CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Explore the Top 50 US Tech Companies Dataset with metrics like revenue, market cap, employee size, and more. Perfect for market research, business analysis, and AI projects.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset offers a detailed collection of US-GAAP financial data extracted from the financial statements of exchange-listed U.S. companies, as submitted to the U.S. Securities and Exchange Commission (SEC) via the EDGAR database. Covering filings from January 2009 onwards, this dataset provides key financial figures reported by companies in accordance with U.S. Generally Accepted Accounting Principles (GAAP).
This dataset primarily relies on the SEC's Financial Statement Data Sets and EDGAR APIs: - SEC Financial Statement Data Sets - EDGAR Application Programming Interfaces
In instances where specific figures were missing from these sources, data was directly extracted from the companies' financial statements to ensure completeness.
Please note that the dataset presents financial figures exactly as reported by the companies, which may occasionally include errors. A common issue involves incorrect reporting of scaling factors in the XBRL format. XBRL supports two tag attributes related to scaling: 'decimals' and 'scale.' The 'decimals' attribute indicates the number of significant decimal places but does not affect the actual value of the figure, while the 'scale' attribute adjusts the value by a specific factor.
However, there are several instances, numbering in the thousands, where companies have incorrectly used the 'decimals' attribute (e.g., 'decimals="-6"') under the mistaken assumption that it controls scaling. This is not correct, and as a result, some figures may be inaccurately scaled. This dataset does not attempt to detect or correct such errors; it aims to reflect the data precisely as reported by the companies. A future version of the dataset may be introduced to address and correct these issues.
The source code for data extraction is available here
This private company dataset provides an in-depth view of any specific company’s truck-based supply chain and its relationships with other facilities and companies within the continental US.
Also, using robust supply chain data you will be able to map US facilities (including factories, warehouses, and retail outlets).
With this private company dataset, it is possible to track the movement of trucks and devices between locations to identify supply chain connections and company data insights.
Our Machine learning algorithms ingest 7-15bn daily events to estimate the volume of goods transported between locations. Consequently, we can map supply chain connections between:
•Different companies (expressed as a percentage of volume transported).
•Locations owned by the same company (e.g. warehouse to shop).
With this novel geolocation approach, it is possible to "draw" a knowledge graph of any private or public company´s relations with other companies within the country.
This solution, in the form of a dataset, provides an in-depth view of any specific company’s truck-based supply chain and its relationships with other facilities and companies within the continental United States.
Use cases:
Identification and understanding of relations company-to-company: It helps to identify and infer relationships and connections between specific companies or facilities and between sectors/industries.
Identification and understanding of relations place-to-place: A logistics and domestic distribution supply chain can be mapped, both nationwide and state-wide in the US, and across countries in Europe.
Visualization and mapping of an entire supply chain network.
Tracking of products in any distribution or supply chain.
Risk assessment
Correlation analysis.
Disruption analysis.
Analysis of illicit networks and tracking of illegal use of corporate assets.
Improvement of casualty risk management.
Optimization of supply chain risk management.
Security and compliance.
Identification of not only the first tier of suppliers in the value chain, but also 2nd and 3rd tier suppliers, and more.
Current largest use case: global corporation using it to model risk at a facility level (+100,000 locations).
Why should you trust PREDIK Data-Driven? In 2023, we were listed as Datarade's top providers. Why? Our solutions for private company data, supply chain data, and B2B data adapt according to the specific needs of companies. Also, PREDIK methodology focuses on the client and the necessary elements for the success of their projects.
The Economic Census is the U.S. Government's official five-year measure of American business and the economy. It is conducted by the U.S. Census Bureau, and response is required by law. In October through December of the census year, forms are sent out to nearly 4 million businesses, including large, medium and small companies representing all U.S. locations and industries. Respondents were asked to provide a range of operational and performance data for their companies.This dataset presents data on major categories of products sold/services rendered for establishments of firms with payroll by kind of business.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about companies in the United States. It has 4,752 rows. It features 17 columns including sector, industry, website, and city.
With 56 Million Businesses in the United States of America, Techsalerator has access to the highest B2B count of Data/ Business Data in the country.
Thanks to our unique tools and large data specialist team, we are able to select the ideal targeted dataset based on the unique elements such as sales volume of a company, the company's location, no. of employees etc...
Whether you are looking for an entire fill install, access to our API's or if you are just looking for a one-time targeted purchase, get in touch with our company and we will fulfill your international data need.
We cover all states and cities in the country : Example covered.
All states :
Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware Florida Georgia Hawaii Idaho IllinoisIndiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri MontanaNebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon PennsylvaniaRhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming
A few cities : New York City NY Los Angeles CA Chicago IL Houston TX Phoenix AZ Philadelphia PA San Antonio TX San Diego CA Dallas TX Austin TX San Jose CA Fort Worth TX Jacksonville FL Columbus OH Charlotte NC Indianapolis IN San Francisco CA Seattle WA Denver CO Washington DC Boston MA El Paso TX Nashville TN Oklahoma City OK Las Vegas NV Detroit MI Portland OR Memphis TN Louisville KY Milwaukee WI Baltimore MD Albuquerque NM Tucson AZ Mesa AZ Fresno CA Sacramento CA Atlanta GA Kansas City MO Colorado Springs CO Raleigh NC Omaha NE Miami FL Long Beach CA Virginia Beach VA Oakland CA Minneapolis MN Tampa FL Tulsa OK Arlington TX Wichita KS Bakersfield CA Aurora CO New Orleans LA Cleveland OH Anaheim CA Henderson NV Honolulu HI Riverside CA Santa Ana CA Corpus Christi TX Lexington KY San Juan PR Stockton CA St. Paul MN Cincinnati OH Greensboro NC Pittsburgh PA Irvine CA St. Louis MO Lincoln NE Orlando FL Durham NC Plano TX Anchorage AK Newark NJ Chula Vista CA Fort Wayne IN Chandler AZ Toledo OH St. Petersburg FL Reno NV Laredo TX Scottsdale AZ North Las Vegas NV Lubbock TX Madison WI Gilbert AZ Jersey City NJ Glendale AZ Buffalo NY Winston-Salem NC Chesapeake VA Fremont CA Norfolk VA Irving TX Garland TX Paradise NV Arlington VA Richmond VA Hialeah FL Boise ID Spokane WA Frisco TX Moreno Valley CA Tacoma WA Fontana CA Modesto CA Baton Rouge LA Port St. Lucie FL San Bernardino CA McKinney TX Fayetteville NC Santa Clarita CA Des Moines IA Oxnard CA Birmingham AL Spring Valley NV Huntsville AL Rochester NY Cape Coral FL Tempe AZ Grand Rapids MI Yonkers NY Overland Park KS Salt Lake City UT Amarillo TX Augusta GA Columbus GA Tallahassee FL Montgomery AL Huntington Beach CA Akron OH Little Rock AR Glendale CA Grand Prairie TX Aurora IL Sunrise Manor NV Ontario CA Sioux Falls SD Knoxville TN Vancouver WA Mobile AL Worcester MA Chattanooga TN Brownsville TX Peoria AZ Fort Lauderdale FL Shreveport LA Newport News VA Providence RI Elk Grove CA Rancho Cucamonga CA Salem OR Pembroke Pines FL Santa Rosa CA Eugene OR Oceanside CA Cary NC Fort Collins CO Corona CA Enterprise NV Garden Grove CA Springfield MO Clarksville TN Bayamon PR Lakewood CO Alexandria VA Hayward CA Murfreesboro TN Killeen TX Hollywood FL Lancaster CA Salinas CA Jackson MS Midland TX Macon County GA Kansas City KS Palmdale CA Sunnyvale CA Springfield MA Escondido CA Pomona CA Bellevue WA Surprise AZ Naperville IL Pasadena TX Denton TX Roseville CA Joliet IL Thornton CO McAllen TX Paterson NJ Rockford IL Carrollton TX Bridgeport CT Miramar FL Round Rock TX Metairie LA Olathe KS Waco TX
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
There's a need for information on large companies in this age of big data.
In this dataset you'll find info on 500 large American corporations and their business models.
This data comes from https://data.world/bgadoci/open-data-500-companies.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about companies in the United States. It has 817,096 rows. It features 30 columns including city, country, employees, and employee type.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Financial Metrics Dataset of US companies obtained from 10-K filings (in XBRL format) from SEC. The dataset contains financial metric answers for 9,263 US companies and in total 800,714 metric answers related to 28 financial metrics.
This dataset provides an in-depth view of any specific company’s truck-based supply chain and its relationships with other facilities and companies within the continental US. We map US facilities (including factories, warehouses, and retail outlets) to companies. With this dataset, it is possible to track the movement of trucks and devices between locations to identify supply chain connections. Machine learning algorithms ingest 7-15bn daily events to estimate the volume of goods transported between locations. Consequently, we can map supply chain connections between: •Different companies (expressed as a percentage of volume transported). •Locations owned by the same company (e.g. warehouse to shop). With this novel geolocation approach, it is possible to "draw" a knowledge graph of any private or public company´s relations with other companies within the country. This solution, in the form of a dataset, provides an in-depth view into any specific company’s truck-based supply chain and its relationships with other facilities and companies within the continental United States. Use cases: - Identification and understanding of relations company-to-company: It helps to identify and infer relationships and connections between specific companies or facilities and between sectors/industries. - Identification and understanding of relations place-to-place: A logistics and domestic distribution supply chain can be mapped, both nationwide and state-wide in the US, and across countries in Europe. - Visualization and mapping of an entire supply chain network. - Tracking of products in any distribution or supply chain. - Risk assessment - Correlation analysis. - Disruption analysis. - Analysis of illicit networks and tracking of illegal use of corporate assets. - Improvement of casualty risk management. - Optimization of supply chain risk management. - Security and compliance. - Identification of not only the first tier of suppliers in the value chain, but also 2nd and 3rd tier suppliers, and more. Current largest use case: global corporation using it to model risk at a facility level (+100,000 locations).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Number of Listed Domestic Companies: Total data was reported at 4,336.000 Unit in 2017. This records an increase from the previous number of 4,331.000 Unit for 2016. United States US: Number of Listed Domestic Companies: Total data is updated yearly, averaging 5,930.000 Unit from Dec 1980 (Median) to 2017, with 38 observations. The data reached an all-time high of 8,090.000 Unit in 1996 and a record low of 4,102.000 Unit in 2012. United States US: Number of Listed Domestic Companies: Total data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Financial Sector. Listed domestic companies, including foreign companies which are exclusively listed, are those which have shares listed on an exchange at the end of the year. Investment funds, unit trusts, and companies whose only business goal is to hold shares of other listed companies, such as holding companies and investment companies, regardless of their legal status, are excluded. A company with several classes of shares is counted once. Only companies admitted to listing on the exchange are included.; ; World Federation of Exchanges database.; Sum; Stock market data were previously sourced from Standard & Poor's until they discontinued their 'Global Stock Markets Factbook' and database in April 2013. Time series have been replaced in December 2015 with data from the World Federation of Exchanges and may differ from the previous S&P definitions and methodology.
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
The Open Data 500, funded by the John S. and James L. Knight Foundation (http://www.knightfoundation.org/) and conducted by the GovLab, is the first comprehensive study of U.S. companies that use open government data to generate new business and develop new products and services.
Provide a basis for assessing the economic value of government open data
Encourage the development of new open data companies
Foster a dialogue between government and business on how government data can be made more useful
The Open Data 500 study is conducted by the GovLab at New York University with funding from the John S. and James L. Knight Foundation. The GovLab works to improve people’s lives by changing how we govern, using technology-enabled solutions and a collaborative, networked approach. As part of its mission, the GovLab studies how institutions can publish the data they collect as open data so that businesses, organizations, and citizens can analyze and use this information.
The Open Data 500 team has compiled our list of companies through (1) outreach campaigns, (2) advice from experts and professional organizations, and (3) additional research.
Outreach Campaign
Mass email to over 3,000 contacts in the GovLab network
Mass email to over 2,000 contacts OpenDataNow.com
Blog posts on TheGovLab.org and OpenDataNow.com
Social media recommendations
Media coverage of the Open Data 500
Attending presentations and conferences
Expert Advice
Recommendations from government and non-governmental organizations
Guidance and feedback from Open Data 500 advisors
Research
Companies identified for the book, Open Data Now
Companies using datasets from Data.gov
Directory of open data companies developed by Deloitte
Online Open Data Userbase created by Socrata
General research from publicly available sources
The Open Data 500 is not a rating or ranking of companies. It covers companies of different sizes and categories, using various kinds of data.
The Open Data 500 is not a competition, but an attempt to give a broad, inclusive view of the field.
The Open Data 500 study also does not provide a random sample for definitive statistical analysis. Since this is the first thorough scan of companies in the field, it is not yet possible to determine the exact landscape of open data companies.
Listing of all (active and inactive) businesses registered with the Office of Finance. An "active" business is defined as a registered business whose owner has not notified the Office of Finance of a cease of business operations. Update Interval: Monthly. NAICS Codes are from 2007 NAICS: https://www.census.gov/cgi-bin/sssd/naics/naicsrch?chart=2007
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
Company Reports Dataset
Description
This dataset contains ESG (Environmental, Social, and Governance) sustainability reports from various companies. It includes data like company details, report categories, textual analysis of the reports, and more.
Dataset Structure
id: Unique identifier for each report entry. document_category: Classification of the document (e.g., ESG sustainability report). year: Publication year of the report. company_name: Name of the… See the full description on the dataset page: https://huggingface.co/datasets/DataNeed/company-reports.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about companies in the United States. It has 817,096 rows. It features 6 columns including city, country, employees, and employee type.
Dataset containing over 5000 data metrics (including raw data and BQ calculated scores & metrics) for over 4000 public companies (~95% of the Russell 3000). Includes financials (from SEC filings) as well as data that is not reported to the SEC, including monthly headcount, detailed employee benefits data, credit events related to contributions to benefits plans. Also includes BQ scores, industry and macro statistics that provide a comprehensive view of the sector & industry.
BQ's Public Companies dataset is applicable to both quantitative investment managers as well as fundamentals public equity investors, who wish to use alternative (non-financial) data to enhance their investment analysis and investment decisions.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Corporate Profits in the United States decreased to 3203.60 USD Billion in the first quarter of 2025 from 3312 USD Billion in the fourth quarter of 2024. This dataset provides the latest reported value for - United States Corporate Profits - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The dataset contains information about world's biggest companies.
Among them you can find companies founded in the US, the UK, Europe, Asia, South America, South Africa, Australia.
The dataset contains information about the year the company was founded, its' revenue and net income in years 2018 - 2020, and the industry.
I have included 2 csv files: the raw csv file if you want to practice cleaning the data, and the clean csv ready to be analyzed.
The third dataset includes the name of all the companies included in the previous datasets and 2 additional columns: number of employees and name of the founder.
In addition there's tesla.csv file containing shares prices for Tesla.
Company Datasets for valuable business insights!
Discover new business prospects, identify investment opportunities, track competitor performance, and streamline your sales efforts with comprehensive Company Datasets.
These datasets are sourced from top industry providers, ensuring you have access to high-quality information:
We provide fresh and ready-to-use company data, eliminating the need for complex scraping and parsing. Our data includes crucial details such as:
You can choose your preferred data delivery method, including various storage options, delivery frequency, and input/output formats.
Receive datasets in CSV, JSON, and other formats, with storage options like AWS S3 and Google Cloud Storage. Opt for one-time, monthly, quarterly, or bi-annual data delivery.
With Oxylabs Datasets, you can count on:
Pricing Options:
Standard Datasets: choose from various ready-to-use datasets with standardized data schemas, priced from $1,000/month.
Custom Datasets: Tailor datasets from any public web domain to your unique business needs. Contact our sales team for custom pricing.
Experience a seamless journey with Oxylabs:
Unlock the power of data with Oxylabs' Company Datasets and supercharge your business insights today!
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Dataset contains US Retail companies with company size from 200-500 workers. For each company, all workers were scrapped as well.
For mode details about scrapping code, you can check my article or GitHub code
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Explore the Top 50 US Tech Companies Dataset with metrics like revenue, market cap, employee size, and more. Perfect for market research, business analysis, and AI projects.