Facebook
TwitterLooking for a dataset on hospitals in the United States? Look no further! This dataset contains information on all of the hospitals registered with Medicare in the US, including their addresses, phone numbers, hospital type, and more. With such a large amount of data, this dataset is perfect for anyone interested in studying the US healthcare system.
This dataset can also be used to study hospital ownership, emergency services
If you want to study the US healthcare system, this dataset is perfect for you. It contains information on all of the hospitals registered with Medicare, including their addresses, phone numbers, hospital type, and more. With such a large amount of data, this dataset is perfect for anyone interested in studying the US healthcare system.
This dataset can also be used to study hospital ownership, emergency services, and EHR usage. In addition, the hospital overall rating and various comparisons are included for safety of care, readmission rates
This dataset was originally published by Centers for Medicare and Medicaid Services and has been modified for this project
File: Hospital_General_Information.csv | Column name | Description | |:-------------------------------------------------------|:----------------------------------------------------------------------------------------------------------| | Hospital Name | The name of the hospital. (String) | | Hospital Name | The name of the hospital. (String) | | Address | The address of the hospital. (String) | | Address | The address of the hospital. (String) | | City | The city in which the hospital is located. (String) | | City | The city in which the hospital is located. (String) | | State | The state in which the hospital is located. (String) | | State | The state in which the hospital is located. (String) | | ZIP Code | The ZIP code of the hospital. (Integer) | | ZIP Code | The ZIP code of the hospital. (Integer) | | County Name | The county in which the hospital is located. (String) | | County Name | The county in which the hospital is located. (String) | | Phone Number | The phone number of the hospital. (String) | | Phone Number | The phone number of the hospital. (String) | | Hospital Type | The type of hospital. (String) | | Hospital Type | The type of hospital. (String) | | Hospital Ownership | The ownership of the hospital. (String) | | Hospital Ownership | The ownership of the hospital. (String) | | Emergency Services | Whether or not the...
Facebook
TwitterThe number of hospitals in the United States was forecast to continuously decrease between 2024 and 2029 by in total 13 hospitals (-0.23 percent). According to this forecast, in 2029, the number of hospitals will have decreased for the twelfth consecutive year to 5,548 hospitals. Depicted is the number of hospitals in the country or region at hand. As the OECD states, the rules according to which an institution can be registered as a hospital vary across countries.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of hospitals in countries like Canada and Mexico.
Facebook
TwitterFrom the Web site: The American Hospital Directory® provides data, statistics, and analytics about more than 7,000 hospitals nationwide. AHD.com® hospital information includes both public and private sources such as Medicare claims data, hospital cost reports, and commercial licensors. AHD® is not affiliated with the American Hospital Association (AHA) and is not a source for AHA Data. Our data are evidence-based and derived from the most definitive sources.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This dataset encapsulates ten years (1999-2008) of clinical care data from 130 US hospitals and integrated delivery networks. Each row pertains to hospital records of diabetic patients who received laboratory tests and medications and had hospital stays of up to 14 days. The primary goal is to predict early readmission of patients within 30 days of discharge. This task is crucial due to the significant impact on healthcare costs and patient outcomes, as many diabetic patients do not receive adequate preventive and therapeutic interventions during hospitalization, leading to poor glycemic control and increased readmissions.
Dataset Characteristics: - Type: Multivariate - Subject Area: Health and Medicine - Associated Tasks: Classification, Clustering - Feature Types: Categorical, Integer - Number of Instances: 101,766 - Number of Features: 47 - Missing Values: Yes
Instance Representation: Instances represent hospital records of patients diagnosed with diabetes.
Data Splits: There are no specific recommendations for data splitting. Standard train-test or three-way holdout splits (train-validation-test) can be used for model selection.
Sensitivity: The dataset includes sensitive information such as age, gender, and race of the patients.
Dataset Details: The dataset includes over 50 features related to patient and hospital outcomes. Data was extracted based on the following criteria: 1. Inpatient encounters (hospital admissions). 2. Diabetic encounters (any type of diabetes diagnosis). 3. Length of stay between 1 and 14 days. 4. Laboratory tests conducted during the encounter. 5. Medications administered during the encounter.
Attributes: - encounter_id: Unique identifier for each encounter. - patient_nbr: Unique identifier for each patient. - race: Race of the patient (e.g., Caucasian, Asian, African American, Hispanic, other). - gender: Gender of the patient (e.g., male, female, unknown/invalid). - age: Age grouped in 10-year intervals (e.g., [0, 10), [10, 20), ..., [90, 100)). - weight: Weight in pounds (contains missing values). - admission_type_id: Integer identifier for admission type (e.g., emergency, urgent, elective, newborn, not available). - discharge_disposition_id: Integer identifier for discharge disposition (e.g., discharged to home, expired, not available). - admission_source_id: Integer identifier for admission source (e.g., physician referral, emergency room, transfer from another hospital). - time_in_hospital: Number of days between admission and discharge.
Additional Information: For a detailed description of all attributes, refer to Table 1 in the paper titled "Impact of HbA1c Measurement on Hospital Readmission Rates: Analysis of 70,000 Clinical Database Patient Records" by Beata Strack, Jonathan DeShazo, Chris Gennings, Juan Olmo, Sebastian Ventura, Krzysztof Cios, and John Clore, published in BioMed Research International, vol. 2014.
Link to Paper: Impact of HbA1c Measurement on Hospital Readmission Rates
Facebook
TwitterMade available through Socrata COVID-19 Plugin via API.
From the source Web site: This dataset is intended to be used as a baseline for understanding the typical bed capacity and average yearly bed utilization of hospitals reporting such information. The date of last update received from each hospital may be varied. While the dataset is not updated in real-time, this information is critical for understanding the impact of a high utilization event, like COVID-19.
Definitive Healthcare is the leading provider of data, intelligence, and analytics on healthcare organizations and practitioners. In this service, Definitive Healthcare provides intelligence on the numbers of licensed beds, staffed beds, ICU beds, and the bed utilization rate for the hospitals in the United States.
Facebook
Twitterhttps://www.usa.gov/government-workshttps://www.usa.gov/government-works
Note: After May 3, 2024, this dataset will no longer be updated because hospitals are no longer required to report data on COVID-19 hospital admissions, hospital capacity, or occupancy data to HHS through CDC’s National Healthcare Safety Network (NHSN). The related CDC COVID Data Tracker site was revised or retired on May 10, 2023.
This dataset represents weekly COVID-19 hospitalization data and metrics aggregated to national, state/territory, and regional levels. COVID-19 hospitalization data are reported to CDC’s National Healthcare Safety Network, which monitors national and local trends in healthcare system stress, capacity, and community disease levels for approximately 6,000 hospitals in the United States. Data reported by hospitals to NHSN and included in this dataset represent aggregated counts and include metrics capturing information specific to COVID-19 hospital admissions, and inpatient and ICU bed capacity occupancy.
Reporting information:
Metric details:
Note: October 27, 2023: Due to a data processing error, reported values for avg_percent_inpatient_beds_occupied_covid_confirmed will appear lower than previously reported values by an average difference of less than 1%. Therefore, previously reported values for avg_percent_inpatient_beds_occupied_covid_confirmed may have been overestimated and should be interpreted with caution.
October 27, 2023: Due to a data processing error, reported values for abs_chg_avg_percent_inpatient_beds_occupied_covid_confirmed will differ from previously reported values by an average absolute difference of less than 1%. Therefore, previously reported values for abs_chg_avg_percent_inpatient_beds_occupied_covid_confirmed should be interpreted with caution.
December 29, 2023: Hospitalization data reported to CDC’s National Healthcare Safety Network (NHSN) through December 23, 2023, should be interpreted with caution due to potential reporting delays that are impacted by Christmas and New Years holidays. As a result, metrics including new hospital admissions for COVID-19 and influenza and hospital occupancy may be underestimated for the week ending December 23, 2023.
January 5, 2024: Hospitalization data reported to CDC’s National Healthcare Safety Network (NHSN) through December 30, 2023 should be interpreted with caution due to potential reporting delays that are impacted by Christmas and New Years holidays. As a result, metrics including new hospital admissions for COVID-19 and influenza and hospital occupancy may be underestimated for the week ending December 30, 2023.
Facebook
TwitterThe "COVID-19 Reported Patient Impact and Hospital Capacity by Facility" dataset from the U.S. Department of Health & Human Services, filtered for Connecticut. View the full dataset and detailed metadata here: https://healthdata.gov/Hospital/COVID-19-Reported-Patient-Impact-and-Hospital-Capa/anag-cw7u The following dataset provides facility-level data for hospital utilization aggregated on a weekly basis (Friday to Thursday). These are derived from reports with facility-level granularity across two main sources: (1) HHS TeleTracking, and (2) reporting provided directly to HHS Protect by state/territorial health departments on behalf of their healthcare facilities. The hospital population includes all hospitals registered with Centers for Medicare & Medicaid Services (CMS) as of June 1, 2020. It includes non-CMS hospitals that have reported since July 15, 2020. It does not include psychiatric, rehabilitation, Indian Health Service (IHS) facilities, U.S. Department of Veterans Affairs (VA) facilities, Defense Health Agency (DHA) facilities, and religious non-medical facilities. For a given entry, the term “collection_week” signifies the start of the period that is aggregated. For example, a “collection_week” of 2020-11-20 means the average/sum/coverage of the elements captured from that given facility starting and including Friday, November 20, 2020, and ending and including reports for Thursday, November 26, 2020. Reported elements include an append of either “_coverage”, “_sum”, or “_avg”. A “_coverage” append denotes how many times the facility reported that element during that collection week. A “_sum” append denotes the sum of the reports provided for that facility for that element during that collection week. A “_avg” append is the average of the reports provided for that facility for that element during that collection week. The file will be updated weekly. No statistical analysis is applied to impute non-response. For averages, calculations are based on the number of values collected for a given hospital in that collection week. Suppression is applied to the file for sums and averages less than four (4). In these cases, the field will be replaced with “-999,999”. This data is preliminary and subject to change as more data become available. Data is available starting on July 31, 2020. Sometimes, reports for a given facility will be provided to both HHS TeleTracking and HHS Protect. When this occurs, to ensure that there are not duplicate reports, deduplication is applied according to prioritization rules within HHS Protect. For influenza fields listed in the file, the current HHS guidance marks these fields as optional. As a result, coverage of these elements are varied. On May 3, 2021, the following fields have been added to this data set. hhs_ids previous_day_admission_adult_covid_confirmed_7_day_coverage previous_day_admission_pediatric_covid_confirmed_7_day_coverage previous_day_admission_adult_covid_suspected_7_day_coverage previous_day_admission_pediatric_covid_suspected_7_day_coverage previous_week_personnel_covid_vaccinated_doses_administered_7_day_sum total_personnel_covid_vaccinated_doses_none_7_day_sum total_personnel_covid_vaccinated_doses_one_7_day_sum total_personnel_covid_vaccinated_doses_all_7_day_sum previous_week_patients_covid_vaccinated_doses_one_7_day_sum previous_week_patients_covid_vaccinated_doses_all_7_day_sum On May 8, 2021, this data set has been converted to a corrected data set. The corrections applied to this data set are to smooth out data anomalies caused by keyed in data errors. To help determine which records have had corrections made to it. An additional Boolean field called is_corrected has been added. To see the numbers as reported by the facilities, go to: https://healthdata.gov/Hospital/COVID-19-Reported-Patient-Impact-and-Hospital-Capa/uqq2-txqb On May 13, 2021 Changed vaccination fields from sum to max or min fields. This reflects the maximum or minimum number report
Facebook
TwitterAfter May 3, 2024, this dataset and webpage will no longer be updated because hospitals are no longer required to report data on COVID-19 hospital admissions, and hospital capacity and occupancy data, to HHS through CDC’s National Healthcare Safety Network. Data voluntarily reported to NHSN after May 1, 2024, will be available starting May 10, 2024, at COVID Data Tracker Hospitalizations. The following dataset provides facility-level data for hospital utilization aggregated on a weekly basis (Sunday to Saturday). These are derived from reports with facility-level granularity across two main sources: (1) HHS TeleTracking, and (2) reporting provided directly to HHS Protect by state/territorial health departments on behalf of their healthcare facilities. The hospital population includes all hospitals registered with Centers for Medicare & Medicaid Services (CMS) as of June 1, 2020. It includes non-CMS hospitals that have reported since July 15, 2020. It does not include psychiatric, rehabilitation, Indian Health Service (IHS) facilities, U.S. Department of Veterans Affairs (VA) facilities, Defense Health Agency (DHA) facilities, and religious non-medical facilities. For a given entry, the term “collection_week” signifies the start of the period that is aggregated. For example, a “collection_week” of 2020-11-15 means the average/sum/coverage of the elements captured from that given facility starting and including Sunday, November 15, 2020, and ending and including reports for Saturday, November 21, 2020. Reported elements include an append of either “_coverage”, “_sum”, or “_avg”. A “_coverage” append denotes how many times the facility reported that element during that collection week. A “_sum” append denotes the sum of the reports provided for that facility for that element during that collection week. A “_avg” append is the average of the reports provided for that facility for that element during that collection week. The file will be updated weekly. No statistical analysis is applied to impute non-response. For averages, calculations are based on the number of values collected for a given hospital in that collection week. Suppression is applied to the file for sums and averages less than four (4). In these cases, the field will be replaced with “-999,999”. A story page was created to display both corrected and raw datasets and can be accessed at this link: https://healthdata.gov/stories/s/nhgk-5gpv This data is preliminary and subject to change as more data become available. Data is available starting on July 31, 2020. Sometimes, reports for a given facility will be provided to both HHS TeleTracking and HHS Protect. When this occurs, to ensure that there are not duplicate reports, deduplication is applied according to prioritization rules within HHS Protect. For influenza fields listed in the file, the current HHS guidance marks these fields as optional. As a result, coverage of these elements are varied. For recent updates to the dataset, scroll to the bottom of the dataset description. On May 3, 2021, the following fields have been added to this data set. hhs_ids previous_day_admission_adult_covid_confirmed_7_day_coverage previous_day_admission_pediatric_covid_confirmed_7_day_coverage previous_day_admission_adult_covid_suspected_7_day_coverage previous_day_admission_pediatric_covid_suspected_7_day_coverage previous_week_personnel_covid_vaccinated_doses_administered_7_day_sum total_personnel_covid_vaccinated_doses_none_7_day_sum total_personnel_covid_vaccinated_doses_one_7_day_sum total_personnel_covid_vaccinated_doses_all_7_day_sum previous_week_patients_covid_vaccinated_doses_one_7_day_sum previous_week_patients_covid_vaccinated_doses_all_
Facebook
TwitterThis dataset contains Hospital General Information from the U.S. Department of Health & Human Services. This is the BigQuery COVID-19 public dataset. This data contains a list of all hospitals that have been registered with Medicare. This list includes addresses, phone numbers, hospital types and quality of care information. The quality of care data is provided for over 4,000 Medicare-certified hospitals, including over 130 Veterans Administration (VA) medical centers, across the country. You can use this data to find hospitals and compare the quality of their care
You can use the BigQuery Python client library to query tables in this dataset in Kernels. Note that methods available in Kernels are limited to querying data. Tables are at bigquery-public-data.cms_medicare.hospital_general_info.
How do the hospitals in Mountain View, CA compare to the average hospital in the US? With the hospital compare data you can quickly understand how hospitals in one geographic location compare to another location. In this example query we compare Google’s home in Mountain View, California, to the average hospital in the United States. You can also modify the query to learn how the hospitals in your city compare to the US national average.
“#standardSQL
SELECT
MTV_AVG_HOSPITAL_RATING,
US_AVG_HOSPITAL_RATING
FROM (
SELECT
ROUND(AVG(CAST(hospital_overall_rating AS int64)),2) AS MTV_AVG_HOSPITAL_RATING
FROM
bigquery-public-data.cms_medicare.hospital_general_info
WHERE
city = 'MOUNTAIN VIEW'
AND state = 'CA'
AND hospital_overall_rating <> 'Not Available') MTV
JOIN (
SELECT
ROUND(AVG(CAST(hospital_overall_rating AS int64)),2) AS US_AVG_HOSPITAL_RATING
FROM
bigquery-public-data.cms_medicare.hospital_general_info
WHERE
hospital_overall_rating <> 'Not Available')
ON
1 = 1”
What are the most common diseases treated at hospitals that do well in the category of patient readmissions?
For hospitals that achieved “Above the national average” in the category of patient readmissions, it might be interesting to review the types of diagnoses that are treated at those inpatient facilities. While this query won’t provide the granular detail that went into the readmission calculation, it gives us a quick glimpse into the top disease related groups (DRG)
, or classification of inpatient stays that are found at those hospitals. By joining the general hospital information to the inpatient charge data, also provided by CMS, you could quickly identify DRGs that may warrant additional research. You can also modify the query to review the top diagnosis related groups for hospital metrics you might be interested in.
“#standardSQL
SELECT
drg_definition,
SUM(total_discharges) total_discharge_per_drg
FROM
bigquery-public-data.cms_medicare.hospital_general_info gi
INNER JOIN
bigquery-public-data.cms_medicare.inpatient_charges_2015 ic
ON
gi.provider_id = ic.provider_id
WHERE
readmission_national_comparison = 'Above the national average'
GROUP BY
drg_definition
ORDER BY
total_discharge_per_drg DESC
LIMIT
10;”
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Hospitals in the United States decreased to 18.36 per one million people in 2022 from 18.46 per one million people in 2021. This dataset includes a chart with historical data for the United States Hospitals.
Facebook
TwitterNote: After May 3, 2024, this dataset will no longer be updated because hospitals are no longer required to report data on COVID-19 hospital admissions, hospital capacity, or occupancy data to HHS through CDC’s National Healthcare Safety Network (NHSN). The related CDC COVID Data Tracker site was revised or retired on May 10, 2023.
Note: May 3,2024: Due to incomplete or missing hospital data received for the April 21,2024 through April 27, 2024 reporting period, the COVID-19 Hospital Admissions Level could not be calculated for CNMI and will be reported as “NA” or “Not Available” in the COVID-19 Hospital Admissions Level data released on May 3, 2024.
This dataset represents COVID-19 hospitalization data and metrics aggregated to county or county-equivalent, for all counties or county-equivalents (including territories) in the United States as of the initial date of reporting for each weekly metric. COVID-19 hospitalization data are reported to CDC’s National Healthcare Safety Network, which monitors national and local trends in healthcare system stress, capacity, and community disease levels for approximately 6,000 hospitals in the United States. Data reported by hospitals to NHSN and included in this dataset represent aggregated counts and include metrics capturing information specific to COVID-19 hospital admissions, and inpatient and ICU bed capacity occupancy.
Reporting information:
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In the U.S., every hospital that receives payments from Medicare and Medicaid is mandated to provide quality data to The Centers for Medicare and Medicaid Services (CMS) annually. This data helps gauge patient satisfaction levels across the country. While overall hospital scores can be influenced by the quality of customer services, there may also be variations in satisfaction based on the type of hospital or its location.
Year: 2016 - 2020
The Star Rating Program, implemented by The Centers for Medicare & Medicaid Services (CMS), employs a five-star grading system to evaluate the experiences of Medicare beneficiaries with their respective health plans and the overall healthcare system. Health plans receive scores ranging from 1 to 5 stars, with 5 stars denoting the highest quality.
Benefits:
Historical Analysis: With data spanning from 2016 to 2020, researchers and analysts can observe trends over time, understanding how patient satisfaction has evolved over these years.
Benchmarking: Hospitals can compare their performance against national averages or against peer institutions to see where they stand.
Identifying Areas for Improvement: By analyzing specific metrics and feedback, hospitals can pinpoint areas where their services may be lacking and need enhancement.
Policy and Decision Making: Governments and healthcare administrators can use the data to make informed decisions about healthcare policies, funding allocations, and other strategic decisions.
Research and Academic Purposes: Academics and researchers can use the dataset for various studies, including correlational studies, predictions, and more.
Geographical Insights: The dataset may provide insights into regional variations in patient satisfaction, helping to identify areas or states with particularly high or low scores.
Understanding Factors Affecting Satisfaction: By correlating satisfaction scores with other variables (e.g., hospital type, size, location), it might be possible to determine which factors play the most significant role in patient satisfaction.
Performance Evaluation: Hospitals can use the data to evaluate the efficacy of any interventions or changes they've made over the years in terms of improving patient satisfaction.
Enhancing Patient Trust: Demonstrating transparency and a commitment to improvement can enhance patient trust and loyalty.
Informed Patients: By making such data publicly available, potential patients can make more informed decisions about where to seek care based on the satisfaction ratings of previous patients.
Source: https://data.cms.gov/provider-data/archived-data/hospitals
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Comprehensive dataset containing 2,622 verified General hospital businesses in United States with complete contact information, ratings, reviews, and location data.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Hospital Beds in the United States decreased to 2.75 per 1000 people in 2022 from 2.77 per 1000 people in 2021. This dataset includes a chart with historical data for the United States Hospital Beds.
Facebook
Twitterhttps://choosealicense.com/licenses/odbl/https://choosealicense.com/licenses/odbl/
COVID-19 Hospital Data Coverage Summary
Description
After May 3, 2024, this dataset and webpage will no longer be updated because hospitals are no longer required to report data on COVID-19 hospital admissions, and hospital capacity and occupancy data, to HHS through CDC’s National Healthcare Safety Network. Data voluntarily reported to NHSN after May 1, 2024, will be available starting May 10, 2024, at COVID Data Tracker Hospitalizations.
This report shows a summary of… See the full description on the dataset page: https://huggingface.co/datasets/HHS-Official/covid-19-hospital-data-coverage-summary.
Facebook
TwitterOpen Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
By Health [source]
This dataset includes provider-level data revealing the quality of timely and effective care from hospitals across the United States. It allows us to analyze heart attack, heart failure, pneumonia, surgical, emergency department, preventive care for children's asthma and stroke prevention and treatment data for pregnancy and delivery care courtesy of the Centers for Medicare & Medicaid Services. With this dataset you can analyze hospital's performance on all these areas using Hospital Name, Addresss , City , State , ZIP Code , County Name , Phone Number as well as scores creditable to Measure Name , Sample size from which it was derived a Footnote explanation based on location. Dig deep into each provider's level of care with this dataset to understand their performance on providing timely effective care
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
To get the most out of this dataset, it is important to understand each column in the dataset: Hospital Name identifies the health care facility; Address provides the address of the hospital; City identifies the city where it is located; State specifies which state it belongs to; ZIP Code denotes its specific zip code; County Name mentions what county it belongs to; Phone Number connects you with an immediate contact at the facility if needed; Condition categorizes types of tests/treatments being monitored in that case study; Measure Name outlines all related measures under said condition umbrella or metric(s) studied as part of that investigative research project/condition category (i.e., infection prevention); Score grades out how well that measure was doing compared against expectations or goals for quality & safe patient protections (higher scores are indicative of better performance on those surveyed & tracked items); Sample details how many patients were involved in this particular study topic component and involved participant sample size selection & unit evaluation criteria definition considerations during research recruitment and retention efforts associated with a particular area of specialty treatment/testing cluster system activity factors reviewed directionally by researchers via cohort based review activities over time [note: matching non-patients or control subject population reference points also sometimes may be used depending on written scope descriptions outlined by investigators]; Footnotes can amplify additional evaluations/CAVEATS sometimes noted regarding high-lighted findings(-such as improvement yet still not meeting standards), etc.; Measure Start Date defines when all test students were allowed entry into their respective study groups associated with one another for convergence analysis purposes within a defined subject patient group prospectively selected category designation feature component selection batch cases (new patients added mid-project have crossed design frontiers at random intervals sometimes necessary). Lastly, Measure End Date reflects terminal endpoint lead review periods cut off times when no new data entries can be accepted post-data collection stopped official time period specifications if designated by protocol order via institutional clinical trial board IRB approved advanced notification statements issued throughout any official project undertaking design process stages at its multiplex points).
Understanding each column's features will assist you in selecting relevant variables from this dataset according to your research needs. Additionally, using Location can help narrow down search results geographically. With this information researchers can gain valuable insight into overall trends regarding timely and effective care in different hospitals across different states
- Create an interactive heatmap to visualize provider-level data across different states. This can allow researchers, consumers and policy makers to identify areas of excellence as well as opportunities for improvement in timely and effective care measures.
- Develop a web app that allows users to locate hospitals in their area based on any given health condition, measure name, score or timeframe data provided by this dataset. This could give patients access to quality care options and help them make informed decisions while seeking medical attention.
- Utilizing the geographic coordinates data included in the Location column, create a virtual tour function that lets people virtually explore the interior of hospital facilities associated with this dataset...
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Health care in the United States is provided by many distinct organizations. Health care facilities are largely owned and operated by private sector businesses. 58% of US community hospitals are non-profit, 21% are government owned, and 21% are for-profit. According to the World Health Organization (WHO), the United States spent more on healthcare per capita ($9,403), and more on health care as percentage of its GDP (17.1%), than any other nation in 2014. Many different datasets are needed to portray different aspects of healthcare in US like disease prevalences, pharmaceuticals and drugs, Nutritional data of different food products available in US. Such data is collected by surveys (or otherwise) conducted by Centre of Disease Control and Prevention (CDC), Foods and Drugs Administration, Center of Medicare and Medicaid Services and Agency for Healthcare Research and Quality (AHRQ). These datasets can be used to properly review demographics and diseases, determining start ratings of healthcare providers, different drugs and their compositions as well as package informations for different diseases and for food quality. We often want such information and finding and scraping such data can be a huge hurdle. So, Here an attempt is made to make available all US healthcare data at one place to download from in csv files.
Facebook
Twitter🇺🇸 United States English After May 3, 2024, this dataset and webpage will no longer be updated because hospitals are no longer required to report data on COVID-19 hospital admissions, and hospital capacity and occupancy data, to HHS through CDC’s National Healthcare Safety Network. Data voluntarily reported to NHSN after May 1, 2024, will be available starting May 10, 2024, at COVID Data Tracker Hospitalizations. The following dataset provides facility-level data for hospital utilization aggregated on a weekly basis (Sunday to Saturday). These are derived from reports with facility-level granularity across two main sources: (1) HHS TeleTracking, and (2) reporting provided directly to HHS Protect by state/territorial health departments on behalf of their healthcare facilities. The hospital population includes all hospitals registered with Centers for Medicare & Medicaid Services (CMS) as of June 1, 2020. It includes non-CMS hospitals that have reported since July 15, 2020. It does not include psychiatric, rehabilitation, Indian Health Service (IHS) facilities, U.S. Department of Veterans Affairs (VA) facilities, Defense Health Agency (DHA) facilities, and religious non-medical facilities. For a given entry, the term “collection_week” signifies the start of the period that is aggregated. For example, a “collection_week” of 2020-11-15 means the average/sum/coverage of the elements captured from that given facility starting and including Sunday, November 15, 2020, and ending and including reports for Saturday, November 21, 2020. Reported elements include an append of either “_coverage”, “_sum”, or “_avg”. A “_coverage” append denotes how many times the facility reported that element during that collection week. A “_sum” append denotes the sum of the reports provided for that facility for that element during that collection week. A “_avg” append is the average of the reports provided for that facility for that element during that collection week. The file will be updated weekly. No statistical analysis is applied to impute non-response. For averages, calculations are based on the number of values collected for a given hospital in that collection week. Suppression is applied to the file for sums and averages less than four (4). In these cases, the field will be replaced with “-999,999”. A story page was created to display both corrected and raw datasets and can be accessed at this link: https://healthdata.gov/stories/s/nhgk-5gpv This data is preliminary and subject to change as more data become available. Data is available starting on July 31, 2020. Sometimes, reports for a given facility will be provided to both HHS TeleTracking and HHS Protect. When this occurs, to ensure that there are not duplicate reports, deduplication is applied according to prioritization rules within HHS Protect. For influenza fields listed in the file, the current HHS guidance marks these fields as optional. As a result, coverage of these elements are varied. For recent updates to the dataset, scroll to the bottom of the dataset description. On May 3, 2021, the following fields have been added to this data set.
Facebook
TwitterHospital All Owners
Description
The Hospital All Owners Information dataset provides information on all owners of the hospitals. This data includes ownership information such as ownership name, ownership type, ownership address and ownership effective date.
Dataset Details
Publisher: Centers for Medicare & Medicaid Services Temporal Coverage: 2022-11-01/2025-03-31 Last Modified: 2025-04-28 Contact: Provider Enrollment Data Requests - CPI… See the full description on the dataset page: https://huggingface.co/datasets/HHS-Official/hospital-all-owners.
Facebook
TwitterBy Health [source]
This dataset contains detailed information about 30-day readmission and mortality rates of U.S. hospitals. It is an essential tool for stakeholders aiming to identify opportunities for improving healthcare quality and performance across the country. Providers benefit by having access to comprehensive data regarding readmission, mortality rate, score, measure start/end dates, compared average to national as well as other pertinent metrics like zip codes, phone numbers and county names. Use this data set to conduct evaluations of how hospitals are meeting industry standards from a quality and outcomes perspective in order to make more informed decisions when designing patient care strategies and policies
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This dataset provides data on 30-day readmission and mortality rates of U.S. hospitals, useful in understanding the quality of healthcare being provided. This data can provide insight into the effectiveness of treatments, patient care, and staff performance at different healthcare facilities throughout the country.
In order to use this dataset effectively, it is important to understand each column and how best to interpret them. The ‘Hospital Name’ column displays the name of the facility; ‘Address’ lists a street address for the hospital; ‘City’ indicates its geographic location; ‘State’ specifies a two-letter abbreviation for that state; ‘ZIP Code’ provides each facility's 5 digit zip code address; 'County Name' specifies what county that particular hospital resides in; 'Phone number' lists a phone contact for any given facility ;'Measure Name' identifies which measure is being recorded (for instance: Elective Delivery Before 39 Weeks); 'Score' value reflects an average score based on patient feedback surveys taken over time frame listed under ' Measure Start Date.' Then there are also columns tracking both lower estimates ('Lower Estimate') as well as higher estimates ('Higher Estimate'); these create variability that can be tracked by researchers seeking further answers or formulating future studies on this topic or field.; Lastly there is one more measure oissociated with this set: ' Footnote,' which may highlight any addional important details pertinent to analysis such as numbers outlying National averages etc..
This data set can be used by hospitals, research facilities and other interested parties in providing inciteful information when making decisions about patient care standards throughout America . It can help find patterns about readmitis/mortality along county lines or answer questions about preformance fluctuations between different hospital locations over an extended amount of time. So if you are ever curious about 30 days readmitted within US Hospitals don't hesitate to dive into this insightful dataset!
- Comparing hospitals on a regional or national basis to measure the quality of care provided for readmission and mortality rates.
- Analyzing the effects of technological advancements such as telemedicine, virtual visits, and AI on readmission and mortality rates at different hospitals.
- Using measures such as Lower Estimate Higher Estimate scores to identify systematic problems in readmissions or mortality rate management at hospitals and informing public health care policy
If you use this dataset in your research, please credit the original authors. Data Source
License: Dataset copyright by authors - You are free to: - Share - copy and redistribute the material in any medium or format for any purpose, even commercially. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original. - Keep intact - all notices that refer to this license, including copyright notices.
File: Readmissions_and_Deaths_-_Hospital.csv | Column name | Description | |:-------------------------|:---------------------------------------------------------------------------------------------------| | Hospital Name ...
Facebook
TwitterLooking for a dataset on hospitals in the United States? Look no further! This dataset contains information on all of the hospitals registered with Medicare in the US, including their addresses, phone numbers, hospital type, and more. With such a large amount of data, this dataset is perfect for anyone interested in studying the US healthcare system.
This dataset can also be used to study hospital ownership, emergency services
If you want to study the US healthcare system, this dataset is perfect for you. It contains information on all of the hospitals registered with Medicare, including their addresses, phone numbers, hospital type, and more. With such a large amount of data, this dataset is perfect for anyone interested in studying the US healthcare system.
This dataset can also be used to study hospital ownership, emergency services, and EHR usage. In addition, the hospital overall rating and various comparisons are included for safety of care, readmission rates
This dataset was originally published by Centers for Medicare and Medicaid Services and has been modified for this project
File: Hospital_General_Information.csv | Column name | Description | |:-------------------------------------------------------|:----------------------------------------------------------------------------------------------------------| | Hospital Name | The name of the hospital. (String) | | Hospital Name | The name of the hospital. (String) | | Address | The address of the hospital. (String) | | Address | The address of the hospital. (String) | | City | The city in which the hospital is located. (String) | | City | The city in which the hospital is located. (String) | | State | The state in which the hospital is located. (String) | | State | The state in which the hospital is located. (String) | | ZIP Code | The ZIP code of the hospital. (Integer) | | ZIP Code | The ZIP code of the hospital. (Integer) | | County Name | The county in which the hospital is located. (String) | | County Name | The county in which the hospital is located. (String) | | Phone Number | The phone number of the hospital. (String) | | Phone Number | The phone number of the hospital. (String) | | Hospital Type | The type of hospital. (String) | | Hospital Type | The type of hospital. (String) | | Hospital Ownership | The ownership of the hospital. (String) | | Hospital Ownership | The ownership of the hospital. (String) | | Emergency Services | Whether or not the...