Facebook
TwitterHousehold is an occupied housing unit. Householder is a person in whose name the housing unit is rented or owned. This person must be at least 15 years old. Family household is a household in which there is at least 1 person present who is related to the householder by birth, marriage or adoption. Family is used to refer to a family household. In general, family consists of those related to each other by birth, marriage or adoption.
This data uses the householder's person weight to describe characteristics of people living in households. As a result, estimates of the number of households do not match estimates of households from the Housing Vacancy Survey (HVS). The HVS is weighted to housing units, rather than the population, in order to more accurately estimate the number of occupied and vacant housing units. For more information about the source and accuracy statement of the Annual Social and Economic Supplement (ASEC) of the Current Population Survey (CPS) see the technical documentation accessible at: http://www.census.gov/programs-surveys/cps/technical-documentation/complete.html
This is a dataset from the U.S. Census Bureau hosted by the Federal Reserve Economic Database (FRED). FRED has a data platform found here and they update their information according the amount of data that is brought in. Explore the U.S. Census Bureau using Kaggle and all of the data sources available through the U.S. Census Bureau organization page!
Update Frequency: This dataset is updated daily.
Observation Start: 1950-01-01
Observation End : 2019-01-01
This dataset is maintained using FRED's API and Kaggle's API.
Facebook
TwitterThe layer was derived and compiled from the U.S. Census Bureau’s 2012 – 2016 American Community Survey (ACS) 5-Year Estimates in order to assist 2020 Census planning purposes.
Source: U.S. Census Bureau, Table S1101 HOUSEHOLDS AND FAMILIES, 2012 – 2016 ACS 5-Year Estimates
Effective Date: December 2017
Last Update: December 2019
Update Cycle: ACS 5-Year Estimates update annually each
December. Vintage used for 2020 Census
planning purposes by Broward County.
Facebook
TwitterThese Demographic Data are U.S. Census American Community Survey Data, from the 2014 5-year set. Data Driven Detroit calculated densities (Per Sq Mile) by dividing the population by the ALAND10 field, which is the census land area field, in square meters.
Facebook
TwitterThe percentage of households, out of all households in an area, with children under the age of 18. Source: U.S. Bureau of the Census, American Community SurveyYears Availability: 2010, 2011-2015, 2012-2016, 2013-2017, 2014-2018, 2015-2019, 2017-2021, 2018-2022, 2019-2023Please note: We do not recommend comparing overlapping years of data due to the nature of this dataset. For more information, please visit: https://www.census.gov/programs-surveys/acs/guidance/comparing-acs-data.html
Facebook
TwitterSince 1960, the U.S. Department of Agriculture has provided estimates of expenditures on children from birth through age 17. This technical report presents the most recent estimates for married- couple and single-parent families using data from the 2011-15 Consumer Expenditure Survey (all data presented in 2015 dollars). Data and methods used in calculating annual child-rearing expenses are described. Estimates are provided for married-couple and single-parent families with two children for major components of the budget by age of child, family income, and region of residence. For the overall United States, annual child-rearing expense estimates ranged between $12,350 and $13,900 for a child in a two-child, married-couple family in the middle-income group. Adjustment factors for households with less than or greater than two children are also provided. Expenses vary considerably by household income level, region, and composition, emphasizing that a single estimate may not be applicable to all families. Results of this study may be of use in developing State child support and foster care guidelines, as well as public health and family-centered educational programs. i
Facebook
TwitterThe layer was derived and compiled from the U.S. Census Bureau’s 2013 – 2017 American Community Survey (ACS) 5-Year Estimates in order to assist 2020 Census planning purposes.
Source: U.S. Census Bureau, Table B10001 GRANDCHILDREN UNDER 18 YEARS LIVING WITH A GRANDPARENT HOUSEHOLDER BY AGE OF GRANDCHILD, 2013 – 2017 ACS 5-Year Estimates
Effective Date: December 2018
Last Update: December 2019
Update Cycle: ACS 5-Year Estimates update annually each December. Vintage used for 2020 Census planning purposes by Broward County.
Facebook
TwitterThe layer was derived and compiled from the U.S. Census Bureau’s 2013 – 2017 American Community Survey (ACS) 5-Year Estimates in order to assist 2020 Census planning purposes.
Source: U.S. Census Bureau, Table B10001 GRANDCHILDREN UNDER 18 YEARS LIVING WITH A GRANDPARENT HOUSEHOLDER BY AGE OF GRANDCHILD, 2013 – 2017 ACS 5-Year Estimates
Effective Date: December 2018
Last Update: December 2019
Update Cycle: ACS 5-Year Estimates update annually each December. Vintage used for 2020 Census planning purposes by Broward County.
Facebook
Twitterhttps://www.usa.gov/government-workshttps://www.usa.gov/government-works
This dataset contains Iowa households with and without children under 18 years old by household type for State of Iowa, individual Iowa counties, Iowa places and census tracts within Iowa. Data is from the American Community Survey, Five Year Estimates, Table B11005.
Household type includes Total Households, Family - All Types, Family - Married Couple, Family - All Single Householders, Family - Male Householder - No Wife Present, Family - Female Householder - No Husband Present, Nonfamily - All Types, Nonfamily - Male Householder, Nonfamily - Female Householder, Total Households w/Minors, and Total Households w/o Minors.
A family household is a household maintained by a householder who is in a family. A family group is defined as any two or more people residing together, and related by birth, marriage, or adoption.
Householder refers to the person (or one of the people) in whose name the housing unit is owned or rented (maintained) or, if there is no such person, any adult member, excluding roomers, boarders, or paid employees. If the house is owned or rented jointly by a married couple, the householder may be either the husband or the wife.
Facebook
TwitterThe Integrated Public Use Microdata Series (IPUMS) Complete Count Data include more than 650 million individual-level and 7.5 million household-level records. The microdata are the result of collaboration between IPUMS and the nation’s two largest genealogical organizations—Ancestry.com and FamilySearch—and provides the largest and richest source of individual level and household data.
All manuscripts (and other items you'd like to publish) must be submitted to
phsdatacore@stanford.edu for approval prior to journal submission.
We will check your cell sizes and citations.
For more information about how to cite PHS and PHS datasets, please visit:
https:/phsdocs.developerhub.io/need-help/citing-phs-data-core
This dataset was created on 2020-01-10 22:52:11.461 by merging multiple datasets together. The source datasets for this version were:
IPUMS 1930 households: This dataset includes all households from the 1930 US census.
IPUMS 1930 persons: This dataset includes all individuals from the 1930 US census.
IPUMS 1930 Lookup: This dataset includes variable names, variable labels, variable values, and corresponding variable value labels for the IPUMS 1930 datasets.
Historic data are scarce and often only exists in aggregate tables. The key advantage of historic US census data is the availability of individual and household level characteristics that researchers can tabulate in ways that benefits their specific research questions. The data contain demographic variables, economic variables, migration variables and family variables. Within households, it is possible to create relational data as all relations between household members are known. For example, having data on the mother and her children in a household enables researchers to calculate the mother’s age at birth. Another advantage of the Complete Count data is the possibility to follow individuals over time using a historical identifier.
In sum: the historic US census data are a unique source for research on social and economic change and can provide population health researchers with information about social and economic determinants.Historic data are scarce and often only exists in aggregate tables. The key advantage of historic US census data is the availability of individual and household level characteristics that researchers can tabulate in ways that benefits their specific research questions. The data contain demographic variables, economic variables, migration variables and family variables. Within households, it is possible to create relational data as all relations between household members are known. For example, having data on the mother and her children in a household enables researchers to calculate the mother’s age at birth. Another advantage of the Complete Count data is the possibility to follow individuals over time using a historical identifier. In sum: the historic US census data are a unique source for research on social and economic change and can provide population health researchers with information about social and economic determinants.
The historic US 1930 census data was collected in April 1930. Enumerators collected data traveling to households and counting the residents who regularly slept at the household. Individuals lacking permanent housing were counted as residents of the place where they were when the data was collected. Household members absent on the day of data collected were either listed to the household with the help of other household members or were scheduled for the last census subdivision.
Notes
We provide IPUMS household and person data separately so that it is convenient to explore the descriptive statistics on each level. In order to obtain a full dataset, merge the household and person on the variables SERIAL and SERIALP. In order to create a longitudinal dataset, merge datasets on the variable HISTID.
Households with more than 60 people in the original data were broken up for processing purposes. Every person in the large households are considered to be in their own household. The original large households can be identified using the variable SPLIT, reconstructed using the variable SPLITHID, and the original count is found in the variable SPLITNUM.
Coded variables derived from string variables are still in progress. These variables include: occupation and industry.
Missing observations have been allocated and some inconsistencies have been edited for the following variables: SPEAKENG, YRIMMIG, CITIZEN, AGEMARR, AGE, BPL, MBPL, FBPL, LIT, SCHOOL, OWNERSHP, FARM, EMPSTAT, OCC1950, IND1950, MTONGUE, MARST, RACE, SEX, RELATE, CLASSWKR. The flag variables indicating an allocated observation for the associated variables can be included in your extract by clicking the ‘Select data quality flags’ box on the extract summary page.
Most inconsistent information was not edite
Facebook
TwitterThe New Mexico 2000 Unified School Districts layer was derived from the TIGER Line files from the US Census Bureau. The districts are clipped to the state boundaries, and available for download from the website.
Facebook
TwitterTIGER, TIGER/Line, and Census TIGER are registered trademarks of the Bureau of the Census. The Redistricting Census 2000 TIGER/Line files are an extract of selected geographic and cartographic information from the Census TIGER data base. The geographic coverage for a single TIGER/Line file is a county or statistical equivalent entity, with the coverage area based on January 1, 2000 legal boundaries. A complete set of Redistricting Census 2000 TIGER/Line files includes all counties and statistically equivalent entities in the United States and Puerto Rico. The Redistricting Census 2000 TIGER/Line files will not include files for the Island Areas. The Census TIGER data base represents a seamless national file with no overlaps or gaps between parts. However, each county-based TIGER/Line file is designed to stand alone as an independent data set or the files can be combined to cover the whole Nation. The Redistricting Census 2000 TIGER/Line files consist of line segments representing physical features and governmental and statistical boundaries. The Redistricting Census 2000 TIGER/Line files do NOT contain the ZIP Code Tabulation Areas (ZCTAs) and the address ranges are of approximately the same vintage as those appearing in the 1999 TIGER/Line files. That is, the Census Bureau is producing the Redistricting Census 2000 TIGER/Line files in advance of the computer processing that will ensure that the address ranges in the TIGER/Line files agree with the final Master Address File (MAF) used for tabulating Census 2000. The files contain information distributed over a series of record types for the spatial objects of a county. There are 17 record types, including the basic data record, the shape coordinate points, and geographic codes that can be used with appropriate software to prepare maps. Other geographic information contained in the files includes attributes such as feature identifiers/census feature class codes (CFCC) used to differentiate feature types, address ranges and ZIP Codes, codes for legal and statistical entities, latitude/longitude coordinates of linear and point features, landmark point features, area landmarks, key geographic features, and area boundaries. The Redistricting Census 2000 TIGER/Line data dictionary contains a complete list of all the fields in the 17 record types.
Facebook
Twitterhttps://zipatlas.com/zip-code-database-download.htm#licensehttps://zipatlas.com/zip-code-database-download.htm#license
Poverty Status Of Families By Household Type By Number Of Own Children Under 18 Years Report based on US Census and American Community Survey Data.
Facebook
TwitterThe percentage of households, out of all households in an area, with children under the age of 18. Source: U.S. Bureau of the Census, American Community Survey Years Availability: 2010, 2011-2015, 2012-2016, 2013-2017, 2014-2018, 2015-2019, 2017-2021, 2018-2022, 2019-2023
Facebook
TwitterAttribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
SELECTED SOCIAL CHARACTERISTICS IN THE UNITED STATES HOUSEHOLDS BY TYPE - DP02 Universe - Total households Survey-Program - American Community Survey 5-year estimates Years - 2020, 2021, 2022 The responses to this question were used to determine the relationships of all persons to the householder, as well as household type (married couple family, nonfamily, etc.). From responses to this question, we were able to determine numbers of related children, own children, unmarried partner households, and multigenerational households. We calculated average household and family size. When relationship was not reported, it was imputed using the age difference between the householder and the person, sex, and marital status.
Facebook
TwitterThe Integrated Public Use Microdata Series (IPUMS) Complete Count Data include more than 650 million individual-level and 7.5 million household-level records. The microdata are the result of collaboration between IPUMS and the nation’s two largest genealogical organizations—Ancestry.com and FamilySearch—and provides the largest and richest source of individual level and household data.
All manuscripts (and other items you'd like to publish) must be submitted to
phsdatacore@stanford.edu for approval prior to journal submission.
We will check your cell sizes and citations.
For more information about how to cite PHS and PHS datasets, please visit:
https:/phsdocs.developerhub.io/need-help/citing-phs-data-core
Historic data are scarce and often only exists in aggregate tables. The key advantage of historic US census data is the availability of individual and household level characteristics that researchers can tabulate in ways that benefits their specific research questions. The data contain demographic variables, economic variables, migration variables and family variables. Within households, it is possible to create relational data as all relations between household members are known. For example, having data on the mother and her children in a household enables researchers to calculate the mother’s age at birth. Another advantage of the Complete Count data is the possibility to follow individuals over time using a historical identifier.
In sum: the historic US census data are a unique source for research on social and economic change and can provide population health researchers with information about social and economic determinants.Historic data are scarce and often only exists in aggregate tables. The key advantage of historic US census data is the availability of individual and household level characteristics that researchers can tabulate in ways that benefits their specific research questions. The data contain demographic variables, economic variables, migration variables and family variables. Within households, it is possible to create relational data as all relations between household members are known. For example, having data on the mother and her children in a household enables researchers to calculate the mother’s age at birth. Another advantage of the Complete Count data is the possibility to follow individuals over time using a historical identifier. In sum: the historic US census data are a unique source for research on social and economic change and can provide population health researchers with information about social and economic determinants.
The historic US 1910 census data was collected in April 1910. Enumerators collected data traveling to households and counting the residents who regularly slept at the household. Individuals lacking permanent housing were counted as residents of the place where they were when the data was collected. Household members absent on the day of data collected were either listed to the household with the help of other household members or were scheduled for the last census subdivision.
This dataset was created on 2020-01-10 23:47:27.924 by merging multiple datasets together. The source datasets for this version were:
IPUMS 1910 households: The Integrated Public Use Microdata Series (IPUMS) Complete Count Data are historic individual and household census records and are a unique source for research on social and economic change.
IPUMS 1910 persons: This dataset includes all individuals from the 1910 US census.
Facebook
TwitterFood Security Summary, US Census Bureau
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The Current Population Survey Food Security Supplement (CPS-FSS) is the source of national and State-level statistics on food insecurity used in USDA's annual reports on household food security. The CPS is a monthly labor force survey of about 50,000 households conducted by the Census Bureau for the Bureau of Labor Statistics. Once each year, after answering the labor force questions, the same households are asked a series of questions (the Food Security Supplement) about food security, food expenditures, and use of food and nutrition assistance programs. Food security data have been collected by the CPS-FSS each year since 1995. Four data sets that complement those available from the Census Bureau are available for download on the ERS website. These are available as ASCII uncompressed or zipped files. The purpose and appropriate use of these additional data files are described below: 1) CPS 1995 Revised Food Security Status data--This file provides household food security scores and food security status categories that are consistent with procedures and variable naming conventions introduced in 1996. This includes the "common screen" variables to facilitate comparisons of prevalence rates across years. This file must be matched to the 1995 CPS Food Security Supplement public-use data file. 2) CPS 1998 Children's and 30-day Food Security data--Subsequent to the release of the April 1999 CPS-FSS public-use data file, USDA developed two additional food security scales to describe aspects of food security conditions in interviewed households not captured by the 12-month household food security scale. This file provides three food security variables (categorical, raw score, and scale score) for each of these scales along with household identification variables to allow the user to match this supplementary data file to the CPS-FSS April 1998 data file. 3) CPS 1999 Children's and 30-day Food Security data--Subsequent to the release of the April 1999 CPS-FSS public-use data file, USDA developed two additional food security scales to describe aspects of food security conditions in interviewed households not captured by the 12-month household food security scale. This file provides three food security variables (categorical, raw score, and scale score) for each of these scales along with household identification variables to allow the user to match this supplementary data file to the CPS-FSS April 1999 data file. 4) CPS 2000 30-day Food Security data--Subsequent to the release of the September 2000 CPS-FSS public-use data file, USDA developed a revised 30-day CPS Food Security Scale. This file provides three food security variables (categorical, raw score, and scale score) for the 30-day scale along with household identification variables to allow the user to match this supplementary data file to the CPS-FSS September 2000 data file. Food security is measured at the household level in three categories: food secure, low food security and very low food security. Each category is measured by a total count and as a percent of the total population. Categories and measurements are broken down further based on the following demographic characteristics: household composition, race/ethnicity, metro/nonmetro area of residence, and geographic region. The food security scale includes questions about households and their ability to purchase enough food and balanced meals, questions about adult meals and their size, frequency skipped, weight lost, days gone without eating, questions about children meals, including diversity, balanced meals, size of meals, skipped meals and hunger. Questions are also asked about the use of public assistance and supplemental food assistance. The food security scale is 18 items that measure insecurity. A score of 0-2 means a house is food secure, from 3-7 indicates low food security, and 8-18 means very low food security. The scale and the data also report the frequency with which each item is experienced. Data are available as .dat files which may be processed in statistical software or through the United State Census Bureau's DataFerret http://dataferrett.census.gov/. Data from 2010 onwards is available below and online. Data from 1995-2009 must be accessed through DataFerrett. DataFerrett is a data analysis and extraction tool to customize federal, state, and local data to suit your requirements. Through DataFerrett, the user can develop an unlimited array of customized spreadsheets that are as versatile and complex as your usage demands then turn those spreadsheets into graphs and maps without any additional software. Resources in this dataset:Resource Title: December 2014 Food Security CPS Supplement. File Name: dec14pub.zipResource Title: December 2013 Food Security CPS Supplement. File Name: dec13pub.zipResource Title: December 2012 Food Security CPS Supplement. File Name: dec12pub.zipResource Title: December 2011 Food Security CPS Supplement. File Name: dec11pub.zipResource Title: December 2010 Food Security CPS Supplement. File Name: dec10pub.zip
Facebook
Twitterhttps://www.icpsr.umich.edu/web/ICPSR/studies/38908/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/38908/terms
The Child Care and Development Fund (CCDF) provides federal money to states and territories to provide assistance to low-income families, to obtain quality child care so they can work, attend training, or receive education. Within the broad federal parameters, States and Territories set the detailed policies. Those details determine whether a particular family will or will not be eligible for subsidies, how much the family will have to pay for the care, how families apply for and retain subsidies, the maximum amounts that child care providers will be reimbursed, and the administrative procedures that providers must follow. Thus, while CCDF is a single program from the perspective of federal law, it is in practice a different program in every state and territory. The CCDF Policies Database project is a comprehensive, up-to-date database of CCDF policy information that supports the needs of a variety of audiences through (1) analytic data files, (2) a project website and search tool, and (3) an annual report (Book of Tables). These resources are made available to researchers, administrators, and policymakers with the goal of addressing important questions concerning the effects of child care subsidy policies and practices on the children and families served. A description of the data files, project website and search tool, and Book of Tables is provided below: 1. Detailed, longitudinal analytic data files provide CCDF policy information for all 50 states, the District of Columbia, and the United States territories and outlying areas that capture the policies actually in effect at a point in time, rather than proposals or legislation. They capture changes throughout each year, allowing users to access the policies in place at any point in time between October 2009 and the most recent data release. The data are organized into 32 categories with each category of variables separated into its own dataset. The categories span five general areas of policy including: Eligibility Requirements for Families and Children (Datasets 1-5) Family Application, Terms of Authorization, and Redetermination (Datasets 6-13) Family Payments (Datasets 14-18) Policies for Providers, Including Maximum Reimbursement Rates (Datasets 19-27) Overall Administrative and Quality Information Plans (Datasets 28-32) The information in the data files is based primarily on the documents that caseworkers use as they work with families and providers (often termed "caseworker manuals"). The caseworker manuals generally provide much more detailed information on eligibility, family payments, and provider-related policies than the CCDF Plans submitted by states and territories to the federal government. The caseworker manuals also provide ongoing detail for periods in between CCDF Plan dates. Each dataset contains a series of variables designed to capture the intricacies of the rules covered in the category. The variables include a mix of categorical, numeric, and text variables. Most variables have a corresponding notes field to capture additional details related to that particular variable. In addition, each category has an additional notes field to capture any information regarding the rules that is not already outlined in the category's variables. Beginning with the 2020 files, the analytic data files are supplemented by four additional data files containing select policy information featured in the annual reports (prior to 2020, the full detail of the annual reports was reproduced as data files). The supplemental data files are available as 4 datasets (Datasets 33-36) and present key aspects of the differences in CCDF-funded programs across all states and territories as of October 1 of each year (2009-2022). The files include variables that are calculated using several variables from the analytic data files (Datasets 1-32) (such as copayment amounts for example family situations) and information that is part of the annual project reports (the annual Book of Tables) but not stored in the full database (such as summary market rate survey information from the CCDF plans). 2. The project website and search tool provide access to a point-and-click user interface. Users can select from the full set of public data to create custom tables. The website also provides access to the full range of reports and products released under the CCDF Policies Data
Facebook
TwitterThe 2006 Second Edition TIGER/Line files are an extract of selected geographic and cartographic information from the Census TIGER database. The geographic coverage for a single TIGER/Line file is a county or statistical equivalent entity, with the coverage area based on the latest available governmental unit boundaries. The Census TIGER database represents a seamless national file with no overlaps or gaps between parts. However, each county-based TIGER/Line file is designed to stand alone as an independent data set or the files can be combined to cover the whole Nation. The 2006 Second Edition TIGER/Line files consist of line segments representing physical features and governmental and statistical boundaries. This shapefile represents the current State House Districts for New Mexico as posted on the Census Bureau website for 2006.
Facebook
TwitterA computerized data set of demographic, economic and social data for 227 countries of the world. Information presented includes population, health, nutrition, mortality, fertility, family planning and contraceptive use, literacy, housing, and economic activity data. Tabular data are broken down by such variables as age, sex, and urban/rural residence. Data are organized as a series of statistical tables identified by country and table number. Each record consists of the data values associated with a single row of a given table. There are 105 tables with data for 208 countries. The second file is a note file, containing text of notes associated with various tables. These notes provide information such as definitions of categories (i.e. urban/rural) and how various values were calculated. The IDB was created in the U.S. Census Bureau''s International Programs Center (IPC) to help IPC staff meet the needs of organizations that sponsor IPC research. The IDB provides quick access to specialized information, with emphasis on demographic measures, for individual countries or groups of countries. The IDB combines data from country sources (typically censuses and surveys) with IPC estimates and projections to provide information dating back as far as 1950 and as far ahead as 2050. Because the IDB is maintained as a research tool for IPC sponsor requirements, the amount of information available may vary by country. As funding and research activity permit, the IPC updates and expands the data base content. Types of data include: * Population by age and sex * Vital rates, infant mortality, and life tables * Fertility and child survivorship * Migration * Marital status * Family planning Data characteristics: * Temporal: Selected years, 1950present, projected demographic data to 2050. * Spatial: 227 countries and areas. * Resolution: National population, selected data by urban/rural * residence, selected data by age and sex. Sources of data include: * U.S. Census Bureau * International projects (e.g., the Demographic and Health Survey) * United Nations agencies Links: * ICPSR: http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/08490
Facebook
TwitterHousehold is an occupied housing unit. Householder is a person in whose name the housing unit is rented or owned. This person must be at least 15 years old. Family household is a household in which there is at least 1 person present who is related to the householder by birth, marriage or adoption. Family is used to refer to a family household. In general, family consists of those related to each other by birth, marriage or adoption.
This data uses the householder's person weight to describe characteristics of people living in households. As a result, estimates of the number of households do not match estimates of households from the Housing Vacancy Survey (HVS). The HVS is weighted to housing units, rather than the population, in order to more accurately estimate the number of occupied and vacant housing units. For more information about the source and accuracy statement of the Annual Social and Economic Supplement (ASEC) of the Current Population Survey (CPS) see the technical documentation accessible at: http://www.census.gov/programs-surveys/cps/technical-documentation/complete.html
This is a dataset from the U.S. Census Bureau hosted by the Federal Reserve Economic Database (FRED). FRED has a data platform found here and they update their information according the amount of data that is brought in. Explore the U.S. Census Bureau using Kaggle and all of the data sources available through the U.S. Census Bureau organization page!
Update Frequency: This dataset is updated daily.
Observation Start: 1950-01-01
Observation End : 2019-01-01
This dataset is maintained using FRED's API and Kaggle's API.