100+ datasets found
  1. s

    Twitter Revenue Growth

    • searchlogistics.com
    Updated Apr 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Twitter Revenue Growth [Dataset]. https://www.searchlogistics.com/learn/statistics/twitter-user-statistics/
    Explore at:
    Dataset updated
    Apr 1, 2025
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Advertising makes up 89% of its total revenue and data licensing makes up about 11%.

  2. g

    Just Another Day on Twitter: A Complete 24 Hours of Twitter Data

    • search.gesis.org
    Updated Oct 16, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pfeffer, Jürgen (2022). Just Another Day on Twitter: A Complete 24 Hours of Twitter Data [Dataset]. https://search.gesis.org/research_data/SDN-10.7802-2516
    Explore at:
    Dataset updated
    Oct 16, 2022
    Dataset provided by
    GESIS, Köln
    GESIS search
    Authors
    Pfeffer, Jürgen
    License

    https://www.gesis.org/en/institute/data-usage-termshttps://www.gesis.org/en/institute/data-usage-terms

    Description

    At the end of October 2022, Elon Musk concluded his acquisition of Twitter. In the weeks and months before that, several questions were publicly discussed that were not only of interest to the platform's future buyers, but also of high relevance to the Computational Social Science research community. For example, how many active users does the platform have? What percentage of accounts on the site are bots? And, what are the dominating topics and sub-topical spheres on the platform? In a globally coordinated effort of 80 scholars to shed light on these questions, and to offer a dataset that will equip other researchers to do the same, we have collected 375 million tweets published within a 24-hour time period starting on September 21, 2022. To the best of our knowledge, this is the first complete 24-hour Twitter dataset that is available for the research community. With it, the present work aims to accomplish two goals. First, we seek to answer the aforementioned questions and provide descriptive metrics about Twitter that can serve as references for other researchers. Second, we create a baseline dataset for future research that can be used to study the potential impact of the platform's ownership change.

  3. s

    Twitter Key Statistics

    • searchlogistics.com
    Updated Apr 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Twitter Key Statistics [Dataset]. https://www.searchlogistics.com/learn/statistics/twitter-user-statistics/
    Explore at:
    Dataset updated
    Apr 1, 2025
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    These are the key Twitter user statistics that you need to know.

  4. X/Twitter: Countries with the largest audience 2025

    • statista.com
    Updated Jun 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). X/Twitter: Countries with the largest audience 2025 [Dataset]. https://www.statista.com/statistics/242606/number-of-active-twitter-users-in-selected-countries/
    Explore at:
    Dataset updated
    Jun 19, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Feb 2025
    Area covered
    Worldwide
    Description

    Social network X/Twitter is particularly popular in the United States, and as of February 2025, the microblogging service had an audience reach of 103.9 million users in the country. Japan and the India were ranked second and third with more than 70 million and 25 million users respectively. Global Twitter usage As of the second quarter of 2021, X/Twitter had 206 million monetizable daily active users worldwide. The most-followed Twitter accounts include figures such as Elon Musk, Justin Bieber and former U.S. president Barack Obama. X/Twitter and politics X/Twitter has become an increasingly relevant tool in domestic and international politics. The platform has become a way to promote policies and interact with citizens and other officials, and most world leaders and foreign ministries have an official Twitter account. Former U.S. president Donald Trump used to be a prolific Twitter user before the platform permanently suspended his account in January 2021. During an August 2018 survey, 61 percent of respondents stated that Trump's use of Twitter as President of the United States was inappropriate.

  5. u

    Data from: Google Analytics & Twitter dataset from a movies, TV series and...

    • portalcientificovalencia.univeuropea.com
    • figshare.com
    Updated 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yeste, Víctor; Yeste, Víctor (2024). Google Analytics & Twitter dataset from a movies, TV series and videogames website [Dataset]. https://portalcientificovalencia.univeuropea.com/documentos/67321ed3aea56d4af0485dc8
    Explore at:
    Dataset updated
    2024
    Authors
    Yeste, Víctor; Yeste, Víctor
    Description

    Author: Víctor Yeste. Universitat Politècnica de Valencia.The object of this study is the design of a cybermetric methodology whose objectives are to measure the success of the content published in online media and the possible prediction of the selected success variables.In this case, due to the need to integrate data from two separate areas, such as web publishing and the analysis of their shares and related topics on Twitter, has opted for programming as you access both the Google Analytics v4 reporting API and Twitter Standard API, always respecting the limits of these.The website analyzed is hellofriki.com. It is an online media whose primary intention is to solve the need for information on some topics that provide daily a vast number of news in the form of news, as well as the possibility of analysis, reports, interviews, and many other information formats. All these contents are under the scope of the sections of cinema, series, video games, literature, and comics.This dataset has contributed to the elaboration of the PhD Thesis:Yeste Moreno, VM. (2021). Diseño de una metodología cibermétrica de cálculo del éxito para la optimización de contenidos web [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/176009Data have been obtained from each last-minute news article published online according to the indicators described in the doctoral thesis. All related data are stored in a database, divided into the following tables:tesis_followers: User ID list of media account followers.tesis_hometimeline: data from tweets posted by the media account sharing breaking news from the web.status_id: Tweet IDcreated_at: date of publicationtext: content of the tweetpath: URL extracted after processing the shortened URL in textpost_shared: Article ID in WordPress that is being sharedretweet_count: number of retweetsfavorite_count: number of favoritestesis_hometimeline_other: data from tweets posted by the media account that do not share breaking news from the web. Other typologies, automatic Facebook shares, custom tweets without link to an article, etc. With the same fields as tesis_hometimeline.tesis_posts: data of articles published by the web and processed for some analysis.stats_id: Analysis IDpost_id: Article ID in WordPresspost_date: article publication date in WordPresspost_title: title of the articlepath: URL of the article in the middle webtags: Tags ID or WordPress tags related to the articleuniquepageviews: unique page viewsentrancerate: input ratioavgtimeonpage: average visit timeexitrate: output ratiopageviewspersession: page views per sessionadsense_adunitsviewed: number of ads viewed by usersadsense_viewableimpressionpercent: ad display ratioadsense_ctr: ad click ratioadsense_ecpm: estimated ad revenue per 1000 page viewstesis_stats: data from a particular analysis, performed at each published breaking news item. Fields with statistical values can be computed from the data in the other tables, but total and average calculations are saved for faster and easier further processing.id: ID of the analysisphase: phase of the thesis in which analysis has been carried out (right now all are 1)time: "0" if at the time of publication, "1" if 14 days laterstart_date: date and time of measurement on the day of publicationend_date: date and time when the measurement is made 14 days latermain_post_id: ID of the published article to be analysedmain_post_theme: Main section of the published article to analyzesuperheroes_theme: "1" if about superheroes, "0" if nottrailer_theme: "1" if trailer, "0" if notname: empty field, possibility to add a custom name manuallynotes: empty field, possibility to add personalized notes manually, as if some tag has been removed manually for being considered too generic, despite the fact that the editor put itnum_articles: number of articles analysednum_articles_with_traffic: number of articles analysed with traffic (which will be taken into account for traffic analysis)num_articles_with_tw_data: number of articles with data from when they were shared on the media’s Twitter accountnum_terms: number of terms analyzeduniquepageviews_total: total page viewsuniquepageviews_mean: average page viewsentrancerate_mean: average input ratioavgtimeonpage_mean: average duration of visitsexitrate_mean: average output ratiopageviewspersession_mean: average page views per sessiontotal: total of ads viewedadsense_adunitsviewed_mean: average of ads viewedadsense_viewableimpressionpercent_mean: average ad display ratioadsense_ctr_mean: average ad click ratioadsense_ecpm_mean: estimated ad revenue per 1000 page viewsTotal: total incomeretweet_count_mean: average incomefavorite_count_total: total of favoritesfavorite_count_mean: average of favoritesterms_ini_num_tweets: total tweets on the terms on the day of publicationterms_ini_retweet_count_total: total retweets on the terms on the day of publicationterms_ini_retweet_count_mean: average retweets on the terms on the day of publicationterms_ini_favorite_count_total: total of favorites on the terms on the day of publicationterms_ini_favorite_count_mean: average of favorites on the terms on the day of publicationterms_ini_followers_talking_rate: ratio of followers of the media Twitter account who have recently published a tweet talking about the terms on the day of publicationterms_ini_user_num_followers_mean: average followers of users who have spoken of the terms on the day of publicationterms_ini_user_num_tweets_mean: average number of tweets published by users who spoke about the terms on the day of publicationterms_ini_user_age_mean: average age in days of users who have spoken of the terms on the day of publicationterms_ini_ur_inclusion_rate: URL inclusion ratio of tweets talking about terms on the day of publicationterms_end_num_tweets: total tweets on terms 14 days after publicationterms_ini_retweet_count_total: total retweets on terms 14 days after publicationterms_ini_retweet_count_mean: average retweets on terms 14 days after publicationterms_ini_favorite_count_total: total bookmarks on terms 14 days after publicationterms_ini_favorite_count_mean: average of favorites on terms 14 days after publicationterms_ini_followers_talking_rate: ratio of media Twitter account followers who have recently posted a tweet talking about the terms 14 days after publicationterms_ini_user_num_followers_mean: average followers of users who have spoken of the terms 14 days after publicationterms_ini_user_num_tweets_mean: average number of tweets published by users who have spoken about the terms 14 days after publicationterms_ini_user_age_mean: the average age in days of users who have spoken of the terms 14 days after publicationterms_ini_ur_inclusion_rate: URL inclusion ratio of tweets talking about terms 14 days after publication.tesis_terms: data of the terms (tags) related to the processed articles.stats_id: Analysis IDtime: "0" if at the time of publication, "1" if 14 days laterterm_id: Term ID (tag) in WordPressname: Name of the termslug: URL of the termnum_tweets: number of tweetsretweet_count_total: total retweetsretweet_count_mean: average retweetsfavorite_count_total: total of favoritesfavorite_count_mean: average of favoritesfollowers_talking_rate: ratio of followers of the media Twitter account who have recently published a tweet talking about the termuser_num_followers_mean: average followers of users who were talking about the termuser_num_tweets_mean: average number of tweets published by users who were talking about the termuser_age_mean: average age in days of users who were talking about the termurl_inclusion_rate: URL inclusion ratio

  6. s

    Why Do People Use Twitter?

    • searchlogistics.com
    Updated Apr 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Why Do People Use Twitter? [Dataset]. https://www.searchlogistics.com/learn/statistics/twitter-user-statistics/
    Explore at:
    Dataset updated
    Apr 1, 2025
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    One of the biggest advantages of Twitter is the speed at which information can be passed around. People use Twitter primarily to get news and for entertainment. This is the breakdown of why people use Twitter today.

  7. X/Twitter: number of worldwide users 2019-2024

    • statista.com
    Updated Jun 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). X/Twitter: number of worldwide users 2019-2024 [Dataset]. https://www.statista.com/statistics/303681/twitter-users-worldwide/
    Explore at:
    Dataset updated
    Jun 26, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Dec 2022
    Area covered
    Worldwide
    Description

    As of December 2022, X/Twitter's audience accounted for over *** million monthly active users worldwide. This figure was projected to ******** to approximately *** million by 2024, a ******* of around **** percent compared to 2022.

  8. Famous Words Twitter Dataset

    • kaggle.com
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    _w1998 (2023). Famous Words Twitter Dataset [Dataset]. https://www.kaggle.com/datasets/jackksoncsie/twitter-dataset-keywords-likes-and-tweets/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 30, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    _w1998
    License

    http://www.gnu.org/licenses/agpl-3.0.htmlhttp://www.gnu.org/licenses/agpl-3.0.html

    Description

    The Famous Words Twitter Dataset is a comprehensive collection of tweets associated with famous words. The dataset provides valuable insights into the social media engagement and popularity of these words on the Twitter platform. It includes three primary columns: keyword, likes, and tweets.

    The keyword column represents the specific famous word or phrase associated with each tweet. It allows researchers and analysts to explore the dynamics of user interactions and discussions surrounding these popular terms on Twitter.

    The likes column indicates the number of likes received by each tweet. This metric serves as an indicator of the tweet's popularity and resonation among Twitter users.

    The tweet column contains the actual tweet text, capturing the content and context of user-generated messages related to the famous words. This column provides valuable qualitative data for sentiment analysis, topic modeling, and other natural language processing tasks.

    Researchers, data scientists, and social media analysts can leverage this dataset to study various aspects, such as tracking trends, sentiment analysis, understanding user engagement patterns, and identifying influential topics associated with famous words on Twitter.

    Topics: "COVID-19", "Vaccine", "Zoom", "Bitcoin", "Dogecoin", "NFT", "Elon Musk", "Tesla", "Amazon", "iPhone 12", "Remote work", "TikTok", "Instagram", "Facebook", "YouTube", "Netflix", "GameStop", "Super Bowl", "Olympics", "Black Lives Matter" "India vs England", "Ukraine", "Queen Elizabeth", "World Cup", "Jeffrey Dahmer", "Johnny Depp", "Will Smith", "Weather", "xvideo", "porn", "nba", "Macdonald",

    Total has 128837 tweets, and here are the plot for each number of tweets for different keyword

    https://i.imgur.com/z4xbbyt.png" alt="">

    Note: The dataset is carefully curated, anonymized, and stripped of any personally identifiable information to protect user privacy.

  9. Twitter Dataset

    • brightdata.com
    .json, .csv, .xlsx
    Updated Dec 23, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bright Data (2024). Twitter Dataset [Dataset]. https://brightdata.com/products/datasets/twitter
    Explore at:
    .json, .csv, .xlsxAvailable download formats
    Dataset updated
    Dec 23, 2024
    Dataset authored and provided by
    Bright Datahttps://brightdata.com/
    License

    https://brightdata.com/licensehttps://brightdata.com/license

    Area covered
    Worldwide
    Description

    Utilize our Twitter dataset for diverse applications to enrich business strategies and market insights. Analyzing this dataset provides a comprehensive understanding of social media trends, empowering organizations to refine their communication and marketing strategies. Access the entire dataset or customize a subset to fit your needs. Popular use cases include market research to identify trending topics and hashtags, AI training by reviewing factors such as tweet content, retweets, and user interactions for predictive analytics, and trend forecasting by examining correlations between specific themes and user engagement to uncover emerging social media preferences.

  10. Data from: Early prediction and characterization of high-impact world events...

    • figshare.com
    txt
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mauricio Quezada; jkalyana@ucsd.edu; bpoblete@dcc.uchile.cl; gert@ece.ucsd.edu (2023). Early prediction and characterization of high-impact world events using social media [Dataset]. http://doi.org/10.6084/m9.figshare.3465974.v4
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    figshare
    Authors
    Mauricio Quezada; jkalyana@ucsd.edu; bpoblete@dcc.uchile.cl; gert@ece.ucsd.edu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    World
    Description

    This dataset consists on 5234 news events obtained from Twitter. The file tweets.csv.gz (available upon request via email to the authors) contains a CSV file, called tweets.csv, with all the tweets IDs corresponding to each event in events.csv. The format of each line of the file is the following:tweet_id, event_idWhere:tweet_id is an long number indicating the Twitter ID of the given tweet. Using the Twitter REST API it is possible to retrieve all the information about the given tweet.event_id corresponds to the event ID of the given tweet. The file events.csv.gz contains a CSV file, called events.csv with all the news events captured from Twitter since August, 2013 until June, 2014. The format of each line of the file is the following:

    event_ID,date,total_keywords,total_tweets,keywords

    Where:

    event_ID is an integer which identifies the corresponding event. There are 5234 events, then event_ID ranges from 1 to 5234. date is the date of the event or connected component. The format is YYYY-MM-DD. total_keywords is an integer indicating how many keywords are in the event or connected component. total_tweets is an integer indicating how many tweets belongs to this event. keywords is a string containing total keywords keywords. There is a semicolon between two keywords.

    The files cluster_labels.txt and time_resolutions.txt contain the cluster labels for each event and the time resolutions learned from all events, respectively.

    cluster_labels.txt contains one integer number per line, from 0 to 19. In line i, the cluster label in that line corresponds to the event ID number i. time_resolutions.txt contains one floating point number per line, indicating the time resolution learned for all events, in minutes. There are 20 numbers in the file, one per line, in increasing order, with at most 13 decimal numbers after the point.

  11. m

    Dataset for twitter Sentiment Analysis using Roberta and Vader

    • data.mendeley.com
    Updated May 14, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jannatul Ferdoshi Jannatul Ferdoshi (2023). Dataset for twitter Sentiment Analysis using Roberta and Vader [Dataset]. http://doi.org/10.17632/2sjt22sb55.1
    Explore at:
    Dataset updated
    May 14, 2023
    Authors
    Jannatul Ferdoshi Jannatul Ferdoshi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Our dataset comprises 1000 tweets, which were taken from Twitter using the Python programming language. The dataset was stored in a CSV file and generated using various modules. The random module was used to generate random IDs and text, while the faker module was used to generate random user names and dates. Additionally, the textblob module was used to assign a random sentiment to each tweet.

    This systematic approach ensures that the dataset is well-balanced and represents different types of tweets, user behavior, and sentiment. It is essential to have a balanced dataset to ensure that the analysis and visualization of the dataset are accurate and reliable. By generating tweets with a range of sentiments, we have created a diverse dataset that can be used to analyze and visualize sentiment trends and patterns.

    In addition to generating the tweets, we have also prepared a visual representation of the data sets. This visualization provides an overview of the key features of the dataset, such as the frequency distribution of the different sentiment categories, the distribution of tweets over time, and the user names associated with the tweets. This visualization will aid in the initial exploration of the dataset and enable us to identify any patterns or trends that may be present.

  12. s

    Twitter Users Broken Down By Age

    • searchlogistics.com
    Updated Apr 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Twitter Users Broken Down By Age [Dataset]. https://www.searchlogistics.com/learn/statistics/twitter-user-statistics/
    Explore at:
    Dataset updated
    Apr 1, 2025
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This is the breakdown of Twitter users by age group.

  13. X/Twitter users in the United Kingdom 2019-2028

    • statista.com
    Updated Jan 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2025). X/Twitter users in the United Kingdom 2019-2028 [Dataset]. https://www.statista.com/topics/11843/x-formerly-twitter-in-the-united-kingdom-uk/
    Explore at:
    Dataset updated
    Jan 13, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Area covered
    United Kingdom
    Description

    The number of Twitter users in the United Kingdom was forecast to continuously increase between 2024 and 2028 by in total 0.9 million users (+5.1 percent). After the ninth consecutive increasing year, the Twitter user base is estimated to reach 18.55 million users and therefore a new peak in 2028. Notably, the number of Twitter users of was continuously increasing over the past years.User figures, shown here regarding the platform twitter, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).

  14. f

    Using social media to promote academic research: Identifying the benefits of...

    • plos.figshare.com
    docx
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Samara Klar; Yanna Krupnikov; John Barry Ryan; Kathleen Searles; Yotam Shmargad (2023). Using social media to promote academic research: Identifying the benefits of twitter for sharing academic work [Dataset]. http://doi.org/10.1371/journal.pone.0229446
    Explore at:
    docxAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Samara Klar; Yanna Krupnikov; John Barry Ryan; Kathleen Searles; Yotam Shmargad
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    To disseminate research, scholars once relied on university media services or journal press releases, but today any academic can turn to Twitter to share their published work with a broader audience. The possibility that scholars can push their research out, rather than hope that it is pulled in, holds the potential for scholars to draw wide attention to their research. In this manuscript, we examine whether there are systematic differences in the types of scholars who most benefit from this push model. Specifically, we investigate the extent to which there are gender differences in the dissemination of research via Twitter. We carry out our analyses by tracking tweet patterns for articles published in six journals across two fields (political science and communication), and we pair this Twitter data with demographic and educational data about the authors of the published articles, as well as article citation rates. We find considerable evidence that, overall, article citations are positively correlated with tweets about the article, and we find little evidence to suggest that author gender affects the transmission of research in this new media.

  15. f

    Twitter dataset

    • figshare.com
    csv
    Updated Feb 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shreyas Poojary; Mohammed Riza; Rashmi Laxmikant Malghan (2025). Twitter dataset [Dataset]. http://doi.org/10.6084/m9.figshare.28390334.v2
    Explore at:
    csvAvailable download formats
    Dataset updated
    Feb 11, 2025
    Dataset provided by
    figshare
    Authors
    Shreyas Poojary; Mohammed Riza; Rashmi Laxmikant Malghan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset contains tweets labeled for sentiment analysis, categorized into Positive, Negative, and Neutral sentiments. The dataset includes tweet IDs, user metadata, sentiment labels, and tweet text, making it suitable for Natural Language Processing (NLP), machine learning, and AI-based sentiment classification research. Originally sourced from Kaggle, this dataset is curated for improved usability in social media sentiment analysis.

  16. f

    Predicting age groups of Twitter users based on language and metadata...

    • plos.figshare.com
    • datasetcatalog.nlm.nih.gov
    docx
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Antonio A. Morgan-Lopez; Annice E. Kim; Robert F. Chew; Paul Ruddle (2023). Predicting age groups of Twitter users based on language and metadata features [Dataset]. http://doi.org/10.1371/journal.pone.0183537
    Explore at:
    docxAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Antonio A. Morgan-Lopez; Annice E. Kim; Robert F. Chew; Paul Ruddle
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Health organizations are increasingly using social media, such as Twitter, to disseminate health messages to target audiences. Determining the extent to which the target audience (e.g., age groups) was reached is critical to evaluating the impact of social media education campaigns. The main objective of this study was to examine the separate and joint predictive validity of linguistic and metadata features in predicting the age of Twitter users. We created a labeled dataset of Twitter users across different age groups (youth, young adults, adults) by collecting publicly available birthday announcement tweets using the Twitter Search application programming interface. We manually reviewed results and, for each age-labeled handle, collected the 200 most recent publicly available tweets and user handles’ metadata. The labeled data were split into training and test datasets. We created separate models to examine the predictive validity of language features only, metadata features only, language and metadata features, and words/phrases from another age-validated dataset. We estimated accuracy, precision, recall, and F1 metrics for each model. An L1-regularized logistic regression model was conducted for each age group, and predicted probabilities between the training and test sets were compared for each age group. Cohen’s d effect sizes were calculated to examine the relative importance of significant features. Models containing both Tweet language features and metadata features performed the best (74% precision, 74% recall, 74% F1) while the model containing only Twitter metadata features were least accurate (58% precision, 60% recall, and 57% F1 score). Top predictive features included use of terms such as “school” for youth and “college” for young adults. Overall, it was more challenging to predict older adults accurately. These results suggest that examining linguistic and Twitter metadata features to predict youth and young adult Twitter users may be helpful for informing public health surveillance and evaluation research.

  17. d

    Data from: Twitter Big Data as A Resource For Exoskeleton Research: A...

    • search.dataone.org
    Updated Nov 8, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Thakur, Nirmalya (2023). Twitter Big Data as A Resource For Exoskeleton Research: A Large-Scale Dataset of about 140,000 Tweets and 100 Research Questions [Dataset]. http://doi.org/10.7910/DVN/VPPTRF
    Explore at:
    Dataset updated
    Nov 8, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Thakur, Nirmalya
    Description

    Please cite the following paper when using this dataset: N. Thakur, “Twitter Big Data as a Resource for Exoskeleton Research: A Large-Scale Dataset of about 140,000 Tweets and 100 Research Questions,” Preprints, 2022, DOI: 10.20944/preprints202206.0383.v1 Abstract The exoskeleton technology has been rapidly advancing in the recent past due to its multitude of applications and use cases in assisted living, military, healthcare, firefighting, and industries. With the projected increase in the diverse uses of exoskeletons in the next few years in these application domains and beyond, it is crucial to study, interpret, and analyze user perspectives, public opinion, reviews, and feedback related to exoskeletons, for which a dataset is necessary. The Internet of Everything era of today's living, characterized by people spending more time on the Internet than ever before, holds the potential for developing such a dataset by mining relevant web behavior data from social media communications, which have increased exponentially in the last few years. Twitter, one such social media platform, is highly popular amongst all age groups, who communicate on diverse topics including but not limited to news, current events, politics, emerging technologies, family, relationships, and career opportunities, via tweets, while sharing their views, opinions, perspectives, and feedback towards the same. Therefore, this work presents a dataset of about 140,000 Tweets related to exoskeletons. that were mined for a period of 5-years from May 21, 2017, to May 21, 2022. The tweets contain diverse forms of communications and conversations which communicate user interests, user perspectives, public opinion, reviews, feedback, suggestions, etc., related to exoskeletons. Instructions: This dataset contains about 140,000 Tweets related to exoskeletons. that were mined for a period of 5-years from May 21, 2017, to May 21, 2022. The tweets contain diverse forms of communications and conversations which communicate user interests, user perspectives, public opinion, reviews, feedback, suggestions, etc., related to exoskeletons. The dataset contains only tweet identifiers (Tweet IDs) due to the terms and conditions of Twitter to re-distribute Twitter data only for research purposes. They need to be hydrated to be used. The process of retrieving a tweet's complete information (such as the text of the tweet, username, user ID, date and time, etc.) using its ID is known as the hydration of a tweet ID. The Hydrator application (link to download the application: https://github.com/DocNow/hydrator/releases and link to a step-by-step tutorial: https://towardsdatascience.com/learn-how-to-easily-hydrate-tweets-a0f393ed340e#:~:text=Hydrating%20Tweets) or any similar application may be used for hydrating this dataset. Data Description This dataset consists of 7 .txt files. The following shows the number of Tweet IDs and the date range (of the associated tweets) in each of these files. Filename: Exoskeleton_TweetIDs_Set1.txt (Number of Tweet IDs – 22945, Date Range of Tweets - July 20, 2021 – May 21, 2022) Filename: Exoskeleton_TweetIDs_Set2.txt (Number of Tweet IDs – 19416, Date Range of Tweets - Dec 1, 2020 – July 19, 2021) Filename: Exoskeleton_TweetIDs_Set3.txt (Number of Tweet IDs – 16673, Date Range of Tweets - April 29, 2020 - Nov 30, 2020) Filename: Exoskeleton_TweetIDs_Set4.txt (Number of Tweet IDs – 16208, Date Range of Tweets - Oct 5, 2019 - Apr 28, 2020) Filename: Exoskeleton_TweetIDs_Set5.txt (Number of Tweet IDs – 17983, Date Range of Tweets - Feb 13, 2019 - Oct 4, 2019) Filename: Exoskeleton_TweetIDs_Set6.txt (Number of Tweet IDs – 34009, Date Range of Tweets - Nov 9, 2017 - Feb 12, 2019) Filename: Exoskeleton_TweetIDs_Set7.txt (Number of Tweet IDs – 11351, Date Range of Tweets - May 21, 2017 - Nov 8, 2017) Here, the last date for May is May 21 as it was the most recent date at the time of data collection. The dataset would be updated soon to incorporate more recent tweets.

  18. Twitter users in the United States 2019-2028

    • statista.com
    Updated Jul 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2025). Twitter users in the United States 2019-2028 [Dataset]. https://www.statista.com/topics/3196/social-media-usage-in-the-united-states/
    Explore at:
    Dataset updated
    Jul 30, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Area covered
    United States
    Description

    The number of Twitter users in the United States was forecast to continuously increase between 2024 and 2028 by in total 4.3 million users (+5.32 percent). After the ninth consecutive increasing year, the Twitter user base is estimated to reach 85.08 million users and therefore a new peak in 2028. Notably, the number of Twitter users of was continuously increasing over the past years.User figures, shown here regarding the platform twitter, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of Twitter users in countries like Canada and Mexico.

  19. Twitter Friends

    • kaggle.com
    Updated Sep 2, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hubert Wassner (2016). Twitter Friends [Dataset]. https://www.kaggle.com/datasets/hwassner/TwitterFriends/discussion?sortBy=recent
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 2, 2016
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Hubert Wassner
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    Twitter Friends and hashtags

    Context

    This datasets is an extract of a wider database aimed at collecting Twitter user's friends (other accound one follows). The global goal is to study user's interest thru who they follow and connection to the hashtag they've used.

    Content

    It's a list of Twitter user's informations. In the JSON format one twitter user is stored in one object of this more that 40.000 objects list. Each object holds :

    • avatar : URL to the profile picture

    • followerCount : the number of followers of this user

    • friendsCount : the number of people following this user.

    • friendName : stores the @name (without the '@') of the user (beware this name can be changed by the user)

    • id : user ID, this number can not change (you can retrieve screen name with this service : https://tweeterid.com/)

    • friends : the list of IDs the user follows (data stored is IDs of users followed by this user)

    • lang : the language declared by the user (in this dataset there is only "en" (english))

    • lastSeen : the time stamp of the date when this user have post his last tweet.

    • tags : the hashtags (whith or without #) used by the user. It's the "trending topic" the user tweeted about.

    • tweetID : Id of the last tweet posted by this user.

    You also have the CSV format which uses the same naming convention.

    These users are selected because they tweeted on Twitter trending topics, I've selected users that have at least 100 followers and following at least 100 other account (in order to filter out spam and non-informative/empty accounts).

    Acknowledgements

    This data set is build by Hubert Wassner (me) using the Twitter public API. More data can be obtained on request (hubert.wassner AT gmail.com), at this time I've collected over 5 milions in different languages. Some more information can be found here (in french only) : http://wassner.blogspot.fr/2016/06/recuperer-des-profils-twitter-par.html

    Past Research

    No public research have been done (until now) on this dataset. I made a private application which is described here : http://wassner.blogspot.fr/2016/09/twitter-profiling.html (in French) which uses the full dataset (Millions of full profiles).

    Inspiration

    On can analyse a lot of stuff with this datasets :

    • stats about followers & followings
    • manyfold learning or unsupervised learning from friend list
    • hashtag prediction from friend list

    Contact

    Feel free to ask any question (or help request) via Twitter : @hwassner

    Enjoy! ;)

  20. Twitter users in France 2019-2028

    • statista.com
    Updated Jul 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Twitter users in France 2019-2028 [Dataset]. https://www.statista.com/forecasts/1144232/twitter-users-in-france
    Explore at:
    Dataset updated
    Jul 10, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    France
    Description

    The number of Twitter users in France was forecast to continuously increase between 2024 and 2028 by in total *** million users (+**** percent). After the ninth consecutive increasing year, the Twitter user base is estimated to reach ***** million users and therefore a new peak in 2028. Notably, the number of Twitter users of was continuously increasing over the past years.User figures, shown here regarding the platform twitter, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to *** countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of Twitter users in countries like Luxembourg and Netherlands.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2025). Twitter Revenue Growth [Dataset]. https://www.searchlogistics.com/learn/statistics/twitter-user-statistics/

Twitter Revenue Growth

Explore at:
14 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Apr 1, 2025
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Advertising makes up 89% of its total revenue and data licensing makes up about 11%.

Search
Clear search
Close search
Google apps
Main menu