to quantify immigration (movement of foreign residents to the U.S.), generally by continent of origin. Thus the Vital Signs analysis focuses primarily on net domestic migration, while still specifically citing in-migration flows from countries abroad based on data availability.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Cultural diversity in the U.S. has led to great variations in names and naming traditions and names have been used to express creativity, personality, cultural identity, and values. Source: https://en.wikipedia.org/wiki/Naming_in_the_United_States
This public dataset was created by the Social Security Administration and contains all names from Social Security card applications for births that occurred in the United States after 1879. Note that many people born before 1937 never applied for a Social Security card, so their names are not included in this data. For others who did apply, records may not show the place of birth, and again their names are not included in the data.
All data are from a 100% sample of records on Social Security card applications as of the end of February 2015. To safeguard privacy, the Social Security Administration restricts names to those with at least 5 occurrences.
Fork this kernel to get started with this dataset.
https://bigquery.cloud.google.com/dataset/bigquery-public-data:usa_names
https://cloud.google.com/bigquery/public-data/usa-names
Dataset Source: Data.gov. This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source — http://www.data.gov/privacy-policy#data_policy — and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.
Banner Photo by @dcp from Unplash.
What are the most common names?
What are the most common female names?
Are there more female or male names?
Female names by a wide margin?
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
Overall Demographic Characteristics of People Receiving COVID-19 Vaccinations in the United States at national level. Data represents all vaccine partners including jurisdictional partner clinics, retail pharmacies, long-term care facilities, dialysis centers, Federal Emergency Management Agency and Health Resources and Services Administration partner sites, and federal entity facilities.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Non-Hispanic population of Greenland by race. It includes the distribution of the Non-Hispanic population of Greenland across various race categories as identified by the Census Bureau. The dataset can be utilized to understand the Non-Hispanic population distribution of Greenland across relevant racial categories.
Key observations
Of the Non-Hispanic population in Greenland, the largest racial group is White alone with a population of 1,161 (83.47% of the total Non-Hispanic population).
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Greenland Population by Race & Ethnicity. You can refer the same here
This dataset provides benefit, program, and resource information for over 80 health and human services available to NYC residents in all eleven local law languages. The data is kept up-to-date, including the most recent applications, eligibility requirements, and application dates. Information in this dataset is used on ACCESS NYC, Generation NYC, and Growing Up NYC. Reach out to products@nycopportunity.nyc.gov if you have any questions about this dataset. This data makes it easier for NYC residents to discover and be aware of multiple benefits they may be eligible for. NYC Opportunity Product team works with 15+ government agencies to collect and update this data. Each record in the dataset represents a benefit or program. Blank fields are NULL values in this dataset. The data can be used to develop new websites or directory resources to help residents to discover benefits they need. For access to the multilingual version of this dataset, please follow this link: https://data.cityofnewyork.us/City-Government/Benefits-and-Programs-Multilingual-Dataset/yjpx-srhp
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Home Ownership Rate in the United States decreased to 65.10 percent in the first quarter of 2025 from 65.70 percent in the fourth quarter of 2024. This dataset provides the latest reported value for - United States Home Ownership Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Non-Hispanic population of United States by race. It includes the distribution of the Non-Hispanic population of United States across various race categories as identified by the Census Bureau. The dataset can be utilized to understand the Non-Hispanic population distribution of United States across relevant racial categories.
Key observations
Of the Non-Hispanic population in United States, the largest racial group is White alone with a population of 193.34 million (71.80% of the total Non-Hispanic population).
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for United States Population by Race & Ethnicity. You can refer the same here
Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve. The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj. The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 . The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 . The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed. COVID-19 cases and associated deaths that have been reported among Connecticut residents, broken down by race and ethnicity. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Deaths reported to the either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the COVID-19 update. The following data show the number of COVID-19 cases and associated deaths per 100,000 population by race and ethnicity. Crude rates represent the total cases or deaths per 100,000 people. Age-adjusted rates consider the age of the person at diagnosis or death when estimating the rate and use a standardized population to provide a fair comparison between population groups with different age distributions. Age-adjustment is important in Connecticut as the median age of among the non-Hispanic white population is 47 years, whereas it is 34 years among non-Hispanic blacks, and 29 years among Hispanics. Because most non-Hispanic white residents who died were over 75 years of age, the age-adjusted rates are lower than the unadjusted rates. In contrast, Hispanic residents who died tend to be younger than 75 years of age which results in higher age-adjusted rates. The population data used to calculate rates is based on the CT DPH population statistics for 2019, which is available online here: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Population/Population-Statistics. Prior to 5/10/2021, the population estimates from 2018 were used. Rates are standardized to the 2000 US Millions Standard population (data available here: https://seer.cancer.gov/stdpopulations/). Standardization was done using 19 age groups (0, 1-4, 5-9, 10-14, ..., 80-84, 85 years and older). More information about direct standardization for age adjustment is available here: https://www.cdc.gov/nchs/data/statnt/statnt06rv.pdf Categories are mutually exclusive. The category “multiracial” includes people who answered ‘yes’ to more than one race category. Counts may not add up to total case counts as data on race and ethnicity may be missing. Age adjusted rates calculated only for groups with more than 20 deaths. Abbreviation: NH=Non-Hispanic. Data on Connecticut deaths were obtained from the Connecticut Deaths Registry maintained by the DPH Office of Vital Records. Cause of death was determined by a death certifier (e.g., physician, APRN, medical
NOTE: This dataset has been retired and marked as historical-only. The recommended dataset to use in its place is https://data.cityofchicago.org/Health-Human-Services/COVID-19-Vaccination-Coverage-Citywide/6859-spec. COVID-19 vaccinations administered to Chicago residents based on the reported race-ethnicity and age group of the person vaccinated, as provided by the medical provider in the Illinois Comprehensive Automated Immunization Registry Exchange (I-CARE). Vaccination Status Definitions: ·People with at least one vaccine dose: Number of people who have received at least one dose of any COVID-19 vaccine, including the single-dose Johnson & Johnson COVID-19 vaccine. ·People with a completed vaccine series: Number of people who have completed a primary COVID-19 vaccine series. Requirements vary depending on age and type of primary vaccine series received. ··People with an original booster dose: Number of people who have a completed vaccine series and have received at least one additional monovalent dose. This includes people who received a monovalent booster dose and immunocompromised people who received an additional primary dose of COVID-19 vaccine. Monovalent doses were created from the original strain of the virus that causes COVID-19. People with a bivalent dose: Number of people who received a bivalent (updated) dose of vaccine. Updated, bivalent doses became available in Fall 2022 and were created with the original strain of COVID-19 and newer Omicron variant strains. Weekly cumulative totals by vaccination status are shown for each combination of race-ethnicity and age group. Note that each age group has a row where race-ethnicity is "All" so care should be taken when summing rows. Vaccinations are counted based on the date on which they were administered. Weekly cumulative totals are reported from the week ending Saturday, December 19, 2020 onward (after December 15, when vaccines were first administered in Chicago) through the Saturday prior to the dataset being updated. Population counts are from the U.S. Census Bureau American Community Survey (ACS) 2019 1-year estimates. For some of the age groups by which COVID-19 vaccine has been authorized in the United States, race-ethnicity distributions were specifically reported in the ACS estimates. For others, race-ethnicity distributions were estimated by the Chicago Department of Public Health (CDPH) by weighting the available race-ethnicity distributions, using proportions of constituent age groups. Coverage percentages are calculated based on the cumulative number of people in each population subgroup (age group by race-ethnicity) who have each vaccination status as of the date, divided by the estimated number of Chicago residents in each subgroup. Actual counts may exceed population estimates and lead to >100% coverage, especially in small race-ethnicity subgroups of each age group. All coverage percentages are capped at 99%. All data are provisional and subject to change. Information is updated as additional details are received and it is, in fact, very common for recent dates to be incomplete and to be updated as time goes on. At any given time, this dataset reflects data currently known to CDPH. Numbers in this dataset may differ from other public sources due to when data are reported and how City of Chicago boundaries are defined. CDPH uses the most complete data available to estimate COVID-19 vaccination coverage among Chicagoans, but there are several limitations that impact our estimates. Data reported in I-CARE only include doses administered in Illinois and some doses administered outside of Illinois reported historically by Illinois providers. Doses administered by the federal Bureau of Prisons and Department of Defense are also not currently reported in I-CARE. The Veterans Health Administration began reporting doses in I-CARE beginning September 2022. Due to people receiving vaccinations that are not recorded in I-CARE that c
This dataset shows the incomes of residents. The data is part of the Census Transportation Planning Package (CTPP), and is the result of a cooperative effort between various groups including the State Departments of Transportation, U.S. Census Bureau, and the Federal Highway Administration. The data is a special tabulation of responses from households completing the decennial census long form. The data was collected in 2000 and is shown at tract level. This data can be found at http://www.transtats.bts.gov/Fields.asp?Table_ID=1338.
The Mortality - Infant Deaths (from Linked Birth / Infant Death Records) online databases on CDC WONDER provide counts and rates for deaths of children under 1 year of age, occuring within the United States to U.S. residents. Information from death certificates has been linked to corresponding birth certificates. Data are available by county of mother's residence, child's age, underlying cause of death, sex, birth weight, birth plurality, birth order, gestational age at birth, period of prenatal care, maternal race and ethnicity, maternal age, maternal education and marital status. Data are available since 1995. The data are produced by the National Center for Health Statistics.
The Detailed Mortality - Underlying Cause of Death data on CDC WONDER are county-level national mortality and population data spanning the years 1999-2009. Data are based on death certificates for U.S. residents. Each death certificate contains a single underlying cause of death, and demographic data. The number of deaths, crude death rates, age-adjusted death rates, standard errors and 95% confidence intervals for death rates can be obtained by place of residence (total U.S., region, state, and county), age group (including infants and single-year-of-age cohorts), race (4 groups), Hispanic ethnicity, sex, year of death, and cause-of-death (4-digit ICD-10 code or group of codes, injury intent and mechanism categories, or drug and alcohol related causes), year, month and week day of death, place of death and whether an autopsy was performed. The data are produced by the National Center for Health Statistics.
This dataset contains counts of live births for California counties based on information entered on birth certificates. Final counts are derived from static data and include out of state births to California residents, whereas provisional counts are derived from incomplete and dynamic data. Provisional counts are based on the records available when the data was retrieved and may not represent all births that occurred during the time period.
The final data tables include both births that occurred in California regardless of the place of residence (by occurrence) and births to California residents (by residence), whereas the provisional data table only includes births that occurred in California regardless of the place of residence (by occurrence). The data are reported as totals, as well as stratified by parent giving birth's age, parent giving birth's race-ethnicity, and birth place type. See temporal coverage for more information on which strata are available for which years.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Non-Hispanic population of May by race. It includes the distribution of the Non-Hispanic population of May across various race categories as identified by the Census Bureau. The dataset can be utilized to understand the Non-Hispanic population distribution of May across relevant racial categories.
Key observations
With a zero Hispanic population, May is 100% Non-Hispanic. Among the Non-Hispanic population, the largest racial group is White alone with a population of 29 (96.67% of the total Non-Hispanic population).
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for May Population by Race & Ethnicity. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Non-Hispanic population of Montana by race. It includes the distribution of the Non-Hispanic population of Montana across various race categories as identified by the Census Bureau. The dataset can be utilized to understand the Non-Hispanic population distribution of Montana across relevant racial categories.
Key observations
Of the Non-Hispanic population in Montana, the largest racial group is White alone with a population of 929,206 (87.95% of the total Non-Hispanic population).
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Montana Population by Race & Ethnicity. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the United States population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for United States. The dataset can be utilized to understand the population distribution of United States by age. For example, using this dataset, we can identify the largest age group in United States.
Key observations
The largest age group in United States was for the group of age 30 to 34 years years with a population of 22.71 million (6.86%), according to the ACS 2018-2022 5-Year Estimates. At the same time, the smallest age group in United States was the 80 to 84 years years with a population of 6.25 million (1.89%). Source: U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for United States Population by Age. You can refer the same here