Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
A Truth Social data set containing a network of users, their associated posts, and additional information about each post. Collected from February 2022 through September 2022, this dataset contains 454,458 user entries and 845,060 Truth (Truth Social’s term for post) entries.
Comprised of 12 different files, the entry count for each file is shown below.
File | Data Points |
---|---|
users.tsv | 454,458 |
follows.tsv | 4,002,115 |
truths.tsv | 823,927 |
quotes.tsv | 10,508 |
replies.tsv | 506,276 |
media.tsv | 184,884 |
hashtags.tsv | 21,599 |
external_urls.tsv | 173,947 |
truth_hashtag_edges.tsv | 213,295 |
truth_media_edges.tsv | 257,500 |
truth_external_url_edges.tsv | 252,877 |
truth_user_tag_edges.tsv | 145,234 |
A readme file is provided that describes the structure of the files, necessary terms, and necessary information about the data collection.
This dataset contains the predicted prices of the asset Truth Social over the next 16 years. This data is calculated initially using a default 5 percent annual growth rate, and after page load, it features a sliding scale component where the user can then further adjust the growth rate to their own positive or negative projections. The maximum positive adjustable growth rate is 100 percent, and the minimum adjustable growth rate is -100 percent.
How high is the brand awareness of Truth Social in the United States?When it comes to social media users, brand awareness of Truth Social is at ** percent in the United States. The survey was conducted using the concept of aided brand recognition, showing respondents both the brand's logo and the written brand name.How popular is Truth Social in the United States?In total, * percent of U.S. social media users say they like Truth Social. However, in actuality, among the ** percent of U.S. respondents who know Truth Social, ** percent of people like the brand.What is the usage share of Truth Social in the United States?All in all, * percent of social media users in the United States use Truth Social. That means, of the ** percent who know the brand, ** percent use them.How loyal are the users of Truth Social?Around * percent of social media users in the United States say they are likely to use Truth Social again. Set in relation to the * percent usage share of the brand, this means that ** percent of their users show loyalty to the brand.What's the buzz around Truth Social in the United States?In February 2024, about * percent of U.S. social media users had heard about Truth Social in the media, on social media, or in advertising over the past four weeks. Of the ** percent who know the brand, that's ** percent, meaning at the time of the survey there's little buzz around Truth Social in the United States.If you want to compare brands, do deep-dives by survey items of your choice, filter by total online population or users of a certain brand, or drill down on your very own hand-tailored target groups, our Consumer Insights Brand KPI survey has you covered.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Youtube social network and ground-truth communities Dataset information Youtube is a video-sharing web site that includes a social network. In the Youtube social network, users form friendship each other and users can create groups which other users can join. We consider such user-defined groups as ground-truth communities. This data is provided by Alan Mislove et al.
We regard each connected component in a group as a separate ground-truth community. We remove the ground-truth communities which have less than 3 nodes. We also provide the top 5,000 communities with highest quality which are described in our paper. As for the network, we provide the largest connected component.
more info : https://snap.stanford.edu/data/com-Youtube.html
This dataset contains the predicted prices of Truth Social for the upcoming years based on user-defined projections.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset was created by Tom Hastie
Released under CC0: Public Domain
It contains the following files:
Population-level national networks on social media are precious and essential for network science and behavioural science. This study proposes a data collection strategy for scraping online social networks at the population level, and thereby serving as a “ground truth” for the validation of both ego-centric and socio-centric data collection approaches. We proposed a set of validation approaches to evaluate the validity of our approach. Finally, we re-examined classical network and communication propositions (e.g., 80/20 rule, six degrees of separation) on the national network. Our proposed strategy would largely flourish the data collection pool of population-level social networks and further develop the research of network analysis in digital media environment.
Data Access: The data in the research collection provided may only be used for research purposes. Portions of the data are copyrighted and have commercial value as data, so you must be careful to use them only for research purposes. Due to these restrictions, the collection is not open data. Please fill out the form and upload the Data Sharing Agreement at Google Form.
Citation
Please cite our work as
@article{shahi2021overview, title={Overview of the CLEF-2021 CheckThat! lab task 3 on fake news detection}, author={Shahi, Gautam Kishore and Stru{\ss}, Julia Maria and Mandl, Thomas}, journal={Working Notes of CLEF}, year={2021} }
Problem Definition: Given the text of a news article, determine whether the main claim made in the article is true, partially true, false, or other (e.g., claims in dispute) and detect the topical domain of the article. This task will run in English and German.
Subtask 3: Multi-class fake news detection of news articles (English) Sub-task A would detect fake news designed as a four-class classification problem. The training data will be released in batches and roughly about 900 articles with the respective label. Given the text of a news article, determine whether the main claim made in the article is true, partially true, false, or other. Our definitions for the categories are as follows:
False - The main claim made in an article is untrue.
Partially False - The main claim of an article is a mixture of true and false information. The article contains partially true and partially false information but cannot be considered 100% true. It includes all articles in categories like partially false, partially true, mostly true, miscaptioned, misleading etc., as defined by different fact-checking services.
True - This rating indicates that the primary elements of the main claim are demonstrably true.
Other- An article that cannot be categorised as true, false, or partially false due to lack of evidence about its claims. This category includes articles in dispute and unproven articles.
Input Data
The data will be provided in the format of Id, title, text, rating, the domain; the description of the columns is as follows:
Output data format
Sample File
public_id, predicted_rating
1, false
2, true
Sample file
public_id, predicted_domain
1, health
2, crime
Additional data for Training
To train your model, the participant can use additional data with a similar format; some datasets are available over the web. We don't provide the background truth for those datasets. For testing, we will not use any articles from other datasets. Some of the possible sources:
IMPORTANT!
Evaluation Metrics
This task is evaluated as a classification task. We will use the F1-macro measure for the ranking of teams. There is a limit of 5 runs (total and not per day), and only one person from a team is allowed to submit runs.
Baseline: For this task, we have created a baseline system. The baseline system can be found at https://zenodo.org/record/6362498
Submission Link: Coming soon
Related Work
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
https://snap.stanford.edu/data/com-Youtube.html
Dataset information
Youtube (http://www.youtube.com/) is a video-sharing web site that includes
a social network. In the Youtube social network, users form friendship each
other and users can create groups which other users can join. We consider
such user-defined groups as ground-truth communities. This data is provided
by Alan Mislove et al.
(http://socialnetworks.mpi-sws.org/data-imc2007.html)
We regard each connected component in a group as a separate ground-truth
community. We remove the ground-truth communities which have less than 3
nodes. We also provide the top 5,000 communities with highest quality
which are described in our paper (http://arxiv.org/abs/1205.6233). As for
the network, we provide the largest connected component.
Network statistics
Nodes 1,134,890
Edges 2,987,624
Nodes in largest WCC 1134890 (1.000)
Edges in largest WCC 2987624 (1.000)
Nodes in largest SCC 1134890 (1.000)
Edges in largest SCC 2987624 (1.000)
Average clustering coefficient 0.0808
Number of triangles 3056386
Fraction of closed triangles 0.002081
Diameter (longest shortest path) 20
90-percentile effective diameter 6.5
Community statistics
Number of communities 8,385
Average community size 13.50
Average membership size 0.10
Source (citation)
J. Yang and J. Leskovec. Defining and Evaluating Network Communities based
on Ground-truth. ICDM, 2012. http://arxiv.org/abs/1205.6233
Files
File Description
com-youtube.ungraph.txt.gz Undirected Youtube network
com-youtube.all.cmty.txt.gz Youtube communities
com-youtube.top5000.cmty.txt.gz Youtube communities (Top 5,000)
The graph in the SNAP data set is 1-based, with nodes numbered 1 to
1,157,827.
In the SuiteSparse Matrix Collection, Problem.A is the undirected Youtube
network, a matrix of size n-by-n with n=1,134,890, which is the number of
unique user id's appearing in any edge.
Problem.aux.nodeid is a list of the node id's that appear in the SNAP data
set. A(i,j)=1 if person nodeid(i) is friends with person nodeid(j). The
node id's are the same as the SNAP data set (1-based).
C = Problem.aux.Communities_all is a sparse matrix of size n by 16,386
which represents the communities in the com-youtube.all.cmty.txt file.
The kth line in that file defines the kth community, and is the column
C(:,k), where C(i,k)=1 if person nodeid(i) is in the kth community. Row
C(i,:) and row/column i of the A matrix thus refer to the same person,
nodeid(i).
Ctop = Problem.aux.Communities_top5000 is n-by-5000, with the same
structure as the C array above, with the content of the
com-youtube.top5000.cmty.txt.gz file.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Pollution of online social spaces caused by rampaging d/misinformation is a growing societal concern. However, recent decisions to reduce access to social media APIs are causing a shortage of publicly available, recent, social media data, thus hindering the advancement of computational social science as a whole. We present a large, high-coverage dataset of social interactions and user-generated content from Bluesky Social to address this pressing issue. The dataset contains the complete post history of over 4M users (81% of all registered accounts), totalling 235M posts. We also make available social data covering follow, comment, repost, and quote interactions. Since Bluesky allows users to create and like feed generators (i.e., content recommendation algorithms), we also release the full output of several popular algorithms available on the platform, along with their timestamped “like” interactions. This dataset allows novel analysis of online behavior and human-machine engagement patterns. Notably, it provides ground-truth data for studying the effects of content exposure and self-selection and performing content virality and diffusion analysis.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The code and data to analyze the HKS Misinformation Review paper, "Cognitive reflection is associated with greater truth discernment for COVID-19 headlines, less trust but greater use of formal information sources, and greater willingness to pay for masks among social media users in Pakistan"
How do societies remember historical political violence? We draw on an original dataset of more than 150 memorialization projects proposed by truth commissions in 28 post-violence countries, from 1970 to 2018. These projects include the removal of monuments, installation of museums, inauguration of national days of remembrance, and more. Truth commission recommendations data allows us to not only consider memory sites once established, but also to examine blueprints for the types of memory that could have been made. We develop a typology and inductively generate a theory of the political contests and conflicts that different memory projects are likely to trigger–contests and conflicts that we expect, influence the likelihood of project initiation and completion. We conduct an initial probe of the theory using our new data. In so doing, we offer the first systematic, global study of setting and implementing the memorialization agenda in post-violence societies.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Truth Seeker Dataset is designed to support research in the detection and classification of misinformation on social media platforms, particularly focusing on Twitter. This dataset is part of a broader initiative to enhance the understanding of how machine learning (ML) and natural language processing (NLP) can be leveraged to identify fake news and misleading content in real-time.Dataset CompositionThe Truth Seeker Dataset comprises a substantial collection of social media posts that have been meticulously labeled as either real or fake. It was constructed using advanced ML algorithms and NLP techniques to analyze the language patterns in social media communications. The dataset includes:Raw Social Media Posts: A diverse range of tweets that reflect various topics and sentiments.Labeling: Each post is annotated with binary labels indicating its authenticity (real or fake).Feature Sets: Two distinct subsets of the dataset have been created using different NLP vectorization methods—Word2Vec and TF-IDF. This allows researchers to explore how different feature representations impact model performance.Research ApplicationsThe primary aim of the Truth Seeker Dataset is to facilitate the development and validation of models that can accurately classify social media content. Key applications include:Fake News Detection: Utilizing various ML algorithms, including Random Forest and AdBoost, which have demonstrated high F1 scores in preliminary evaluations.Model Comparison: Researchers can compare the effectiveness of different ML approaches on the same dataset, enabling a clearer understanding of which methods yield the best results in detecting misinformation.Algorithm Development: The dataset serves as a benchmark for developing new algorithms aimed at improving accuracy in fake news detection.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
As the COVID-19 virus quickly spreads around the world, unfortunately, misinformation related to COVID-19 also gets created and spreads like wild fire. Such misinformation has caused confusion among people, disruptions in society, and even deadly consequences in health problems. To be able to understand, detect, and mitigate such COVID-19 misinformation, therefore, has not only deep intellectual values but also huge societal impacts. To help researchers combat COVID-19 health misinformation, this dataset created.
#
#
https://img.etimg.com/thumb/msid-65836641,width-640,resizemode-4,imgsize-272192/fake-news.jpg" width="700">
The datasets is a diverse COVID-19 healthcare misinformation dataset, including fake news on websites and social platforms, along with users' social engagement about such news. It includes 4,251 news, 296,000 related user engagements, 926 social platform posts about COVID-19, and ground truth labels.
Version 0.1 (05/17/2020) initial version corresponding to arXiv paper CoAID: COVID-19 HEALTHCARE MISINFORMATION DATASET
Version 0.2 (08/03/2020) added data from May 1, 2020 through July 1, 2020
Version 0.3 (11/03/2020) added data from July 1, 2020 through September 1, 2020
Limeng Cui Dongwon Lee, Pennsylvania State University.
https://dataverse.harvard.edu/api/datasets/:persistentId/versions/3.1/customlicense?persistentId=doi:10.7910/DVN/28119https://dataverse.harvard.edu/api/datasets/:persistentId/versions/3.1/customlicense?persistentId=doi:10.7910/DVN/28119
THIS IS NO LONGER SUPPORTED. In ICEWS, an Event of Interest (EOI) is a macro-level occurrence within a country or region that is supported by the existence of multiple underlying events. The Ground Truth Data Set is a collection of data which lists, for the EOIs supported, whether or not the EOI did occur in any given country for any given month, historically speaking. We plan to update this data on a periodic basis. The five EOIs that are currently supported in this data set include: 1. Domestic Political Crisis (DPC): Significant opposition to the government, but not to the level of rebellion or insurgency (e.g., power struggles between two political factions involving disruptive strikes or violent clashes between supporters). 2. Insurgency: Organized opposition whose objective is to overthrow the central government. 3. International Crisis: Conflict or elevated tensions that could lead to conflict between two or more states OR between a state and an actor operating primarily from beyond the state's borders that involves the deployment of substantial ground forces (1,000+) beyond its borders. 4. Rebellion: Organized, active, violent opposition with substantial arms, where the objective is to seek autonomy or independence from the central government. 5. Ethnic/Religious Violence: Violence between ethnic or religious groups that is not specifically directed against the government. Additional information about the IC EWS program can be found at http://www.icews.com/. Follow our Twitter handle for data updates and other news: @icews
The Residential Schools Locations Dataset in Geodatabase format (IRS_Locations.gbd) contains a feature layer "IRS_Locations" that contains the locations (latitude and longitude) of Residential Schools and student hostels operated by the federal government in Canada. All the residential schools and hostels that are listed in the Residential Schools Settlement Agreement are included in this dataset, as well as several Industrial schools and residential schools that were not part of the IRRSA. This version of the dataset doesn’t include the five schools under the Newfoundland and Labrador Residential Schools Settlement Agreement. The original school location data was created by the Truth and Reconciliation Commission, and was provided to the researcher (Rosa Orlandini) by the National Centre for Truth and Reconciliation in April 2017. The dataset was created by Rosa Orlandini, and builds upon and enhances the previous work of the Truth and Reconcilation Commission, Morgan Hite (creator of the Atlas of Indian Residential Schools in Canada that was produced for the Tk'emlups First Nation and Justice for Day Scholar's Initiative, and Stephanie Pyne (project lead for the Residential Schools Interactive Map). Each individual school location in this dataset is attributed either to RSIM, Morgan Hite, NCTR or Rosa Orlandini. Many schools/hostels had several locations throughout the history of the institution. If the school/hostel moved from its’ original location to another property, then the school is considered to have two unique locations in this dataset,the original location and the new location. For example, Lejac Indian Residential School had two locations while it was operating, Stuart Lake and Fraser Lake. If a new school building was constructed on the same property as the original school building, it isn't considered to be a new location, as is the case of Girouard Indian Residential School.When the precise location is known, the coordinates of the main building are provided, and when the precise location of the building isn’t known, an approximate location is provided. For each residential school institution location, the following information is provided: official names, alternative name, dates of operation, religious affiliation, latitude and longitude coordinates, community location, Indigenous community name, contributor (of the location coordinates), school/institution photo (when available), location point precision, type of school (hostel or residential school) and list of references used to determine the location of the main buildings or sites. Access Instructions: there are 47 files in this data package. Please download the entire data package by selecting all the 47 files and click on download. Two files will be downloaded, IRS_Locations.gbd.zip and IRS_LocFields.csv. Uncompress the IRS_Locations.gbd.zip. Use QGIS, ArcGIS Pro, and ArcMap to open the feature layer IRS_Locations that is contained within the IRS_Locations.gbd data package. The feature layer is in WGS 1984 coordinate system. There is also detailed file level metadata included in this feature layer file. The IRS_locations.csv provides the full description of the fields and codes used in this dataset.
Youtube is a video-sharing web site that includes a social network. In the Youtube social network, users form friendship each other and users can create groups which other users can join. We consider such user-defined groups as ground-truth communities. This data is provided by Alan Mislove et al. We regard each connected component in a group as a separate ground-truth community. We remove the ground-truth communities which have less than 3 nodes. We also provide the top 5,000 communities with highest quality which are described in our paper. As for the network, we provide the largest connected component. The dataset contains 1,134,890 nodes and 2,987,624 edges.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
THÖR is a dataset with human motion trajectory and eye gaze data collected in an indoor environment with accurate ground truth for the position, head orientation, gaze direction, social grouping and goals. THÖR contains sensor data collected by a 3D lidar sensor and involves a mobile robot navigating the space. In comparison to other, our dataset has a larger variety in human motion behaviour, is less noisy, and contains annotations at higher frequencies. The dataset includes 13 separate recordings in 3 variations: One obstacle" - features one obstacle in the environment and no robot
Moving robot" - features one obstacle in the environment and the moving robot ``Three obstacles" - features three obstacles in the environment and no robot THOR - people tracks is the part of THÖR data set containing ground truth position of people in the environment, including information about head orientation. The data are available in three formats: mat - Matlab binary file TSV - text file bag - ROS bag file MAT files File - [char] Path to original QTM file Timestamp - [string] Date and time of the startof the data collection Start Fram - [char] 1 Frames - [double] Number of frames in the file FrameRate - [double] Number of frames per second Events - [struct] 0 Trajectories - [struct] 3D postion of observed reflective markers Labeled - [struct] Markers belonging to the tracked agents: Count - [double] Number of tracked markers Labels - [cell] List of marker labels Data - [double] Array of dimension {Count}x4x{Frames}, contains the 3D position of each marker and residue RigidBodies - [struct] 6D pose of the helmet, corresponds to head poistion and orientation: Bodies - [double] Number of tracked bodies Name - [cell] Bodies Names Positions - [double] Array of dimension {Bodies}x3x{Frames} contains the position of the centre of the mass of the markers defining the rigid body Rotations - [double] Array of dimension {Bodies}x9x{Frames} contains rotation matrix describing the orientation of the rigid body RPYs - [double] Array of dimension {Bodies}x3x{Frames} contains orientation of the rigid body described as RPY angles Residual - [double] Array of dimension {Bodies}x1x{Frames} contains residual for each rigid body TSV files 3D data File Header NO_OF_FRAMES - number of frames in the file NO_OF_CAMERAS - number of cameras tracking makers NO_OF_MARKERS - number of tracked markers FREQUENCY - tracking frequency [Hz] NO_OF_ANALOG - number of analog inputs ANALOG_FREQUENCY - frequency of analog input DESCRIPTION - -- TIME_STAMP - the beginning of the data recording DATA_INCLUDED - the type of data included MARKER_NAMES - names of tracked makers Column names Frame - frame ID Time - frame timestamp [marker name] [C] - coordinate of a [marker name] along [C] axis 6D data File Header NO_OF_FRAMES - number of frames in the file NO_OF_CAMERAS - number of cameras tracking makers NO_OF_MARKERS - number of tracked markers FREQUENCY - tracking frequency [Hz] NO_OF_ANALOG - number of analog inputs ANALOG_FREQUENCY - frequency of analog input DESCRIPTION - -- TIME_STAMP - the beginning of the data recording DATA_INCLUDED - the type of data included BODY_NAMES - names of tracked rigid bodies Colum Names Frame - frame ID Time - frame timestamp The columns are grouped according to the rigid body. Each group starts with the name of the rigid body and then is followed by the position of the centre of the mas and the orientation expressed as RPY angles and rotation matrix Reference: For more details check project website thor.oru.se or check our publications: @article{thorDataset2019, title={TH"OR: Human-Robot Indoor Navigation Experiment and Accurate Motion Trajectories Dataset}, author={Andrey Rudenko and Tomasz P. Kucner and Chittaranjan S. Swaminathan and Ravi T. Chadalavada and Kai O. Arras and Achim J. Lilienthal}, journal={arXiv preprint arXiv:1909.04403}, year={2019} }
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
This is the multimodal SWELL knowledge work (SWELL-KW) dataset for research on stress and user modeling. The dataset was collected in an experiment, in which 25 people performed typical knowledge work (writing reports, making presentations, reading e-mail, searching for information). We manipulated their working conditions with the stressors: email interruptions and time pressure. A varied set of data was recorded: computer logging, facial expression from camera recordings, body postures from a Kinect 3D sensor and heart rate (variability) and skin conductance from body sensors. Our dataset not only contains raw data, but also preprocessed data and extracted features. The participants' subjective experience on task load, mental effort, emotion and perceived stress was assessed with validated questionnaires as a ground truth. The resulting dataset on working behavior and affect is suitable for several research fields, such as work psychology, user modeling and context aware systems.The collection of this dataset was supported by the Dutch national program COMMIT (project P7 SWELL). SWELL is an acronym of Smart Reasoning Systems for Well-being at Work and at Home. Notes on the content of the dataset:- The uLog XML files refer to documents in the dataset. Most extensions of these files have changed due to file conversions. The original extension is now included in the file names at the end.- Due to copyrights not all original documents and images are included in the dataset.- Variable C in 'D - Physiology features (HR_HRV_SCL - final).csv' refers to the type of block, 1, 2 or 3.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
A Truth Social data set containing a network of users, their associated posts, and additional information about each post. Collected from February 2022 through September 2022, this dataset contains 454,458 user entries and 845,060 Truth (Truth Social’s term for post) entries.
Comprised of 12 different files, the entry count for each file is shown below.
File | Data Points |
---|---|
users.tsv | 454,458 |
follows.tsv | 4,002,115 |
truths.tsv | 823,927 |
quotes.tsv | 10,508 |
replies.tsv | 506,276 |
media.tsv | 184,884 |
hashtags.tsv | 21,599 |
external_urls.tsv | 173,947 |
truth_hashtag_edges.tsv | 213,295 |
truth_media_edges.tsv | 257,500 |
truth_external_url_edges.tsv | 252,877 |
truth_user_tag_edges.tsv | 145,234 |
A readme file is provided that describes the structure of the files, necessary terms, and necessary information about the data collection.