This dataset contains counts of deaths for California as a whole based on information entered on death certificates. Final counts are derived from static data and include out-of-state deaths to California residents, whereas provisional counts are derived from incomplete and dynamic data. Provisional counts are based on the records available when the data was retrieved and may not represent all deaths that occurred during the time period. Deaths involving injuries from external or environmental forces, such as accidents, homicide and suicide, often require additional investigation that tends to delay certification of the cause and manner of death. This can result in significant under-reporting of these deaths in provisional data.
The final data tables include both deaths that occurred in California regardless of the place of residence (by occurrence) and deaths to California residents (by residence), whereas the provisional data table only includes deaths that occurred in California regardless of the place of residence (by occurrence). The data are reported as totals, as well as stratified by age, gender, race-ethnicity, and death place type. Deaths due to all causes (ALL) and selected underlying cause of death categories are provided. See temporal coverage for more information on which combinations are available for which years.
The cause of death categories are based solely on the underlying cause of death as coded by the International Classification of Diseases. The underlying cause of death is defined by the World Health Organization (WHO) as "the disease or injury which initiated the train of events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury." It is a single value assigned to each death based on the details as entered on the death certificate. When more than one cause is listed, the order in which they are listed can affect which cause is coded as the underlying cause. This means that similar events could be coded with different underlying causes of death depending on variations in how they were entered. Consequently, while underlying cause of death provides a convenient comparison between cause of death categories, it may not capture the full impact of each cause of death as it does not always take into account all conditions contributing to the death.
Detailed listing of all U.S. Military Active Duty deaths for 2006
Detailed listing of all U.S. Military Active Duty deaths since 1/1/2001 giving branch of service, age at death, military occupational code, location of death, and casualty category
On 1 April 2025 responsibility for fire and rescue transferred from the Home Office to the Ministry of Housing, Communities and Local Government.
This information covers fires, false alarms and other incidents attended by fire crews, and the statistics include the numbers of incidents, fires, fatalities and casualties as well as information on response times to fires. The Ministry of Housing, Communities and Local Government (MHCLG) also collect information on the workforce, fire prevention work, health and safety and firefighter pensions. All data tables on fire statistics are below.
MHCLG has responsibility for fire services in England. The vast majority of data tables produced by the Ministry of Housing, Communities and Local Government are for England but some (0101, 0103, 0201, 0501, 1401) tables are for Great Britain split by nation. In the past the Department for Communities and Local Government (who previously had responsibility for fire services in England) produced data tables for Great Britain and at times the UK. Similar information for devolved administrations are available at https://www.firescotland.gov.uk/about/statistics/" class="govuk-link">Scotland: Fire and Rescue Statistics, https://statswales.gov.wales/Catalogue/Community-Safety-and-Social-Inclusion/Community-Safety" class="govuk-link">Wales: Community safety and https://www.nifrs.org/home/about-us/publications/" class="govuk-link">Northern Ireland: Fire and Rescue Statistics.
If you use assistive technology (for example, a screen reader) and need a version of any of these documents in a more accessible format, please email alternativeformats@homeoffice.gov.uk. Please tell us what format you need. It will help us if you say what assistive technology you use.
Fire statistics guidance
Fire statistics incident level datasets
https://assets.publishing.service.gov.uk/media/67fe79e3393a986ec5cf8dbe/FIRE0101.xlsx">FIRE0101: Incidents attended by fire and rescue services by nation and population (MS Excel Spreadsheet, 126 KB) Previous FIRE0101 tables
https://assets.publishing.service.gov.uk/media/67fe79fbed87b81608546745/FIRE0102.xlsx">FIRE0102: Incidents attended by fire and rescue services in England, by incident type and fire and rescue authority (MS Excel Spreadsheet, 1.56 MB) Previous FIRE0102 tables
https://assets.publishing.service.gov.uk/media/67fe7a20694d57c6b1cf8db0/FIRE0103.xlsx">FIRE0103: Fires attended by fire and rescue services by nation and population (MS Excel Spreadsheet, 156 KB) Previous FIRE0103 tables
https://assets.publishing.service.gov.uk/media/67fe7a40ed87b81608546746/FIRE0104.xlsx">FIRE0104: Fire false alarms by reason for false alarm, England (MS Excel Spreadsheet, 331 KB) Previous FIRE0104 tables
https://assets.publishing.service.gov.uk/media/67fe7a5f393a986ec5cf8dc0/FIRE0201.xlsx">FIRE0201: Dwelling fires attended by fire and rescue services by motive, population and nation (MS Excel Spreadsheet, <span class="gem-c-attachm
A dataset to advance the study of life-cycle interactions of biomedical and socioeconomic factors in the aging process. The EI project has assembled a variety of large datasets covering the life histories of approximately 39,616 white male volunteers (drawn from a random sample of 331 companies) who served in the Union Army (UA), and of about 6,000 African-American veterans from 51 randomly selected United States Colored Troops companies (USCT). Their military records were linked to pension and medical records that detailed the soldiers������?? health status and socioeconomic and family characteristics. Each soldier was searched for in the US decennial census for the years in which they were most likely to be found alive (1850, 1860, 1880, 1900, 1910). In addition, a sample consisting of 70,000 men examined for service in the Union Army between September 1864 and April 1865 has been assembled and linked only to census records. These records will be useful for life-cycle comparisons of those accepted and rejected for service. Military Data: The military service and wartime medical histories of the UA and USCT men were collected from the Union Army and United States Colored Troops military service records, carded medical records, and other wartime documents. Pension Data: Wherever possible, the UA and USCT samples have been linked to pension records, including surgeon''''s certificates. About 70% of men in the Union Army sample have a pension. These records provide the bulk of the socioeconomic and demographic information on these men from the late 1800s through the early 1900s, including family structure and employment information. In addition, the surgeon''''s certificates provide rich medical histories, with an average of 5 examinations per linked recruit for the UA, and about 2.5 exams per USCT recruit. Census Data: Both early and late-age familial and socioeconomic information is collected from the manuscript schedules of the federal censuses of 1850, 1860, 1870 (incomplete), 1880, 1900, and 1910. Data Availability: All of the datasets (Military Union Army; linked Census; Surgeon''''s Certificates; Examination Records, and supporting ecological and environmental variables) are publicly available from ICPSR. In addition, copies on CD-ROM may be obtained from the CPE, which also maintains an interactive Internet Data Archive and Documentation Library, which can be accessed on the Project Website. * Dates of Study: 1850-1910 * Study Features: Longitudinal, Minority Oversamples * Sample Size: ** Union Army: 35,747 ** Colored Troops: 6,187 ** Examination Sample: 70,800 ICPSR Link: http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06836
Child Fatalities by Submission Type
Description
Counts and rates of child fatalities by file submission type for the most recent federal fiscal year for which data are available. To view more National Child Abuse and Neglect Data System (NCANDS) findings, click link to summary page below: https://healthdata.gov/stories/s/kaeg-w7jc
Dataset Details
Publisher: U.S. Department of Health & Human Services Last Modified: 2024-06-28 Contact: HealthData.gov Team… See the full description on the dataset page: https://huggingface.co/datasets/HHS-Official/child-fatalities-by-submission-type.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for CORONAVIRUS DEATHS reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
VITAL SIGNS INDICATOR
Fatalities From Crashes (EN4)
FULL MEASURE NAME
Fatalities from Crashes (traffic collisions)
LAST UPDATED
October 2022
DESCRIPTION
Fatalities from crashes refers to deaths as a result of fatalities sustained in collisions. The California Highway Patrol includes deaths within 30 days of the collision that are a result of fatalities sustained as part of this metric. This total fatalities dataset includes fatality counts for the region and counties, as well as individual collision data and metropolitan area data.
DATA SOURCE
National Highway Safety Administration: Fatality Analysis Reporting System - https://www.nhtsa.gov/file-downloads?p=nhtsa/downloads/FARS/
1990-2020
Caltrans: Highway Performance Monitoring System (HPMS) - https://dot.ca.gov/programs/research-innovation-system-information/highway-performance-monitoring-system
Annual Vehicle Miles Traveled (VMT)
2001-2020
California Department of Finance: E-4 Historical Population Estimates for Cities, Counties, and the State - https://dof.ca.gov/forecasting/demographics/estimates/
1990-2020
US Census Population and Housing Unit Estimates - https://www.census.gov/programs-surveys/popest.html
1990-2020
CONTACT INFORMATION
vitalsigns.info@bayareametro.gov
METHODOLOGY NOTES (across all datasets for this indicator)
Fatalities from crashes data is reported to the National Highway Traffic Safety Administration through the Fatality Analysis Reporting System (FARS) program. Data for individual collisions is reported by the California Highway Patrol (CHP) to the Statewide Integrated Traffic Records System (SWITRS). The data was tabulated using provided categories specifying injury level, individuals involved, causes of collision and location/jurisdiction of collision (for more information refer to the SWITRS codebook - http://tims.berkeley.edu/help/files/switrs_codebook.doc). For case data, latitude and longitude information for each accident is geocoded by SafeTREC’s Transportation Injury Mapping System (TIMS). Fatalities were normalized over historic population data from the US Census Bureau’s population estimates and vehicle miles traveled (VMT) data from the Federal Highway Administration.
The crash data only include crashes that involved a motor vehicle. Bicyclist and pedestrian fatalities that did not involve a motor vehicle, such as a bicyclist and pedestrian collision or a bicycle crash due to a pothole, are not included in the data.
For more regarding reporting procedures and injury classification, refer to the CHP Manual - https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/documents/ca_chp555_manual_2_2003_ch1-13.pdf.
The Armed Conflict Location & Event Data Project (ACLED) is a US-registered non-profit whose mission is to provide the highest quality real-time data on political violence and demonstrations globally. The information collected includes the type of event, its date, the location, the actors involved, a brief narrative summary, and any reported fatalities. ACLED users rely on our robust global dataset to support decision-making around policy and programming, accurately analyze political and country risk, support operational security planning, and improve supply chain management.ACLED’s transparent methodology, expert team composed of 250 individuals speaking more than 70 languages, real-time coding system, and weekly update schedule are unrivaled in the field of data collection on conflict and disorder. Global Coverage: We track political violence, demonstrations, and strategic developments around the world, covering more than 240 countries and territories.Published Weekly: Our data are collected in real time and published weekly. It is the only dataset of its kind to provide such a high update frequency, with peer datasets most often updating monthly or yearly.Historical Data: Our dataset contains at least two full years of data for all countries and territories, with more extensive coverage available for multiple regions.Experienced Researchers: Our data are coded by experienced researchers with local, country, and regional expertise and language skills.Thorough Data Collection and Sourcing: Pulling from traditional media, reports, local partner data, and verified new media, ACLED uses a tailor-made sourcing methodology for individual regions/countries.Extensive Review Process: Our data go through an exhaustive multi-stage quality assurance process to ensure their accuracy and reliability. This process includes both manual and automated error checking and contextual review.Clean, Standardized, and Validated: Our data can be easily connected with internal dashboards through our API or downloaded through the Data Export Tool on our website.Resources Available on ESRI’s Living AtlasACLED data are available through the Living Atlas for the most recent 12 month period. The data are mapped to the centroid of first administrative divisions (“admin1”) within countries (e.g., states, districts, provinces) and aggregated by month. Variables in the data include:The number of events per admin1-month, disaggregated by event type (protests, riots, battles, violence against civilians, explosions/remote violence, and strategic developments)A conservative estimate of reported fatalities per admin1-monthThe total number of distinct violent actors active in the corresponding admin1 for each monthThis Living Atlas item is a Web Map, which provides a pre-configured view of ACLED event data in a few layers:ACLED Event Counts layer: events per admin1-month, styled by predominant event type for each location.ACLED Violent Actors layer: the number of distinct violent actors per admin1-month.ACLED Fatality Estimates layer: the estimated number of fatalities from political violence per admin1-month.These layers are based on the ACLED Conflict and Demonstrations Event Data Feature Layer, which has the same data but only a basic default styling that is similar to the Event Counts layer. The Web Map layers are configured with a time-slider component to account for the multiple months of data per admin1 unit. These indicators are also available in the ACLED Conflict and Demonstrations Data Key Indicators Group Layer, which includes the same preconfigured layers but without the time-slider component or background layers.Resources Available on the ACLED WebsiteThe fully disaggregated dataset is available for download on ACLED's website including:Date (day, month, year)Actors, associated actors, and actor typesLocation information (ADMIN1, ADMIN2, ADMIN3, location and geo coordinates)A conservative fatality estimateDisorder type, event types, and sub-event typesTags further categorizing the data A notes column providing a narrative of the event For more information, please see the ACLED Codebook.To explore ACLED’s full dataset, please register on the ACLED Access Portal, following the instructions available in this Access Guide. Upon registration, you’ll receive access to ACLED data on a limited basis. Commercial users have access to 3 free data downloads company-wide with access to up to one year of historical data. Public sector users have access to 6 downloads of up to three years of historical data organization-wide. To explore options for extended access, please reach out to our Access Team (access@acleddata.com).With an ACLED license, users can also leverage ACLED’s interactive Global Dashboard and check in for weekly data updates and analysis tracking key political violence and protest trends around the world. ACLED also has several analytical tools available such as our Early Warning Dashboard, Conflict Alert System (CAST), and Conflict Index Dashboard.
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
Dataset Card for Airplane Crashes and Fatalities
Dataset Summary
Airplane Crashes and Fatalities
This dataset showcases Boeing 707 accidents that have occurred since 1948. The data includes information on the date, time, location, operator, flight number, route, type of aircraft, registration number, cn/In number of persons on board, fatalities, ground fatalities, and a summary of the accident
How to use the dataset
This dataset includes information… See the full description on the dataset page: https://huggingface.co/datasets/nateraw/airplane-crashes-and-fatalities.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Fatality Analysis Reporting System (FARS) was created in the United States by the National Highway Traffic Safety Administration (NHTSA) to provide an overall measure of highway safety, to help suggest solutions, and to help provide an objective basis to evaluate the effectiveness of motor vehicle safety standards and highway safety programs.
FARS contains data on a census of fatal traffic crashes within the 50 States, the District of Columbia, and Puerto Rico. To be included in FARS, a crash must involve a motor vehicle traveling on a trafficway customarily open to the public and result in the death of a person (occupant of a vehicle or a non-occupant) within 30 days of the crash. FARS has been operational since 1975 and has collected information on over 989,451 motor vehicle fatalities and collects information on over 100 different coded data elements that characterizes the crash, the vehicle, and the people involved.
FARS is vital to the mission of NHTSA to reduce the number of motor vehicle crashes and deaths on our nation's highways, and subsequently, reduce the associated economic loss to society resulting from those motor vehicle crashes and fatalities. FARS data is critical to understanding the characteristics of the environment, trafficway, vehicles, and persons involved in the crash.
NHTSA has a cooperative agreement with an agency in each state government to provide information in a standard format on fatal crashes in the state. Data is collected, coded and submitted into a micro-computer data system and transmitted to Washington, D.C. Quarterly files are produced for analytical purposes to study trends and evaluate the effectiveness highway safety programs.
There are 40 separate data tables. You can find the manual, which is too large to reprint in this space, here.
You can use the BigQuery Python client library to query tables in this dataset in Kernels. Note that methods available in Kernels are limited to querying data. Tables are at bigquery-public-data.nhtsa_traffic_fatalities.[TABLENAME]
. Fork this kernel to get started.
This dataset was provided by the National Highway Traffic Safety Administration.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The notebook that generates this dataset is here: https://www.kaggle.com/johnjdavisiv/us-counties-weather-sociohealth-location-data
The 3,142 counties of the United States span a diverse range of social, economic, health, and weather conditions. Because of the COVID19 pandemic, over 2,400 of these counties have already experienced some COVID19 cases.
Combining county-level data on health, socioeconomics, and weather can help us address identify which populations are at risk for COVID19 and help prepare high-risk communities.
Temperature and humidity may affect the transmissibility of COVID19, but in the United States, warmer regions also tend to have markedly different socioeconomic and health demographics. As such, it's important to be able to control for factors like obesity, diabetes, access to healthcare, and poverty rates, since these factors themselves likely play a role in COVID19 transmission and fatality rates.
This dataset provides all of this information, formatted, cleaned, and ready for analysis. Most columns have little or no missing data. A small number have larger amounts of missing data; see the kernel that generated this dataset for details.
This report provides information regarding suicide mortality for the years 2001–2014. It incorporates the most recent mortality data from the VA/Department of Defense (DoD) Joint Suicide Data Repository and includes information for deaths from suicide among all known Veterans of U.S. military service. Data for the Joint VA/DoD Suicide Data Repository were obtained from the National Center for Health Statistics’ National Death Index through collaboration with the DoD, the CDC, and the VA/DoD Joint Suicide Data Repository initiative. Data available from the National Death Index include reports of mortality submitted from vital statistics systems in all 50 U.S. states, New York City, Washington D.C., Puerto Rico, and the U.S. Virgin Islands.
National Highway Traffic Safety Administration releases data on highway fatalities in the Fatality Analysis Reporting System (FARS). Data for the most recent year are preliminary estimates.
VITAL SIGNS INDICATOR
Fatalities From Crashes (EN4)
FULL MEASURE NAME
Fatalities from Crashes (traffic collisions)
LAST UPDATED
October 2022
DESCRIPTION
Fatalities from crashes refers to deaths as a result of fatalities sustained in collisions. The California Highway Patrol includes deaths within 30 days of the collision that are a result of fatalities sustained as part of this metric. This total fatalities dataset includes fatality counts for the region and counties, as well as individual collision data and metropolitan area data.
DATA SOURCE
National Highway Safety Administration: Fatality Analysis Reporting System - https://www.nhtsa.gov/file-downloads?p=nhtsa/downloads/FARS/
1990-2020
Caltrans: Highway Performance Monitoring System (HPMS) - https://dot.ca.gov/programs/research-innovation-system-information/highway-performance-monitoring-system
Annual Vehicle Miles Traveled (VMT)
2001-2020
California Department of Finance: E-4 Historical Population Estimates for Cities, Counties, and the State - https://dof.ca.gov/forecasting/demographics/estimates/
1990-2020
US Census Population and Housing Unit Estimates - https://www.census.gov/programs-surveys/popest.html
1990-2020
CONTACT INFORMATION
vitalsigns.info@bayareametro.gov
METHODOLOGY NOTES (across all datasets for this indicator)
Fatalities from crashes data is reported to the National Highway Traffic Safety Administration through the Fatality Analysis Reporting System (FARS) program. Data for individual collisions is reported by the California Highway Patrol (CHP) to the Statewide Integrated Traffic Records System (SWITRS). The data was tabulated using provided categories specifying injury level, individuals involved, causes of collision and location/jurisdiction of collision (for more information refer to the SWITRS codebook - http://tims.berkeley.edu/help/files/switrs_codebook.doc). For case data, latitude and longitude information for each accident is geocoded by SafeTREC’s Transportation Injury Mapping System (TIMS). Fatalities were normalized over historic population data from the US Census Bureau’s population estimates and vehicle miles traveled (VMT) data from the Federal Highway Administration.
The crash data only include crashes that involved a motor vehicle. Bicyclist and pedestrian fatalities that did not involve a motor vehicle, such as a bicyclist and pedestrian collision or a bicycle crash due to a pothole, are not included in the data.
For more regarding reporting procedures and injury classification, refer to the CHP Manual - https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/documents/ca_chp555_manual_2_2003_ch1-13.pdf.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This replication package accompanies the article “In the Weeds of Traffic Fatalities: Revisiting the Effect of Medical Marijuana Laws.” The research re-evaluates the widely cited finding that medical marijuana laws (MMLs) significantly reduce traffic fatalities. The central hypothesis is that previous estimates of MML effects may be biased due to unaccounted-for pre-treatment trends and hard to interpret because of heterogeneity across states.
The dataset is a panel of U.S. states from 1990 to 2010, constructed to closely replicate Anderson et al. (2013). It includes annual, state-level traffic fatality rates (log-transformed per 100,000 population), a binary indicator for MML adoption, and a rich set of covariates covering demographics, driving laws, traffic enforcement measures, and substance-related policies.
The key finding is that states legalizing medical marijuana were already experiencing declining traffic fatalities before legalization. When accounting for these pre-trends using the Imputation Procedure (Borusyak et al., 2024), the estimated effect of MMLs shifts from negative to either zero or positive—depending on included covariates. The data also reveal large heterogeneity across states, with California disproportionately influencing population-weighted estimates.
The number of child fatalities (unique count) for the last five federal fiscal years for which data are available.
To view more National Child Abuse and Neglect Data System (NCANDS) findings, click link to summary page below: https://healthdata.gov/stories/s/kaeg-w7jc
The number of road traffic fatalities per one million inhabitants in the United States was forecast to continuously increase between 2024 and 2029 by in total 18.5 deaths (+13.81 percent). After the tenth consecutive increasing year, the number is estimated to reach 152.46 deaths and therefore a new peak in 2029. Depicted here are the estimated number of deaths which occured in relation to road traffic. They are set in relation to the population size and depicted as deaths per 100,000 inhabitants.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of road traffic fatalities per one million inhabitants in countries like Mexico and Canada.
This table contains data on the percent of residents aged 16 years and older mode of transportation to work for California, its regions, counties, cities/towns, and census tracts. Data is from the U.S. Census Bureau, Decennial Census and American Community Survey. The table is part of a series of indicators in the Healthy Communities Data and Indicators Project of the Office of Health Equity. Commute trips to work represent 19% of travel miles in the United States. The predominant mode – the automobile - offers extraordinary personal mobility and independence, but it is also associated with health hazards, such as air pollution, motor vehicle crashes, pedestrian injuries and fatalities, and sedentary lifestyles. Automobile commuting has been linked to stress-related health problems. Active modes of transport – bicycling and walking alone and in combination with public transit – offer opportunities for physical activity, which is associated with lowering rates of heart disease and stroke, diabetes, colon and breast cancer, dementia and depression. Risk of injury and death in collisions are higher in urban areas with more concentrated vehicle and pedestrian activity. Bus and rail passengers have a lower risk of injury in collisions than motorcyclists, pedestrians, and bicyclists. Minority communities bear a disproportionate share of pedestrian-car fatalities; Native American male pedestrians experience four times the death rate Whites or Asian pedestrians, and African-Americans and Latinos experience twice the rate as Whites or Asians. More information about the data table and a data dictionary can be found in the About/Attachments section.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The U. S. Fire Administration tracks and collects information on the causes of on-duty firefighter fatalities that occur in the United States. We conduct an annual analysis to identify specific problems so that we may direct efforts toward finding solutions that will reduce firefighter fatalities in the future.
This study of firefighter fatalities would not have been possible without members of individual fire departments, chief fire officers, fire service organizations, the National Fire Protection Association, and the National Fallen Firefighters Foundation.
This dataset contains counts of deaths for California as a whole based on information entered on death certificates. Final counts are derived from static data and include out-of-state deaths to California residents, whereas provisional counts are derived from incomplete and dynamic data. Provisional counts are based on the records available when the data was retrieved and may not represent all deaths that occurred during the time period. Deaths involving injuries from external or environmental forces, such as accidents, homicide and suicide, often require additional investigation that tends to delay certification of the cause and manner of death. This can result in significant under-reporting of these deaths in provisional data.
The final data tables include both deaths that occurred in California regardless of the place of residence (by occurrence) and deaths to California residents (by residence), whereas the provisional data table only includes deaths that occurred in California regardless of the place of residence (by occurrence). The data are reported as totals, as well as stratified by age, gender, race-ethnicity, and death place type. Deaths due to all causes (ALL) and selected underlying cause of death categories are provided. See temporal coverage for more information on which combinations are available for which years.
The cause of death categories are based solely on the underlying cause of death as coded by the International Classification of Diseases. The underlying cause of death is defined by the World Health Organization (WHO) as "the disease or injury which initiated the train of events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury." It is a single value assigned to each death based on the details as entered on the death certificate. When more than one cause is listed, the order in which they are listed can affect which cause is coded as the underlying cause. This means that similar events could be coded with different underlying causes of death depending on variations in how they were entered. Consequently, while underlying cause of death provides a convenient comparison between cause of death categories, it may not capture the full impact of each cause of death as it does not always take into account all conditions contributing to the death.