100+ datasets found
  1. T

    United States Unemployment Rate

    • tradingeconomics.com
    • pt.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jul 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Unemployment Rate [Dataset]. https://tradingeconomics.com/united-states/unemployment-rate
    Explore at:
    excel, xml, csv, jsonAvailable download formats
    Dataset updated
    Jul 3, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1948 - Jun 30, 2025
    Area covered
    United States
    Description

    Unemployment Rate in the United States decreased to 4.10 percent in June from 4.20 percent in May of 2025. This dataset provides the latest reported value for - United States Unemployment Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  2. United States Employed Persons

    • ceicdata.com
    Updated Mar 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). United States Employed Persons [Dataset]. https://www.ceicdata.com/en/indicator/united-states/employed-persons
    Explore at:
    Dataset updated
    Mar 21, 2025
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 1, 2024 - Feb 1, 2025
    Area covered
    United States
    Description

    Key information about United States Employed Persons

    • United States Employed Persons was reported at 163,307,000.000 Person in Feb 2025
    • It recorded a decrease from the previous number of 163,895,000.000 Person for Jan 2025
    • US Employed Persons data is updated monthly, averaging 109,912,500.000 Person from Jan 1948 to Feb 2025, with 926 observations
    • The data reached an all-time high of 163,895,000.000 Person in Jan 2025 and a record low of 57,172,000.000 Person in Jun 1949
    • US Employed Persons data remains active status in CEIC and is reported by CEIC Data
    • The data is categorized under World Trend Plus’s Global Economic Monitor – Table: Employed Persons: Monthly: Seasonally Adjusted

    U.S. Bureau of Labor Statistics provides monthly Employed Persons.

  3. F

    Multiple Jobholders as a Percent of Employed

    • fred.stlouisfed.org
    json
    Updated Jul 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Multiple Jobholders as a Percent of Employed [Dataset]. https://fred.stlouisfed.org/series/LNS12026620
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jul 3, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for Multiple Jobholders as a Percent of Employed (LNS12026620) from Jan 1994 to Jun 2025 about multiple jobholders, 16 years +, percent, household survey, employment, and USA.

  4. F

    Not in Labor Force

    • fred.stlouisfed.org
    json
    Updated Jul 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Not in Labor Force [Dataset]. https://fred.stlouisfed.org/series/LNS15000000
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jul 3, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for Not in Labor Force (LNS15000000) from Jan 1975 to Jun 2025 about 16 years +, labor force, labor, household survey, and USA.

  5. U.S. workers working hybrid or remote vs on-site 2019-Q2 2024

    • statista.com
    Updated Jun 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). U.S. workers working hybrid or remote vs on-site 2019-Q2 2024 [Dataset]. https://www.statista.com/statistics/1356325/hybrid-vs-remote-work-us/
    Explore at:
    Dataset updated
    Jun 25, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    Hybrid models of working are on the rise in the United States according to survey data covering worker habits between 2019 and 2024. In the second quarter of 2024, ** percent of U.S. workers reported working in a hybrid manner. The emergence of the COVID-19 pandemic saw a record number of people working remotely to help curb the spread of the virus. Since then, many workers have found a new shape to their home and working lives, finding that a hybrid model of working is more flexible than always being required to work on-site.

  6. T

    United States Part Time Employment

    • tradingeconomics.com
    • de.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, United States Part Time Employment [Dataset]. https://tradingeconomics.com/united-states/part-time-employment
    Explore at:
    csv, excel, xml, jsonAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1968 - Jun 30, 2025
    Area covered
    United States
    Description

    Part Time Employment in the United States decreased to 28190 Thousand in June from 28557 Thousand in May of 2025. This dataset provides - United States Part Time Employment- actual values, historical data, forecast, chart, statistics, economic calendar and news.

  7. T

    United States Full Time Employment

    • tradingeconomics.com
    • fa.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, United States Full Time Employment [Dataset]. https://tradingeconomics.com/united-states/full-time-employment
    Explore at:
    excel, csv, xml, jsonAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1968 - Jun 30, 2025
    Area covered
    United States
    Description

    Full Time Employment in the United States increased to 135277 Thousand in June from 134840 Thousand in May of 2025. This dataset provides - United States Full Time Employment- actual values, historical data, forecast, chart, statistics, economic calendar and news.

  8. F

    All Employees, Federal

    • fred.stlouisfed.org
    json
    Updated Jul 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). All Employees, Federal [Dataset]. https://fred.stlouisfed.org/series/CES9091000001
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jul 3, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for All Employees, Federal (CES9091000001) from Jan 1939 to Jun 2025 about establishment survey, federal, government, employment, and USA.

  9. Data from: Quarterly Census of Employment and Wages

    • icpsr.umich.edu
    Updated Oct 22, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States Department of Labor. Bureau of Labor Statistics (2015). Quarterly Census of Employment and Wages [Dataset]. https://www.icpsr.umich.edu/web/NADAC/studies/36312
    Explore at:
    Dataset updated
    Oct 22, 2015
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    United States Department of Labor. Bureau of Labor Statistics
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/36312/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/36312/terms

    Area covered
    United States
    Description

    The Quarterly Census of Employment and Wages (QCEW) program is a cooperative program involving the Bureau of Labor Statistics (BLS) of the United States Department of Labor and the State Employment Security Agencies (SESAs). The QCEW program produces a comprehensive tabulation of employment and wage information for workers covered by State unemployment insurance (UI) laws and Federal workers covered by the Unemployment Compensation for Federal Employees (UCFE) program. Publicly available data files include information on the number of establishments, monthly employment, and quarterly wages, by NAICS industry, by county, by ownership sector, for the entire United States. These data are aggregated to annual levels, to higher industry levels (NAICS industry groups, sectors, and supersectors), and to higher geographic levels (national, State, and Metropolitan Statistical Area (MSA)). To download and analyze QCEW data, users can begin on the QCEW Databases page. Downloadable data are available in formats such as text and CSV. Data for the QCEW program that are classified using the North American Industry Classification System (NAICS) are available from 1990 forward, and on a more limited basis from 1975 to 1989. These data provide employment and wage information for arts-related NAICS industries, such as: Arts, entertainment, and recreation (NAICS Code 71) Performing arts and spectator sports Museums, historical sites, zoos, and parks Amusements, gambling, and recreation Professional, scientific, and technical services (NAICS Code 54) Architectural services Graphic design services Photographic services Retail trade (NAICS Code 44-45) Sporting goods, hobby, book and music stores Book, periodical, and music stores Art dealers For years 1975-2000, data for the QCEW program provide employment and wage information for arts-related industries are based on the Standard Industrial Classification (SIC) system. These arts-related SIC industries include the following: Book stores (SIC 5942) Commercial photography (SIC Code 7335) Commercial art and graphic design (SIC Code 7336) Museums, Botanical, Zoological Gardens (SIC Code 84) Dance studios, schools, and halls (SIC Code 7911) Theatrical producers and services (SIC Code 7922) Sports clubs, managers, & promoters (SIC Code 7941) Motion Picture Services (SIC Code 78) The QCEW program serves as a near census of monthly employment and quarterly wage information by 6-digit NAICS industry at the national, state, and county levels. At the national level, the QCEW program provides employment and wage data for almost every NAICS industry. At the State and area level, the QCEW program provides employment and wage data down to the 6-digit NAICS industry level, if disclosure restrictions are met. Employment data under the QCEW program represent the number of covered workers who worked during, or received pay for, the pay period including the 12th of the month. Excluded are members of the armed forces, the self-employed, proprietors, domestic workers, unpaid family workers, and railroad workers covered by the railroad unemployment insurance system. Wages represent total compensation paid during the calendar quarter, regardless of when services were performed. Included in wages are pay for vacation and other paid leave, bonuses, stock options, tips, the cash value of meals and lodging, and in some States, contributions to deferred compensation plans (such as 401(k) plans). The QCEW program does provide partial information on agricultural industries and employees in private households. Data from the QCEW program serve as an important source for many BLS programs. The QCEW data are used as the benchmark source for employment by the Current Employment Statistics program and the Occupational Employment Statistics program. The UI administrative records collected under the QCEW program serve as a sampling frame for BLS establishment surveys. In addition, data from the QCEW program serve as a source to other Federal and State programs. The Bureau of Economic Analysis (BEA) of the Department of Commerce uses QCEW data as the base for developing the wage and salary component of personal income. The Employment and Training Administration (ETA) of the Department of Labor and the SESAs use QCEW data to administer the employment security program. The QCEW data accurately reflect the ex

  10. F

    Percent of Employment in Manufacturing in the United States (DISCONTINUED)

    • fred.stlouisfed.org
    json
    Updated Jun 10, 2013
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2013). Percent of Employment in Manufacturing in the United States (DISCONTINUED) [Dataset]. https://fred.stlouisfed.org/series/USAPEFANA
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jun 10, 2013
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    United States
    Description

    Graph and download economic data for Percent of Employment in Manufacturing in the United States (DISCONTINUED) (USAPEFANA) from 1970 to 2012 about percent, manufacturing, employment, and USA.

  11. F

    Total Unemployed Plus Discouraged Workers, as a Percent of the Civilian...

    • fred.stlouisfed.org
    json
    Updated Jun 6, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Total Unemployed Plus Discouraged Workers, as a Percent of the Civilian Labor Force Plus Discouraged Workers (U-4) [Dataset]. https://fred.stlouisfed.org/series/U4RATENSA
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jun 6, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for Total Unemployed Plus Discouraged Workers, as a Percent of the Civilian Labor Force Plus Discouraged Workers (U-4) (U4RATENSA) from Jan 1994 to May 2025 about discouraged, labor underutilization, workers, 16 years +, labor, household survey, unemployment, rate, and USA.

  12. N

    Many, LA annual median income by work experience and sex dataset : Aged 15+,...

    • neilsberg.com
    csv, json
    Updated Jan 9, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Many, LA annual median income by work experience and sex dataset : Aged 15+, 2010-2022 (in 2022 inflation-adjusted dollars) [Dataset]. https://www.neilsberg.com/research/datasets/94d8ac71-9816-11ee-99cf-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Jan 9, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Many
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2010-2022 5-Year Estimates. To portray the income for both the genders (Male and Female), we conducted an initial analysis and categorization of the data. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series via current methods (R-CPI-U-RS). For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Many. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.

    Key observations: Insights from 2021

    Based on our analysis ACS 2017-2021 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Many, the median income for all workers aged 15 years and older, regardless of work hours, was $30,363 for males and $13,399 for females.

    These income figures highlight a substantial gender-based income gap in Many. Women, regardless of work hours, earn 44 cents for each dollar earned by men. This significant gender pay gap, approximately 56%, underscores concerning gender-based income inequality in the town of Many.

    - Full-time workers, aged 15 years and older: In Many, among full-time, year-round workers aged 15 years and older, males earned a median income of $46,839, while females earned $26,320, leading to a 44% gender pay gap among full-time workers. This illustrates that women earn 56 cents for each dollar earned by men in full-time roles. This level of income gap emphasizes the urgency to address and rectify this ongoing disparity, where women, despite working full-time, face a more significant wage discrepancy compared to men in the same employment roles.

    Remarkably, across all roles, including non-full-time employment, women displayed a similar gender pay gap percentage. This indicates a consistent gender pay gap scenario across various employment types in Many, showcasing a consistent income pattern irrespective of employment status.

    https://i.neilsberg.com/ch/many-la-income-by-gender.jpeg" alt="Many, LA gender based income disparity">

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2022-inflation-adjusted dollars.

    Gender classifications include:

    • Male
    • Female

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Variables / Data Columns

    • Year: This column presents the data year. Expected values are 2010 to 2022
    • Male Total Income: Annual median income, for males regardless of work hours
    • Male FT Income: Annual median income, for males working full time, year-round
    • Male PT Income: Annual median income, for males working part time
    • Female Total Income: Annual median income, for females regardless of work hours
    • Female FT Income: Annual median income, for females working full time, year-round
    • Female PT Income: Annual median income, for females working part time

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Many median household income by gender. You can refer the same here

  13. F

    Total Unemployed, Plus All Persons Marginally Attached to the Labor Force,...

    • fred.stlouisfed.org
    json
    Updated Jul 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Total Unemployed, Plus All Persons Marginally Attached to the Labor Force, Plus Total Employed Part Time for Economic Reasons, as a Percent of the Civilian Labor Force Plus All Persons Marginally Attached to the Labor Force (U-6) [Dataset]. https://fred.stlouisfed.org/series/U6RATE
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jul 3, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for Total Unemployed, Plus All Persons Marginally Attached to the Labor Force, Plus Total Employed Part Time for Economic Reasons, as a Percent of the Civilian Labor Force Plus All Persons Marginally Attached to the Labor Force (U-6) (U6RATE) from Jan 1994 to Jun 2025 about marginally attached, part-time, labor underutilization, workers, 16 years +, labor, household survey, unemployment, and USA.

  14. T

    United States ADP Employment Change

    • tradingeconomics.com
    • ar.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jul 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States ADP Employment Change [Dataset]. https://tradingeconomics.com/united-states/adp-employment-change
    Explore at:
    csv, xml, json, excelAvailable download formats
    Dataset updated
    Jul 2, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Feb 28, 2010 - Jun 30, 2025
    Area covered
    United States
    Description

    Private businesses in the United States fired -33 thousand workers in June of 2025 compared to 29 thousand in May of 2025. This dataset provides the latest reported value for - United States ADP Employment Change - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  15. O*NET Database

    • onetcenter.org
    excel, mysql, oracle +2
    Updated May 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Center for O*NET Development (2025). O*NET Database [Dataset]. https://www.onetcenter.org/database.html
    Explore at:
    oracle, sql server, text, mysql, excelAvailable download formats
    Dataset updated
    May 20, 2025
    Dataset provided by
    Occupational Information Network
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Dataset funded by
    US Department of Labor, Employment and Training Administration
    Description

    The O*NET Database contains hundreds of standardized and occupation-specific descriptors on almost 1,000 occupations covering the entire U.S. economy. The database, which is available to the public at no cost, is continually updated by a multi-method data collection program. Sources of data include: job incumbents, occupational experts, occupational analysts, employer job postings, and customer/professional association input.

    Data content areas include:

    • Worker Characteristics (e.g., Abilities, Interests, Work Styles)
    • Worker Requirements (e.g., Education, Knowledge, Skills)
    • Experience Requirements (e.g., On-the-Job Training, Work Experience)
    • Occupational Requirements (e.g., Detailed Work Activities, Work Context)
    • Occupation-Specific Information (e.g., Job Titles, Tasks, Technology Skills)

  16. N

    Powers, OR annual median income by work experience and sex dataset: Aged...

    • neilsberg.com
    csv, json
    Updated Feb 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Powers, OR annual median income by work experience and sex dataset: Aged 15+, 2010-2023 (in 2023 inflation-adjusted dollars) // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/powers-or-income-by-gender/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Powers, OR
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates. The dataset covers the years 2010 to 2023, representing 14 years of data. To analyze income differences between genders (male and female), we conducted an initial data analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series (R-CPI-U-RS) based on current methodologies. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Powers. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.

    Key observations: Insights from 2023

    Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Powers, while the Census reported a median income of $14,511 for all female workers aged 15 years and older, data for males in the same category was unavailable due to an insufficient number of sample observations.

    Because income data for males was not available from the Census Bureau, conducting a comprehensive analysis of gender-based pay disparity in the city of Powers was not possible.

    - Full-time workers, aged 15 years and older: In Powers, among full-time, year-round workers aged 15 years and older, males earned a median income of $58,750, while females earned $53,214, resulting in a 9% gender pay gap among full-time workers. This illustrates that women earn 91 cents for each dollar earned by men in full-time positions. While this gap shows a trend where women are inching closer to wage parity with men, it also exhibits a noticeable income difference for women working full-time in the city of Powers.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.

    Gender classifications include:

    • Male
    • Female

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Variables / Data Columns

    • Year: This column presents the data year. Expected values are 2010 to 2023
    • Male Total Income: Annual median income, for males regardless of work hours
    • Male FT Income: Annual median income, for males working full time, year-round
    • Male PT Income: Annual median income, for males working part time
    • Female Total Income: Annual median income, for females regardless of work hours
    • Female FT Income: Annual median income, for females working full time, year-round
    • Female PT Income: Annual median income, for females working part time

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Powers median household income by race. You can refer the same here

  17. F

    Average Hourly Earnings of Production and Nonsupervisory Employees, Total...

    • fred.stlouisfed.org
    json
    Updated Jun 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Average Hourly Earnings of Production and Nonsupervisory Employees, Total Private [Dataset]. https://fred.stlouisfed.org/series/AHETPI
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jun 6, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for Average Hourly Earnings of Production and Nonsupervisory Employees, Total Private (AHETPI) from Jan 1964 to May 2025 about nonsupervisory, headline figure, earnings, average, establishment survey, hours, wages, production, private, employment, and USA.

  18. F

    Employment Level - Foreign Born

    • fred.stlouisfed.org
    json
    Updated Jul 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Employment Level - Foreign Born [Dataset]. https://fred.stlouisfed.org/series/LNU02073395
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jul 3, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for Employment Level - Foreign Born (LNU02073395) from Jan 2007 to Jun 2025 about foreign, household survey, employment, and USA.

  19. N

    Fort Meade, FL annual median income by work experience and sex dataset :...

    • neilsberg.com
    csv, json
    Updated Jan 9, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Fort Meade, FL annual median income by work experience and sex dataset : Aged 15+, 2010-2022 (in 2022 inflation-adjusted dollars) [Dataset]. https://www.neilsberg.com/research/datasets/947aca57-9816-11ee-99cf-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Jan 9, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Florida, Fort Meade
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2010-2022 5-Year Estimates. To portray the income for both the genders (Male and Female), we conducted an initial analysis and categorization of the data. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series via current methods (R-CPI-U-RS). For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Fort Meade. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.

    Key observations: Insights from 2021

    Based on our analysis ACS 2017-2021 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Fort Meade, the median income for all workers aged 15 years and older, regardless of work hours, was $30,401 for males and $22,154 for females.

    These income figures indicate a substantial gender-based pay disparity, showcasing a gap of approximately 27% between the median incomes of males and females in Fort Meade. With women, regardless of work hours, earning 73 cents to each dollar earned by men, this income disparity reveals a concerning trend toward wage inequality that demands attention in thecity of Fort Meade.

    - Full-time workers, aged 15 years and older: In Fort Meade, among full-time, year-round workers aged 15 years and older, males earned a median income of $45,939, while females earned $41,231, resulting in a 10% gender pay gap among full-time workers. This illustrates that women earn 90 cents for each dollar earned by men in full-time positions. While this gap shows a trend where women are inching closer to wage parity with men, it also exhibits a noticeable income difference for women working full-time in the city of Fort Meade.

    Interestingly, when analyzing income across all roles, including non-full-time employment, the gender pay gap percentage was higher for women compared to men. It appears that full-time employment presents a more favorable income scenario for women compared to other employment patterns in Fort Meade.

    https://i.neilsberg.com/ch/fort-meade-fl-income-by-gender.jpeg" alt="Fort Meade, FL gender based income disparity">

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2022-inflation-adjusted dollars.

    Gender classifications include:

    • Male
    • Female

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Variables / Data Columns

    • Year: This column presents the data year. Expected values are 2010 to 2022
    • Male Total Income: Annual median income, for males regardless of work hours
    • Male FT Income: Annual median income, for males working full time, year-round
    • Male PT Income: Annual median income, for males working part time
    • Female Total Income: Annual median income, for females regardless of work hours
    • Female FT Income: Annual median income, for females working full time, year-round
    • Female PT Income: Annual median income, for females working part time

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Fort Meade median household income by gender. You can refer the same here

  20. N

    Fort Supply, OK annual median income by work experience and sex dataset:...

    • neilsberg.com
    csv, json
    Updated Feb 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Fort Supply, OK annual median income by work experience and sex dataset: Aged 15+, 2010-2023 (in 2023 inflation-adjusted dollars) // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/a515a71c-f4ce-11ef-8577-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Oklahoma, Fort Supply
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates. The dataset covers the years 2010 to 2023, representing 14 years of data. To analyze income differences between genders (male and female), we conducted an initial data analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series (R-CPI-U-RS) based on current methodologies. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Fort Supply. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.

    Key observations: Insights from 2023

    Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Fort Supply, while the Census reported a median income of $50,833 for all male workers aged 15 years and older, data for females in the same category was unavailable due to an insufficient number of sample observations.

    Given the absence of income data for females from the Census Bureau, conducting a thorough analysis of gender-based pay disparity in the town of Fort Supply was not possible.

    - Full-time workers, aged 15 years and older: In Fort Supply, among full-time, year-round workers aged 15 years and older, males earned a median income of $60,208, while females earned $55,625, resulting in a 8% gender pay gap among full-time workers. This illustrates that women earn 92 cents for each dollar earned by men in full-time positions. While this gap shows a trend where women are inching closer to wage parity with men, it also exhibits a noticeable income difference for women working full-time in the town of Fort Supply.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.

    Gender classifications include:

    • Male
    • Female

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Variables / Data Columns

    • Year: This column presents the data year. Expected values are 2010 to 2023
    • Male Total Income: Annual median income, for males regardless of work hours
    • Male FT Income: Annual median income, for males working full time, year-round
    • Male PT Income: Annual median income, for males working part time
    • Female Total Income: Annual median income, for females regardless of work hours
    • Female FT Income: Annual median income, for females working full time, year-round
    • Female PT Income: Annual median income, for females working part time

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Fort Supply median household income by race. You can refer the same here

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
TRADING ECONOMICS (2025). United States Unemployment Rate [Dataset]. https://tradingeconomics.com/united-states/unemployment-rate

United States Unemployment Rate

United States Unemployment Rate - Historical Dataset (1948-01-31/2025-06-30)

Explore at:
137 scholarly articles cite this dataset (View in Google Scholar)
excel, xml, csv, jsonAvailable download formats
Dataset updated
Jul 3, 2025
Dataset authored and provided by
TRADING ECONOMICS
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Time period covered
Jan 31, 1948 - Jun 30, 2025
Area covered
United States
Description

Unemployment Rate in the United States decreased to 4.10 percent in June from 4.20 percent in May of 2025. This dataset provides the latest reported value for - United States Unemployment Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

Search
Clear search
Close search
Google apps
Main menu