100+ datasets found
  1. Reported violent crime rate in the U.S. 1990-2023

    • statista.com
    • ai-chatbox.pro
    Updated Nov 14, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Reported violent crime rate in the U.S. 1990-2023 [Dataset]. https://www.statista.com/statistics/191219/reported-violent-crime-rate-in-the-usa-since-1990/
    Explore at:
    Dataset updated
    Nov 14, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In 2023, the violent crime rate in the United States was 363.8 cases per 100,000 of the population. Even though the violent crime rate has been decreasing since 1990, the United States tops the ranking of countries with the most prisoners. In addition, due to the FBI's transition to a new crime reporting system in which law enforcement agencies voluntarily submit crime reports, data may not accurately reflect the total number of crimes committed in recent years. Reported violent crime rate in the United States The United States Federal Bureau of Investigation tracks the rate of reported violent crimes per 100,000 U.S. inhabitants. In the timeline above, rates are shown starting in 1990. The rate of reported violent crime has fallen since a high of 758.20 reported crimes in 1991 to a low of 363.6 reported violent crimes in 2014. In 2023, there were around 1.22 million violent crimes reported to the FBI in the United States. This number can be compared to the total number of property crimes, roughly 6.41 million that year. Of violent crimes in 2023, aggravated assaults were the most common offenses in the United States, while homicide offenses were the least common. Law enforcement officers and crime clearance Though the violent crime rate was down in 2013, the number of law enforcement officers also fell. Between 2005 and 2009, the number of law enforcement officers in the United States rose from around 673,100 to 708,800. However, since 2009, the number of officers fell to a low of 626,900 officers in 2013. The number of law enforcement officers has since grown, reaching 720,652 in 2023. In 2023, the crime clearance rate in the U.S. was highest for murder and non-negligent manslaughter charges, with around 57.8 percent of murders being solved by investigators and a suspect being charged with the crime. Additionally, roughly 46.1 percent of aggravated assaults were cleared in that year. A statistics report on violent crime in the U.S. can be found here.

  2. Violent Crime Rate

    • data.ca.gov
    Updated Aug 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2024). Violent Crime Rate [Dataset]. https://data.ca.gov/dataset/violent-crime-rate
    Explore at:
    Dataset updated
    Aug 29, 2024
    Dataset authored and provided by
    California Department of Public Healthhttps://www.cdph.ca.gov/
    Description

    This table contains data on the rate of violent crime (crimes per 1,000 population) for California, its regions, counties, cities and towns. Crime and population data are from the Federal Bureau of Investigations, Uniform Crime Reports. Rates above the city/town level include data from city, university and college, county, state, tribal, and federal law enforcement agencies. The table is part of a series of indicators in the Healthy Communities Data and Indicators Project of the Office of Health Equity. Ten percent of all deaths in young California adults aged 15-44 years are related to assault and homicide. In 2010, California law enforcement agencies reported 1,809 murders, 8,331 rapes, and over 95,000 aggravated assaults. African Americans in California are 11 times more likely to die of assault and homicide than Whites. More information about the data table and a data dictionary can be found in the About/Attachments section.

  3. d

    Crime Data from 2020 to Present

    • catalog.data.gov
    • data.lacity.org
    • +1more
    Updated Jul 12, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.lacity.org (2025). Crime Data from 2020 to Present [Dataset]. https://catalog.data.gov/dataset/crime-data-from-2020-to-present
    Explore at:
    Dataset updated
    Jul 12, 2025
    Dataset provided by
    data.lacity.org
    Description

    ***Starting on March 7th, 2024, the Los Angeles Police Department (LAPD) will adopt a new Records Management System for reporting crimes and arrests. This new system is being implemented to comply with the FBI's mandate to collect NIBRS-only data (NIBRS — FBI - https://www.fbi.gov/how-we-can-help-you/more-fbi-services-and-information/ucr/nibrs). During this transition, users will temporarily see only incidents reported in the retiring system. However, the LAPD is actively working on generating new NIBRS datasets to ensure a smoother and more efficient reporting system. *** **Update 1/18/2024 - LAPD is facing issues with posting the Crime data, but we are taking immediate action to resolve the problem. We understand the importance of providing reliable and up-to-date information and are committed to delivering it. As we work through the issues, we have temporarily reduced our updates from weekly to bi-weekly to ensure that we provide accurate information. Our team is actively working to identify and resolve these issues promptly. We apologize for any inconvenience this may cause and appreciate your understanding. Rest assured, we are doing everything we can to fix the problem and get back to providing weekly updates as soon as possible. ** This dataset reflects incidents of crime in the City of Los Angeles dating back to 2020. This data is transcribed from original crime reports that are typed on paper and therefore there may be some inaccuracies within the data. Some location fields with missing data are noted as (0°, 0°). Address fields are only provided to the nearest hundred block in order to maintain privacy. This data is as accurate as the data in the database. Please note questions or concerns in the comments.

  4. G

    Number, rate and percentage changes in rates of homicide victims

    • open.canada.ca
    • www150.statcan.gc.ca
    • +2more
    csv, html, xml
    Updated Nov 28, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics Canada (2024). Number, rate and percentage changes in rates of homicide victims [Dataset]. https://open.canada.ca/data/dataset/b7e9cee7-52d3-4519-98f6-b21680880061
    Explore at:
    html, csv, xmlAvailable download formats
    Dataset updated
    Nov 28, 2024
    Dataset provided by
    Statistics Canada
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    Number, rate and percentage changes in rates of homicide victims, Canada, provinces and territories, 1961 to 2023.

  5. d

    Mass Killings in America, 2006 - present

    • data.world
    csv, zip
    Updated Jul 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Associated Press (2025). Mass Killings in America, 2006 - present [Dataset]. https://data.world/associatedpress/mass-killings-public
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Jul 12, 2025
    Authors
    The Associated Press
    Time period covered
    Jan 1, 2006 - Jul 4, 2025
    Area covered
    Description

    THIS DATASET WAS LAST UPDATED AT 2:11 AM EASTERN ON JULY 12

    OVERVIEW

    2019 had the most mass killings since at least the 1970s, according to the Associated Press/USA TODAY/Northeastern University Mass Killings Database.

    In all, there were 45 mass killings, defined as when four or more people are killed excluding the perpetrator. Of those, 33 were mass shootings . This summer was especially violent, with three high-profile public mass shootings occurring in the span of just four weeks, leaving 38 killed and 66 injured.

    A total of 229 people died in mass killings in 2019.

    The AP's analysis found that more than 50% of the incidents were family annihilations, which is similar to prior years. Although they are far less common, the 9 public mass shootings during the year were the most deadly type of mass murder, resulting in 73 people's deaths, not including the assailants.

    One-third of the offenders died at the scene of the killing or soon after, half from suicides.

    About this Dataset

    The Associated Press/USA TODAY/Northeastern University Mass Killings database tracks all U.S. homicides since 2006 involving four or more people killed (not including the offender) over a short period of time (24 hours) regardless of weapon, location, victim-offender relationship or motive. The database includes information on these and other characteristics concerning the incidents, offenders, and victims.

    The AP/USA TODAY/Northeastern database represents the most complete tracking of mass murders by the above definition currently available. Other efforts, such as the Gun Violence Archive or Everytown for Gun Safety may include events that do not meet our criteria, but a review of these sites and others indicates that this database contains every event that matches the definition, including some not tracked by other organizations.

    This data will be updated periodically and can be used as an ongoing resource to help cover these events.

    Using this Dataset

    To get basic counts of incidents of mass killings and mass shootings by year nationwide, use these queries:

    Mass killings by year

    Mass shootings by year

    To get these counts just for your state:

    Filter killings by state

    Definition of "mass murder"

    Mass murder is defined as the intentional killing of four or more victims by any means within a 24-hour period, excluding the deaths of unborn children and the offender(s). The standard of four or more dead was initially set by the FBI.

    This definition does not exclude cases based on method (e.g., shootings only), type or motivation (e.g., public only), victim-offender relationship (e.g., strangers only), or number of locations (e.g., one). The time frame of 24 hours was chosen to eliminate conflation with spree killers, who kill multiple victims in quick succession in different locations or incidents, and to satisfy the traditional requirement of occurring in a “single incident.”

    Offenders who commit mass murder during a spree (before or after committing additional homicides) are included in the database, and all victims within seven days of the mass murder are included in the victim count. Negligent homicides related to driving under the influence or accidental fires are excluded due to the lack of offender intent. Only incidents occurring within the 50 states and Washington D.C. are considered.

    Methodology

    Project researchers first identified potential incidents using the Federal Bureau of Investigation’s Supplementary Homicide Reports (SHR). Homicide incidents in the SHR were flagged as potential mass murder cases if four or more victims were reported on the same record, and the type of death was murder or non-negligent manslaughter.

    Cases were subsequently verified utilizing media accounts, court documents, academic journal articles, books, and local law enforcement records obtained through Freedom of Information Act (FOIA) requests. Each data point was corroborated by multiple sources, which were compiled into a single document to assess the quality of information.

    In case(s) of contradiction among sources, official law enforcement or court records were used, when available, followed by the most recent media or academic source.

    Case information was subsequently compared with every other known mass murder database to ensure reliability and validity. Incidents listed in the SHR that could not be independently verified were excluded from the database.

    Project researchers also conducted extensive searches for incidents not reported in the SHR during the time period, utilizing internet search engines, Lexis-Nexis, and Newspapers.com. Search terms include: [number] dead, [number] killed, [number] slain, [number] murdered, [number] homicide, mass murder, mass shooting, massacre, rampage, family killing, familicide, and arson murder. Offender, victim, and location names were also directly searched when available.

    This project started at USA TODAY in 2012.

    Contacts

    Contact AP Data Editor Justin Myers with questions, suggestions or comments about this dataset at jmyers@ap.org. The Northeastern University researcher working with AP and USA TODAY is Professor James Alan Fox, who can be reached at j.fox@northeastern.edu or 617-416-4400.

  6. T

    Crime Level Data

    • policedata.coloradosprings.gov
    • splitgraph.com
    Updated Jul 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Colorado Springs Police Department (2025). Crime Level Data [Dataset]. https://policedata.coloradosprings.gov/Crime/Crime-Level-Data/bc88-hemr
    Explore at:
    csv, xml, tsv, application/rssxml, application/rdfxml, kmz, kml, application/geo+jsonAvailable download formats
    Dataset updated
    Jul 13, 2025
    Dataset authored and provided by
    Colorado Springs Police Department
    Description

    This dataset includes all criminal offenses reported to the Colorado Springs Police Department. Each case report (incident) may have several offenses. Each offense may have multiple suspects and/or victims.

    Important: This dataset provided by CSPD does not apply the same counting rules as official data reported to the Colorado Bureau of Investigations and the Federal Bureau of Investigation. This means comparisons to those datasets would be inaccurate.

  7. Number and rate of homicide victims, by Census Metropolitan Areas

    • www150.statcan.gc.ca
    • open.canada.ca
    • +1more
    Updated Jul 25, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2024). Number and rate of homicide victims, by Census Metropolitan Areas [Dataset]. http://doi.org/10.25318/3510007101-eng
    Explore at:
    Dataset updated
    Jul 25, 2024
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Number and rate (per 100,000 population) of homicide victims, Canada and Census Metropolitan Areas, 1981 to 2023.

  8. Chicago Crime

    • kaggle.com
    zip
    Updated Apr 17, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Chicago (2018). Chicago Crime [Dataset]. https://www.kaggle.com/chicago/chicago-crime
    Explore at:
    zip(0 bytes)Available download formats
    Dataset updated
    Apr 17, 2018
    Dataset authored and provided by
    City of Chicago
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    Chicago
    Description

    Context

    Approximately 10 people are shot on an average day in Chicago.

    http://www.chicagotribune.com/news/data/ct-shooting-victims-map-charts-htmlstory.html http://www.chicagotribune.com/news/local/breaking/ct-chicago-homicides-data-tracker-htmlstory.html http://www.chicagotribune.com/news/local/breaking/ct-homicide-victims-2017-htmlstory.html

    Content

    This dataset reflects reported incidents of crime (with the exception of murders where data exists for each victim) that occurred in the City of Chicago from 2001 to present, minus the most recent seven days. Data is extracted from the Chicago Police Department's CLEAR (Citizen Law Enforcement Analysis and Reporting) system. In order to protect the privacy of crime victims, addresses are shown at the block level only and specific locations are not identified. This data includes unverified reports supplied to the Police Department. The preliminary crime classifications may be changed at a later date based upon additional investigation and there is always the possibility of mechanical or human error. Therefore, the Chicago Police Department does not guarantee (either expressed or implied) the accuracy, completeness, timeliness, or correct sequencing of the information and the information should not be used for comparison purposes over time.

    Update Frequency: Daily

    Fork this kernel to get started.

    Acknowledgements

    https://bigquery.cloud.google.com/dataset/bigquery-public-data:chicago_crime

    https://cloud.google.com/bigquery/public-data/chicago-crime-data

    Dataset Source: City of Chicago

    This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source —https://data.cityofchicago.org — and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.

    Banner Photo by Ferdinand Stohr from Unplash.

    Inspiration

    What categories of crime exhibited the greatest year-over-year increase between 2015 and 2016?

    Which month generally has the greatest number of motor vehicle thefts?

    How does temperature affect the incident rate of violent crime (assault or battery)?

    https://cloud.google.com/bigquery/images/chicago-scatter.png" alt=""> https://cloud.google.com/bigquery/images/chicago-scatter.png

  9. C

    Violence Reduction - Victim Demographics - Aggregated

    • data.cityofchicago.org
    • s.cnmilf.com
    • +1more
    application/rdfxml +5
    Updated Jul 13, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Chicago (2025). Violence Reduction - Victim Demographics - Aggregated [Dataset]. https://data.cityofchicago.org/Public-Safety/Violence-Reduction-Victim-Demographics-Aggregated/gj7a-742p
    Explore at:
    application/rssxml, csv, json, application/rdfxml, xml, tsvAvailable download formats
    Dataset updated
    Jul 13, 2025
    Dataset authored and provided by
    City of Chicago
    Description

    This dataset contains aggregate data on violent index victimizations at the quarter level of each year (i.e., January – March, April – June, July – September, October – December), from 2001 to the present (1991 to present for Homicides), with a focus on those related to gun violence. Index crimes are 10 crime types selected by the FBI (codes 1-4) for special focus due to their seriousness and frequency. This dataset includes only those index crimes that involve bodily harm or the threat of bodily harm and are reported to the Chicago Police Department (CPD). Each row is aggregated up to victimization type, age group, sex, race, and whether the victimization was domestic-related. Aggregating at the quarter level provides large enough blocks of incidents to protect anonymity while allowing the end user to observe inter-year and intra-year variation. Any row where there were fewer than three incidents during a given quarter has been deleted to help prevent re-identification of victims. For example, if there were three domestic criminal sexual assaults during January to March 2020, all victims associated with those incidents have been removed from this dataset. Human trafficking victimizations have been aggregated separately due to the extremely small number of victimizations.

    This dataset includes a " GUNSHOT_INJURY_I " column to indicate whether the victimization involved a shooting, showing either Yes ("Y"), No ("N"), or Unknown ("UKNOWN.") For homicides, injury descriptions are available dating back to 1991, so the "shooting" column will read either "Y" or "N" to indicate whether the homicide was a fatal shooting or not. For non-fatal shootings, data is only available as of 2010. As a result, for any non-fatal shootings that occurred from 2010 to the present, the shooting column will read as “Y.” Non-fatal shooting victims will not be included in this dataset prior to 2010; they will be included in the authorized dataset, but with "UNKNOWN" in the shooting column.

    The dataset is refreshed daily, but excludes the most recent complete day to allow CPD time to gather the best available information. Each time the dataset is refreshed, records can change as CPD learns more about each victimization, especially those victimizations that are most recent. The data on the Mayor's Office Violence Reduction Dashboard is updated daily with an approximately 48-hour lag. As cases are passed from the initial reporting officer to the investigating detectives, some recorded data about incidents and victimizations may change once additional information arises. Regularly updated datasets on the City's public portal may change to reflect new or corrected information.

    How does this dataset classify victims?

    The methodology by which this dataset classifies victims of violent crime differs by victimization type:

    Homicide and non-fatal shooting victims: A victimization is considered a homicide victimization or non-fatal shooting victimization depending on its presence in CPD's homicide victims data table or its shooting victims data table. A victimization is considered a homicide only if it is present in CPD's homicide data table, while a victimization is considered a non-fatal shooting only if it is present in CPD's shooting data tables and absent from CPD's homicide data table.

    To determine the IUCR code of homicide and non-fatal shooting victimizations, we defer to the incident IUCR code available in CPD's Crimes, 2001-present dataset (available on the City's open data portal). If the IUCR code in CPD's Crimes dataset is inconsistent with the homicide/non-fatal shooting categorization, we defer to CPD's Victims dataset.

    For a criminal homicide, the only sensible IUCR codes are 0110 (first-degree murder) or 0130 (second-degree murder). For a non-fatal shooting, a sensible IUCR code must signify a criminal sexual assault, a robbery, or, most commonly, an aggravated battery. In rare instances, the IUCR code in CPD's Crimes and Victims dataset do not align with the homicide/non-fatal shooting categorization:

    1. In instances where a homicide victimization does not correspond to an IUCR code 0110 or 0130, we set the IUCR code to "01XX" to indicate that the victimization was a homicide but we do not know whether it was a first-degree murder (IUCR code = 0110) or a second-degree murder (IUCR code = 0130).
    2. When a non-fatal shooting victimization does not correspond to an IUCR code that signifies a criminal sexual assault, robbery, or aggravated battery, we enter “UNK” in the IUCR column, “YES” in the GUNSHOT_I column, and “NON-FATAL” in the PRIMARY column to indicate that the victim was non-fatally shot, but the precise IUCR code is unknown.

    Other violent crime victims: For other violent crime types, we refer to the IUCR classification that exists in CPD's victim table, with only one exception:

    1. When there is an incident that is associated with no victim with a matching IUCR code, we assume that this is an error. Every crime should have at least 1 victim with a matching IUCR code. In these cases, we change the IUCR code to reflect the incident IUCR code because CPD's incident table is considered to be more reliable than the victim table.

    Note: All businesses identified as victims in CPD data have been removed from this dataset.

    Note: The definition of “homicide” (shooting or otherwise) does not include justifiable homicide or involuntary manslaughter. This dataset also excludes any cases that CPD considers to be “unfounded” or “noncriminal.”

    Note: In some instances, the police department's raw incident-level data and victim-level data that were inputs into this dataset do not align on the type of crime that occurred. In those instances, this dataset attempts to correct mismatches between incident and victim specific crime types. When it is not possible to determine which victims are associated with the most recent crime determination, the dataset will show empty cells in the respective demographic fields (age, sex, race, etc.).

    Note: The initial reporting officer usually asks victims to report demographic data. If victims are unable to recall, the reporting officer will use their best judgment. “Unknown” can be reported if it is truly unknown.

  10. C

    Data from: crime map

    • data.cityofchicago.org
    Updated Jul 13, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chicago Police Department (2025). crime map [Dataset]. https://data.cityofchicago.org/Public-Safety/crime-map/vpm8-dmfj
    Explore at:
    csv, application/geo+json, tsv, application/rssxml, kmz, application/rdfxml, xml, kmlAvailable download formats
    Dataset updated
    Jul 13, 2025
    Authors
    Chicago Police Department
    Description

    This dataset reflects reported incidents of crime that have occurred in the City of Chicago over the past year, minus the most recent seven days of data. Data is extracted from the Chicago Police Department's CLEAR (Citizen Law Enforcement Analysis and Reporting) system. In order to protect the privacy of crime victims, addresses are shown at the block level only and specific locations are not identified. Should you have questions about this dataset, you may contact the Research & Development Division of the Chicago Police Department at 312.745.6071 or RandD@chicagopolice.org. Disclaimer: These crimes may be based upon preliminary information supplied to the Police Department by the reporting parties that have not been verified. The preliminary crime classifications may be changed at a later date based upon additional investigation and there is always the possibility of mechanical or human error. Therefore, the Chicago Police Department does not guarantee (either expressed or implied) the accuracy, completeness, timeliness, or correct sequencing of the information and the information should not be used for comparison purposes over time. The Chicago Police Department will not be responsible for any error or omission, or for the use of, or the results obtained from the use of this information. All data visualizations on maps should be considered approximate and attempts to derive specific addresses are strictly prohibited.

    The Chicago Police Department is not responsible for the content of any off-site pages that are referenced by or that reference this web page other than an official City of Chicago or Chicago Police Department web page. The user specifically acknowledges that the Chicago Police Department is not responsible for any defamatory, offensive, misleading, or illegal conduct of other users, links, or third parties and that the risk of injury from the foregoing rests entirely with the user. Any use of the information for commercial purposes is strictly prohibited. The unauthorized use of the words "Chicago Police Department," "Chicago Police," or any colorable imitation of these words or the unauthorized use of the Chicago Police Department logo is unlawful. This web page does not, in any way, authorize such use. Data is updated daily.

  11. T

    PDI (Police Data Initiative) Crime Incidents

    • data.cincinnati-oh.gov
    application/rdfxml +5
    Updated Jul 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Cincinnati (2025). PDI (Police Data Initiative) Crime Incidents [Dataset]. https://data.cincinnati-oh.gov/Safety/PDI-Police-Data-Initiative-Crime-Incidents/k59e-2pvf
    Explore at:
    tsv, application/rdfxml, csv, json, xml, application/rssxmlAvailable download formats
    Dataset updated
    Jul 13, 2025
    Dataset authored and provided by
    City of Cincinnati
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    Note: Due to the RMS change for CPS, this data set stops on 6/2/2024. For records beginning on 6/3/2024, please see the dataset at this link: https://data.cincinnati-oh.gov/safety/Reported-Crime-STARS-Category-Offenses-/7aqy-xrv9/about_data

    The combined data will be available by 3/10/2025 at the linke above.

    Data Description: This data represents reported Crime Incidents in the City of Cincinnati. Incidents are the records, of reported crimes, collated by an agency for management. Incidents are typically housed in a Records Management System (RMS) that stores agency-wide data about law enforcement operations. This does not include police calls for service, arrest information, final case determination, or any other incident outcome data.

    Data Creation: The Cincinnati Police Department's (CPD) records crime incidents in the City through Records Management System (RMS) that stores agency-wide data about law enforcement operations.

    Data Created By: The source of this data is the Cincinnati Police Department.

    Refresh Frequency: This data is updated daily.

    CincyInsights: The City of Cincinnati maintains an interactive dashboard portal, CincyInsights in addition to our Open Data in an effort to increase access and usage of city data. This data set has an associated dashboard available here: https://insights.cincinnati-oh.gov/stories/s/8eaa-xrvz

    Data Dictionary: A data dictionary providing definitions of columns and attributes is available as an attachment to this dataset.

    Processing: The City of Cincinnati is committed to providing the most granular and accurate data possible. In that pursuit the Office of Performance and Data Analytics facilitates standard processing to most raw data prior to publication. Processing includes but is not limited: address verification, geocoding, decoding attributes, and addition of administrative areas (i.e. Census, neighborhoods, police districts, etc.).

    Data Usage: For directions on downloading and using open data please visit our How-to Guide: https://data.cincinnati-oh.gov/dataset/Open-Data-How-To-Guide/gdr9-g3ad

    Disclaimer: In compliance with privacy laws, all Public Safety datasets are anonymized and appropriately redacted prior to publication on the City of Cincinnati’s Open Data Portal. This means that for all public safety datasets: (1) the last two digits of all addresses have been replaced with “XX,” and in cases where there is a single digit street address, the entire address number is replaced with "X"; and (2) Latitude and Longitude have been randomly skewed to represent values within the same block area (but not the exact location) of the incident.

  12. G

    Number, percentage and rate of homicide victims, by racialized identity...

    • open.canada.ca
    • data.urbandatacentre.ca
    • +3more
    csv, html, xml
    Updated Jul 25, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics Canada (2024). Number, percentage and rate of homicide victims, by racialized identity group, gender and region [Dataset]. https://open.canada.ca/data/dataset/a188a39e-38cb-491b-95fb-9793b1b9083b
    Explore at:
    csv, html, xmlAvailable download formats
    Dataset updated
    Jul 25, 2024
    Dataset provided by
    Statistics Canada
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    Number, percentage and rate (per 100,000 population) of homicide victims, by racialized identity group (total, by racialized identity group; racialized identity group; South Asian; Chinese; Black; Filipino; Arab; Latin American; Southeast Asian; West Asian; Korean; Japanese; other racialized identity group; multiple racialized identity; racialized identity, but racialized identity group is unknown; rest of the population; unknown racialized identity group), gender (all genders; male; female; gender unknown) and region (Canada; Atlantic region; Quebec; Ontario; Prairies region; British Columbia; territories), 2019 to 2023.

  13. N

    NYC crime

    • data.cityofnewyork.us
    • data.wu.ac.at
    Updated Apr 15, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Police Department (NYPD) (2025). NYC crime [Dataset]. https://data.cityofnewyork.us/Public-Safety/NYC-crime/qb7u-rbmr
    Explore at:
    xml, csv, application/rdfxml, tsv, application/rssxml, kml, application/geo+json, kmzAvailable download formats
    Dataset updated
    Apr 15, 2025
    Authors
    Police Department (NYPD)
    Area covered
    New York
    Description

    This dataset includes all valid felony, misdemeanor, and violation crimes reported to the New York City Police Department (NYPD) for all complete quarters so far this year (2017). For additional details, please see the attached data dictionary in the ‘About’ section.

  14. Age-by-Race Specific Crime Rates, 1965-1985: [United States]

    • icpsr.umich.edu
    • catalog.data.gov
    ascii, sas, spss
    Updated Nov 4, 2005
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cohen, Jacqueline; Rosenfeld, Richard (2005). Age-by-Race Specific Crime Rates, 1965-1985: [United States] [Dataset]. http://doi.org/10.3886/ICPSR09589.v1
    Explore at:
    sas, ascii, spssAvailable download formats
    Dataset updated
    Nov 4, 2005
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    Cohen, Jacqueline; Rosenfeld, Richard
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/9589/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/9589/terms

    Time period covered
    1965 - 1985
    Area covered
    United States
    Description

    These data examine the effects on total crime rates of changes in the demographic composition of the population and changes in criminality of specific age and race groups. The collection contains estimates from national data of annual age-by-race specific arrest rates and crime rates for murder, robbery, and burglary over the 21-year period 1965-1985. The data address the following questions: (1) Are the crime rates reported by the Uniform Crime Reports (UCR) data series valid indicators of national crime trends? (2) How much of the change between 1965 and 1985 in total crime rates for murder, robbery, and burglary is attributable to changes in the age and race composition of the population, and how much is accounted for by changes in crime rates within age-by-race specific subgroups? (3) What are the effects of age and race on subgroup crime rates for murder, robbery, and burglary? (4) What is the effect of time period on subgroup crime rates for murder, robbery, and burglary? (5) What is the effect of birth cohort, particularly the effect of the very large (baby-boom) cohorts following World War II, on subgroup crime rates for murder, robbery, and burglary? (6) What is the effect of interactions among age, race, time period, and cohort on subgroup crime rates for murder, robbery, and burglary? (7) How do patterns of age-by-race specific crime rates for murder, robbery, and burglary compare for different demographic subgroups? The variables in this study fall into four categories. The first category includes variables that define the race-age cohort of the unit of observation. The values of these variables are directly available from UCR and include year of observation (from 1965-1985), age group, and race. The second category of variables were computed using UCR data pertaining to the first category of variables. These are period, birth cohort of age group in each year, and average cohort size for each single age within each single group. The third category includes variables that describe the annual age-by-race specific arrest rates for the different crime types. These variables were estimated for race, age, group, crime type, and year using data directly available from UCR and population estimates from Census publications. The fourth category includes variables similar to the third group. Data for estimating these variables were derived from available UCR data on the total number of offenses known to the police and total arrests in combination with the age-by-race specific arrest rates for the different crime types.

  15. l

    Homicide Rate

    • geohub.lacity.org
    • data.lacounty.gov
    • +4more
    Updated Dec 19, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    County of Los Angeles (2023). Homicide Rate [Dataset]. https://geohub.lacity.org/datasets/lacounty::homicide-rate
    Explore at:
    Dataset updated
    Dec 19, 2023
    Dataset authored and provided by
    County of Los Angeles
    Area covered
    Description

    This indicator is based on location of residence. Mortality rate has been age-adjusted to the 2000 U.S. standard population. ICD 10 codes used to identify homicides are X85-Y09, Y87.1, and U01-U02. Single-year data are only available for Los Angeles County overall, Service Planning Areas, Supervisorial Districts, City of Los Angeles overall, and City of Los Angeles Council Districts.Violence is a public health crisis in the US, with gun violence being a major driver. Almost three quarters of homicides involve firearms. In the US, the age-adjusted homicide rate from firearms is more than 20 times higher than in the European Union or in Australia. Significant disparities by age, sex, and race and ethnicity exist, with young adults ages 15-34 years, males, and Black individuals most disproportionately impacted. Comprehensive prevention strategies should work to address the underlying physical, social, economic, and structural conditions known to increase risk.For more information about the Community Health Profiles Data Initiative, please see the initiative homepage.

  16. C

    Violence Reduction - Victims of Homicides and Non-Fatal Shootings

    • data.cityofchicago.org
    • catalog.data.gov
    Updated Jul 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Chicago (2025). Violence Reduction - Victims of Homicides and Non-Fatal Shootings [Dataset]. https://data.cityofchicago.org/Public-Safety/Violence-Reduction-Victims-of-Homicides-and-Non-Fa/gumc-mgzr
    Explore at:
    csv, tsv, application/rdfxml, application/rssxml, xml, kml, application/geo+json, kmzAvailable download formats
    Dataset updated
    Jul 13, 2025
    Dataset authored and provided by
    City of Chicago
    Description

    This dataset contains individual-level homicide and non-fatal shooting victimizations, including homicide data from 1991 to the present, and non-fatal shooting data from 2010 to the present (2010 is the earliest available year for shooting data). This dataset includes a "GUNSHOT_INJURY_I " column to indicate whether the victimization involved a shooting, showing either Yes ("Y"), No ("N"), or Unknown ("UKNOWN.") For homicides, injury descriptions are available dating back to 1991, so the "shooting" column will read either "Y" or "N" to indicate whether the homicide was a fatal shooting or not. For non-fatal shootings, data is only available as of 2010. As a result, for any non-fatal shootings that occurred from 2010 to the present, the shooting column will read as “Y.” Non-fatal shooting victims will not be included in this dataset prior to 2010; they will be included in the authorized-access dataset, but with "UNKNOWN" in the shooting column.

    Each row represents a single victimization, i.e., a unique event when an individual became the victim of a homicide or non-fatal shooting. Each row does not represent a unique victim—if someone is victimized multiple times there will be multiple rows for each of those distinct events.

    The dataset is refreshed daily, but excludes the most recent complete day to allow the Chicago Police Department (CPD) time to gather the best available information. Each time the dataset is refreshed, records can change as CPD learns more about each victimization, especially those victimizations that are most recent. The data on the Mayor's Office Violence Reduction Dashboard is updated daily with an approximately 48-hour lag. As cases are passed from the initial reporting officer to the investigating detectives, some recorded data about incidents and victimizations may change once additional information arises. Regularly updated datasets on the City's public portal may change to reflect new or corrected information.

    A version of this dataset with additional crime types is available by request. To make a request, please email dataportal@cityofchicago.org with the subject line: Violence Reduction Victims Access Request. Access will require an account on this site, which you may create at https://data.cityofchicago.org/signup.

    How does this dataset classify victims?

    The methodology by which this dataset classifies victims of violent crime differs by victimization type:

    Homicide and non-fatal shooting victims: A victimization is considered a homicide victimization or non-fatal shooting victimization depending on its presence in CPD's homicide victims data table or its shooting victims data table. A victimization is considered a homicide only if it is present in CPD's homicide data table, while a victimization is considered a non-fatal shooting only if it is present in CPD's shooting data tables and absent from CPD's homicide data table.

    To determine the IUCR code of homicide and non-fatal shooting victimizations, we defer to the incident IUCR code available in CPD's Crimes, 2001-present dataset (available on the City's open data portal). If the IUCR code in CPD's Crimes dataset is inconsistent with the homicide/non-fatal shooting categorization, we defer to CPD's Victims dataset. For a criminal homicide, the only sensible IUCR codes are 0110 (first-degree murder) or 0130 (second-degree murder). For a non-fatal shooting, a sensible IUCR code must signify a criminal sexual assault, a robbery, or, most commonly, an aggravated battery. In rare instances, the IUCR code in CPD's Crimes and Victims dataset do not align with the homicide/non-fatal shooting categorization:

    1. In instances where a homicide victimization does not correspond to an IUCR code 0110 or 0130, we set the IUCR code to "01XX" to indicate that the victimization was a homicide but we do not know whether it was a first-degree murder (IUCR code = 0110) or a second-degree murder (IUCR code = 0130).
    2. When a non-fatal shooting victimization does not correspond to an IUCR code that signifies a criminal sexual assault, robbery, or aggravated battery, we enter “UNK” in the IUCR column, “YES” in the GUNSHOT_I column, and “NON-FATAL” in the PRIMARY column to indicate that the victim was non-fatally shot, but the precise IUCR code is unknown.

    Other violent crime victims: For other violent crime types, we refer to the IUCR classification that exists in CPD's victim table, with only one exception:

    1. When there is an incident that is associated with no victim with a matching IUCR code, we assume that this is an error. Every crime should have at least 1 victim with a matching IUCR code. In these cases, we change the IUCR code to reflect the incident IUCR code because CPD's incident table is considered to be more reliable than the victim table.

    Note: The definition of “homicide” (shooting or otherwise) does not include justifiable homicide or involuntary manslaughter. This dataset also excludes any cases that CPD considers to be “unfounded” or “noncriminal.” Officer-involved shootings are not included.

    Note: The initial reporting officer usually asks victims to report demographic data. If victims are unable to recall, the reporting officer will use their best judgment. “Unknown” can be reported if it is truly unknown.

    Note: In some instances, CPD's raw incident-level data and victim-level data that were inputs into this dataset do not align on the type of crime that occurred. In those instances, this dataset attempts to correct mismatches between incident and victim specific crime types. When it is not possible to determine which victims are associated with the most reliable crime determination, the dataset will show empty cells in the respective demographic fields (age, sex, race, etc.).

    Note: Homicide victims names are delayed by two weeks to allow time for the victim’s family to be notified of their passing.

    Note: The initial reporting officer usually asks victims to report demographic data. If victims are unable to recall, the reporting officer will use their best judgment. “Unknown” can be reported if it is truly unknown.

    Note: This dataset includes variables referencing administrative or political boundaries that are subject to change. These include Street Outreach Organization boundary, Ward, Chicago Police Department District, Chicago Police Department Area, Chicago Police Department Beat, Illinois State Senate District, and Illinois State House of Representatives District. These variables reflect current geographic boundaries as of November 1st, 2021. In some instances, current boundaries may conflict with those that were in place at the time that a given incident occurred in prior years. For example, the Chicago Police Department districts 021 and 013 no longer exist. Any historical violent crime victimization that occurred in those districts when they were in existence are marked in this dataset as having occurred in the current districts that expanded to replace 013 and 021."

  17. a

    Violent Crime Rate

    • egis-lacounty.hub.arcgis.com
    • data.lacounty.gov
    • +3more
    Updated Dec 19, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    County of Los Angeles (2023). Violent Crime Rate [Dataset]. https://egis-lacounty.hub.arcgis.com/datasets/violent-crime-rate
    Explore at:
    Dataset updated
    Dec 19, 2023
    Dataset authored and provided by
    County of Los Angeles
    Area covered
    Description

    Serious violent crimes consist of Part 1 offenses as defined by the U.S. Department of Justice’s Uniform Reporting Statistics. These include murders, nonnegligent homicides, rapes (legacy and revised), robberies, and aggravated assaults. LAPD data were used for City of Los Angeles, LASD data were used for unincorporated areas and cities that contract with LASD for law enforcement services, and CA Attorney General data were used for all other cities with local police departments. This indicator is based on location of residence. Single-year data are only available for Los Angeles County overall, Service Planning Areas, Supervisorial Districts, City of Los Angeles overall, and City of Los Angeles Council Districts.Neighborhood violence and crime can have a harmful impact on all members of a community. Living in communities with high rates of violence and crime not only exposes residents to a greater personal risk of injury or death, but it can also render individuals more susceptible to many adverse health outcomes. People who are regularly exposed to violence and crime are more likely to suffer from chronic stress, depression, anxiety, and other mental health conditions. They are also less likely to be able to use their parks and neighborhoods for recreation and physical activity.For more information about the Community Health Profiles Data Initiative, please see the initiative homepage.

  18. United States US: Intentional Homicides: Female: per 100,000 Female

    • ceicdata.com
    Updated May 15, 2009
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2009). United States US: Intentional Homicides: Female: per 100,000 Female [Dataset]. https://www.ceicdata.com/en/united-states/health-statistics/us-intentional-homicides-female-per-100000-female
    Explore at:
    Dataset updated
    May 15, 2009
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2005 - Dec 1, 2016
    Area covered
    United States
    Description

    United States US: Intentional Homicides: Female: per 100,000 Female data was reported at 2.261 Ratio in 2016. This records an increase from the previous number of 2.062 Ratio for 2015. United States US: Intentional Homicides: Female: per 100,000 Female data is updated yearly, averaging 2.337 Ratio from Dec 2000 (Median) to 2016, with 17 observations. The data reached an all-time high of 3.086 Ratio in 2001 and a record low of 1.983 Ratio in 2014. United States US: Intentional Homicides: Female: per 100,000 Female data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s USA – Table US.World Bank: Health Statistics. Intentional homicides, female are estimates of unlawful female homicides purposely inflicted as a result of domestic disputes, interpersonal violence, violent conflicts over land resources, intergang violence over turf or control, and predatory violence and killing by armed groups. Intentional homicide does not include all intentional killing; the difference is usually in the organization of the killing. Individuals or small groups usually commit homicide, whereas killing in armed conflict is usually committed by fairly cohesive groups of up to several hundred members and is thus usually excluded.; ; UN Office on Drugs and Crime's International Homicide Statistics database.; ;

  19. Data from: National Neighborhood Data Archive (NaNDA): Crimes by County,...

    • archive.icpsr.umich.edu
    • openicpsr.org
    • +1more
    ascii, delimited, r +3
    Updated Jan 30, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Clarke, Philippa; Melendez, Robert; Chenoweth, Megan (2023). National Neighborhood Data Archive (NaNDA): Crimes by County, United States, 2002-2014 [Dataset]. https://archive.icpsr.umich.edu/view/studies/38649
    Explore at:
    r, sas, spss, stata, delimited, asciiAvailable download formats
    Dataset updated
    Jan 30, 2023
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    Clarke, Philippa; Melendez, Robert; Chenoweth, Megan
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/38649/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/38649/terms

    Time period covered
    2002 - 2014
    Area covered
    United States
    Description

    This dataset contains county-level totals for the years 2002-2014 for eight types of crime: murder, rape, robbery, aggravated assault, burglary, larceny, motor vehicle theft, and arson. These crimes are classed as Part I criminal offenses by the United States Federal Bureau of Investigations (FBI) in their Uniform Crime Reporting (UCR) program. Each record in the dataset represents the total of each type of criminal offense reported in (or, in the case of missing data, attributed to) the county in a given year.

  20. UCI Communities and Crime Unnormalized Data Set

    • kaggle.com
    Updated Feb 21, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kavitha (2018). UCI Communities and Crime Unnormalized Data Set [Dataset]. https://www.kaggle.com/kkanda/communities%20and%20crime%20unnormalized%20data%20set/notebooks
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 21, 2018
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Kavitha
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    Context

    Introduction: The dataset used for this experiment is real and authentic. The dataset is acquired from UCI machine learning repository website [13]. The title of the dataset is ‘Crime and Communities’. It is prepared using real data from socio-economic data from 1990 US Census, law enforcement data from the 1990 US LEMAS survey, and crimedata from the 1995 FBI UCR [13]. This dataset contains a total number of 147 attributes and 2216 instances.

    The per capita crimes variables were calculated using population values included in the 1995 FBI data (which differ from the 1990 Census values).

    Content

    The variables included in the dataset involve the community, such as the percent of the population considered urban, and the median family income, and involving law enforcement, such as per capita number of police officers, and percent of officers assigned to drug units. The crime attributes (N=18) that could be predicted are the 8 crimes considered 'Index Crimes' by the FBI)(Murders, Rape, Robbery, .... ), per capita (actually per 100,000 population) versions of each, and Per Capita Violent Crimes and Per Capita Nonviolent Crimes)

    predictive variables : 125 non-predictive variables : 4 potential goal/response variables : 18

    Acknowledgements

    http://archive.ics.uci.edu/ml/datasets/Communities%20and%20Crime%20Unnormalized

    U. S. Department of Commerce, Bureau of the Census, Census Of Population And Housing 1990 United States: Summary Tape File 1a & 3a (Computer Files),

    U.S. Department Of Commerce, Bureau Of The Census Producer, Washington, DC and Inter-university Consortium for Political and Social Research Ann Arbor, Michigan. (1992)

    U.S. Department of Justice, Bureau of Justice Statistics, Law Enforcement Management And Administrative Statistics (Computer File) U.S. Department Of Commerce, Bureau Of The Census Producer, Washington, DC and Inter-university Consortium for Political and Social Research Ann Arbor, Michigan. (1992)

    U.S. Department of Justice, Federal Bureau of Investigation, Crime in the United States (Computer File) (1995)

    Inspiration

    Your data will be in front of the world's largest data science community. What questions do you want to see answered?

    Data available in the dataset may not act as a complete source of information for identifying factors that contribute to more violent and non-violent crimes as many relevant factors may still be missing.

    However, I would like to try and answer the following questions answered.

    1. Analyze if number of vacant and occupied houses and the period of time the houses were vacant had contributed to any significant change in violent and non-violent crime rates in communities

    2. How has unemployment changed crime rate(violent and non-violent) in the communities?

    3. Were people from a particular age group more vulnerable to crime?

    4. Does ethnicity play a role in crime rate?

    5. Has education played a role in bringing down the crime rate?

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2024). Reported violent crime rate in the U.S. 1990-2023 [Dataset]. https://www.statista.com/statistics/191219/reported-violent-crime-rate-in-the-usa-since-1990/
Organization logo

Reported violent crime rate in the U.S. 1990-2023

Explore at:
24 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Nov 14, 2024
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
United States
Description

In 2023, the violent crime rate in the United States was 363.8 cases per 100,000 of the population. Even though the violent crime rate has been decreasing since 1990, the United States tops the ranking of countries with the most prisoners. In addition, due to the FBI's transition to a new crime reporting system in which law enforcement agencies voluntarily submit crime reports, data may not accurately reflect the total number of crimes committed in recent years. Reported violent crime rate in the United States The United States Federal Bureau of Investigation tracks the rate of reported violent crimes per 100,000 U.S. inhabitants. In the timeline above, rates are shown starting in 1990. The rate of reported violent crime has fallen since a high of 758.20 reported crimes in 1991 to a low of 363.6 reported violent crimes in 2014. In 2023, there were around 1.22 million violent crimes reported to the FBI in the United States. This number can be compared to the total number of property crimes, roughly 6.41 million that year. Of violent crimes in 2023, aggravated assaults were the most common offenses in the United States, while homicide offenses were the least common. Law enforcement officers and crime clearance Though the violent crime rate was down in 2013, the number of law enforcement officers also fell. Between 2005 and 2009, the number of law enforcement officers in the United States rose from around 673,100 to 708,800. However, since 2009, the number of officers fell to a low of 626,900 officers in 2013. The number of law enforcement officers has since grown, reaching 720,652 in 2023. In 2023, the crime clearance rate in the U.S. was highest for murder and non-negligent manslaughter charges, with around 57.8 percent of murders being solved by investigators and a suspect being charged with the crime. Additionally, roughly 46.1 percent of aggravated assaults were cleared in that year. A statistics report on violent crime in the U.S. can be found here.

Search
Clear search
Close search
Google apps
Main menu