85 datasets found
  1. TikTok Datasets

    • brightdata.com
    .json, .csv, .xlsx
    Updated Sep 9, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bright Data (2022). TikTok Datasets [Dataset]. https://brightdata.com/products/datasets/tiktok
    Explore at:
    .json, .csv, .xlsxAvailable download formats
    Dataset updated
    Sep 9, 2022
    Dataset authored and provided by
    Bright Datahttps://brightdata.com/
    License

    https://brightdata.com/licensehttps://brightdata.com/license

    Area covered
    Worldwide
    Description

    Use our TikTok profiles dataset to extract business and non-business information from complete public profiles and filter by account name, followers, create date, or engagement score. You may purchase the entire dataset or a customized subset depending on your needs. Popular use cases include sentiment analysis, brand monitoring, influencer marketing, and more. The TikTok dataset includes all major data points: timestamp, account name, nickname, bio,average engagement score, creation date, is_verified,l ikes, followers, external link in bio, and more. Get your TikTok dataset today!

  2. c

    from TikTok Dataset

    • cubig.ai
    zip
    Updated Jun 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CUBIG (2025). from TikTok Dataset [Dataset]. https://cubig.ai/store/products/457/from-tiktok-dataset
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jun 12, 2025
    Dataset authored and provided by
    CUBIG
    License

    https://cubig.ai/store/terms-of-servicehttps://cubig.ai/store/terms-of-service

    Measurement technique
    Synthetic data generation using AI techniques for model training, Privacy-preserving data transformation via differential privacy
    Description

    1) Data Introduction • The Dataset from TikTok contains 19,382 reports that users flagged as including "claim" in videos or comments, along with video length, transcription text, account status, and participation indicators, and is suitable for analyzing reporting reasons and viewer reactions by content.

    2) Data Utilization (1) Dataset from TikTok has characteristics that: • This dataset consists of 12 columns, providing both the reported content type and the meta-participation index of the video. (2) Dataset from TikTok can be used to: • Claim Judgment Classification Model Development: By inputting video transcription text, participation indicators such as views, likes, shares, comments, and account authentication and sanctions information, the machine learning classification model can be automatically determined whether the content contains "claims." • Optimizing moderation tasks: Automate reporting priorities based on classification model predictability to speed up reporting processing and reduce supervision burden by selecting content that managers urgently need to review.

  3. h

    TikTok-10M

    • huggingface.co
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataset Company, TikTok-10M [Dataset]. https://huggingface.co/datasets/The-data-company/TikTok-10M
    Explore at:
    Dataset authored and provided by
    Dataset Company
    License

    https://choosealicense.com/licenses/other/https://choosealicense.com/licenses/other/

    Description

    TikTok-10M Dataset

      Dataset Description
    

    TikTok-10M is a large-scale dataset containing 10 million short-form posts from TikTok, designed for video understanding, multimodal learning, and social media content analysis. The dataset was curated to bridge the gap between academic video datasets and actual user-generated content, providing researchers with authentic patterns and characteristics of modern short-form video content that dominates social media platforms.… See the full description on the dataset page: https://huggingface.co/datasets/The-data-company/TikTok-10M.

  4. g

    Data from: News on TikTok: An Annotated Dataset of TikTok Videos from...

    • search.gesis.org
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wedel, Lion; Mayer, Anna-Theresa; Batzner, Jan; Hendrickx, Jonathan, News on TikTok: An Annotated Dataset of TikTok Videos from German-Speaking News Outlets in 2023 [Dataset]. http://doi.org/10.7802/2863
    Explore at:
    Dataset provided by
    GESIS search
    GESIS, Köln
    Authors
    Wedel, Lion; Mayer, Anna-Theresa; Batzner, Jan; Hendrickx, Jonathan
    License

    https://www.gesis.org/en/institute/data-usage-termshttps://www.gesis.org/en/institute/data-usage-terms

    Area covered
    Germany
    Description

    TikTok is developing into a key platform for news, advertising, politics, online shopping, and entertainment in Germany, with over 20 million monthly users. Especially among young people, TikTok plays an increasing role in their information environment. We provide a human-coded dataset of over 4,000 TikTok videos from German-speaking news outlets from 2023. The coding includes descriptive variables of the videos (e.g., visual style, text overlays, and audio presence) and theory-derived concepts from the journalism sciences (e.g., news values).

    This dataset consists of every second video published in 2023 by major news outlets active on TikTok from Germany, Austria, and Switzerland. The data collection was facilitated with the official TikTok API in January 2024. The manual coding took place between September 2024 and December 2024. For a detailed description of the data collection, validation, annotation and descriptive analysis, please refer to [Forthcoming dataset paper publication].

  5. Z

    Data from: TikTok dataset - Current affairs on TikTok. Virality and...

    • data.niaid.nih.gov
    • research.science.eus
    • +1more
    Updated Aug 28, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Peña-Fernández, Simón; Larrondo-Ureta, Ainara; Morales-i-Gras, Jordi (2022). TikTok dataset - Current affairs on TikTok. Virality and entertainment for digital natives [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_7024884
    Explore at:
    Dataset updated
    Aug 28, 2022
    Dataset provided by
    University of the Basque Country (UPV/EHU)
    Authors
    Peña-Fernández, Simón; Larrondo-Ureta, Ainara; Morales-i-Gras, Jordi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Tiktok network graph with 5,638 nodes and 318,986 unique links, representing up to 790,599 weighted links between labels, using Gephi network analysis software.

    Source of:

    Peña-Fernández, Simón, Larrondo-Ureta, Ainara, & Morales-i-Gras, Jordi. (2022). Current affairs on TikTok. Virality and entertainment for digital natives. Profesional De La Información, 31(1), 1–12. https://doi.org/10.5281/zenodo.5962655

    Abstract:

    Since its appearance in 2018, TikTok has become one of the most popular social media platforms among digital natives because of its algorithm-based engagement strategies, a policy of public accounts, and a simple, colorful, and intuitive content interface. As happened in the past with other platforms such as Facebook, Twitter, and Instagram, various media are currently seeking ways to adapt to TikTok and its particular characteristics to attract a younger audience less accustomed to the consumption of journalistic material. Against this background, the aim of this study is to identify the presence of the media and journalists on TikTok, measure the virality and engagement of the content they generate, describe the communities created around them, and identify the presence of journalistic use of these accounts. For this, 23,174 videos from 143 accounts belonging to media from 25 countries were analyzed. The results indicate that, in general, the presence and impact of the media in this social network are low and that most of their content is oriented towards the creation of user communities based on viral content and entertainment. However, albeit with a lesser presence, one can also identify accounts and messages that adapt their content to the specific characteristics of TikTok. Their virality and engagement figures illustrate that there is indeed a niche for current affairs on this social network.

  6. TikTok: account removed 2020-2024, by reason

    • statista.com
    • de.statista.com
    • +1more
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department, TikTok: account removed 2020-2024, by reason [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Description

    During the fourth quarter 2024, approximately 20.6 million TikTok accounts were removed from the platform due to suspicion of being operated by users under the age of 13. During the last measured period, around 185 million fake accounts were removed from fake accounts removed from TikTok.

  7. TikTok global quarterly downloads 2018-2024

    • statista.com
    • es.statista.com
    • +1more
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department, TikTok global quarterly downloads 2018-2024 [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Description

    In the fourth quarter of 2024, TikTok generated around 186 million downloads from users worldwide. Initially launched in China first by ByteDance as Douyin, the short-video format was popularized by TikTok and took over the global social media environment in 2020. In the first quarter of 2020, TikTok downloads peaked at over 313.5 million worldwide, up by 62.3 percent compared to the first quarter of 2019.

                  TikTok interactions: is there a magic formula for content success?
    
                  In 2024, TikTok registered an engagement rate of approximately 4.64 percent on video content hosted on its platform. During the same examined year, the social video app recorded over 1,100 interactions on average. These interactions were primarily composed of likes, while only recording less than 20 comments per piece of content on average in 2024.
                  The platform has been actively monitoring the issue of fake interactions, as it removed around 236 million fake likes during the first quarter of 2024. Though there is no secret formula to get the maximum of these metrics, recommended video length can possibly contribute to the success of content on TikTok.
                  It was recommended that tiny TikTok accounts with up to 500 followers post videos that are around 2.6 minutes long as of the first quarter of 2024. While, the ideal video duration for huge TikTok accounts with over 50,000 followers was 7.28 minutes. The average length of TikTok videos posted by the creators in 2024 was around 43 seconds.
    
                  What’s trending on TikTok Shop?
    
                  Since its launch in September 2023, TikTok Shop has become one of the most popular online shopping platforms, offering consumers a wide variety of products. In 2023, TikTok shops featuring beauty and personal care items sold over 370 million products worldwide.
                  TikTok shops featuring womenswear and underwear, as well as food and beverages, followed with 285 and 138 million products sold, respectively. Similarly, in the United States market, health and beauty products were the most-selling items,
                  accounting for 85 percent of sales made via the TikTok Shop feature during the first month of its launch. In 2023, Indonesia was the market with the largest number of TikTok Shops, hosting over 20 percent of all TikTok Shops. Thailand and Vietnam followed with 18.29 and 17.54 percent of the total shops listed on the famous short video platform, respectively.
    
  8. #Coronavirus on TikTok

    • kaggle.com
    Updated Feb 6, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). #Coronavirus on TikTok [Dataset]. https://www.kaggle.com/datasets/thedevastator/user-engagement-with-covid-misinformation-on-tik/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 6, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    The Devastator
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    #Coronavirus on TikTok:

    Examining Factors Related to Reception of Content

    By [source]

    About this dataset

    This dataset explores various factors associated with the reception of COVID-19 related content on TikTok. It not only captures overall levels of user engagement such as likes, comments, and views but also explores source credibility including information from healthcare professionals, news sources, patients, and other outlets. It further dives into demographic factors such as gender and age range as well as content type like humor or provision of clinical instruction. Finally, it takes a look at elements such as description of risk factors & symptoms along with modes of transmission established by the posts in question and prevention that was discussed within them. Moreover, there is a discernment component that breaks down user perception - rating the posts for level of misinformation (moderate/high/low). All these measures combined provide insights into how users are engaging with COVID-19 related misinformation on TikTok

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    This dataset contains user engagement data and measures of source credibility related to COVID-19 misinformation on TikTok. It can be used to examine the factors associated with content reception, such as views, likes, comments, as well as factors relating to credibility, demographics and content type.

    Using this dataset: - Explore the columns available in the dataset. There are a number of columns that measure user engagement (views, likes and comments) as well as source credibility (official source, healthcare professional etc.), demographic factors (gender, age group etc.), and content type (humor etc). Get familiar with all these columns so that you know what information is available for analysis.
    - Decide what kind of analysis you want to perform. You can use this data for exploratory or explanatory work - depending on your aims or research question. For example if you want to see how source credibility affects user engagement then you would need descriptive statistical techniques such as correlation tests or regression analyses etc., whereas if you just want to gain an overall understanding of patterns in this data then exploratory techniques such as cross tabulations may be more suitable.

    Research Ideas

    • Developing a predictive model to identify which demographic and source characteristics are correlated with high user engagement for COVID-related posts on TikTok (e.g. views, likes, and comments).
    • Investigating the difference in user engagement for posts from healthcare professionals vs non-professional sources to compare how different types of content are received by users on TikTok.
    • Analyzing the sentiment of words related to masks and tests in order to gain insights into how content about this topic is perceived by users on TikTok (i.e., positive or negative sentiment)

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    License: CC0 1.0 Universal (CC0 1.0) - Public Domain Dedication No Copyright - You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission. See Other Information.

    Columns

    File: tiktok_data_open.csv | Column name | Description | |:-------------------------------|:------------------------------------------------------------------------| | views | Number of views for the video. (Integer) | | likes | Number of likes for the video. (Integer) | | comments | Number of comments for the video. (Integer) | | official_source | Whether the source of the video is an official source. (Boolean) | | pub_hcp | Whether the source of the video is a healthcare professional. (Boolean) | | pub_news | Whether the source of the video is a news source. (Boolean) | | pub_patient | Whether the source of the video is a patient. (Boolean) | | pub_other | Whether the source of the video is another source. (Boolean) | | female ...

  9. The Invasion of Ukraine Viewed through TikTok: A Dataset

    • zenodo.org
    bin, csv +1
    Updated May 13, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Benjamin Steel; Sara Parker; Derek Ruths; Benjamin Steel; Sara Parker; Derek Ruths (2023). The Invasion of Ukraine Viewed through TikTok: A Dataset [Dataset]. http://doi.org/10.5281/zenodo.7926959
    Explore at:
    text/x-python, bin, csvAvailable download formats
    Dataset updated
    May 13, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Benjamin Steel; Sara Parker; Derek Ruths; Benjamin Steel; Sara Parker; Derek Ruths
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Ukraine
    Description

    This is a dataset of videos and comments related to the invasion of Ukraine, published on TikTok by a number of users over the year of 2022. It was compiled by Benjamin Steel, Sara Parker and Derek Ruths at the Network Dynamics Lab, McGill University. We created this dataset to facilitate the study of TikTok, and the nature of social interaction on the platform relevant to a major political event.

    The dataset has been released here on Zenodo: https://doi.org/10.5281/zenodo.7926959 as well as on Github: https://github.com/networkdynamics/data-and-code/tree/master/ukraine_tiktok

    To create the dataset, we identified hashtags and keywords explicitly related to the conflict to collect a core set of videos (or ”TikToks”). We then compiled comments associated with these videos. All of the data captured is publically available information, and contains personally identifiable information. In total we collected approximately 16 thousand videos and 12 million comments, from approximately 6 million users. There are approximately 1.9 comments on average per user captured, and 1.5 videos per user who posted a video. The author personally collected this data using the web scraping PyTok library, developed by the author: https://github.com/networkdynamics/pytok.

    Due to scraping duration, this is just a sample of the publically available discourse concerning the invasion of Ukraine on TikTok. Due to the fuzzy search functionality of the TikTok, the dataset contains videos with a range of relatedness to the invasion.

    We release here the unique video IDs of the dataset in a CSV format. The data was collected without the specific consent of the content creators, so we have released only the data required to re-create it, to allow users to delete content from TikTok and be removed from the dataset if they wish. Contained in this repository are scripts that will automatically pull the full dataset, which will take the form of JSON files organised into a folder for each video. The JSON files are the entirety of the data returned by the TikTok API. We include a script to parse the JSON files into CSV files with the most commonly used data. We plan to further expand this dataset as collection processes progress and the war continues. We will version the dataset to ensure reproducibility.

    To build this dataset from the IDs here:

    1. Go to https://github.com/networkdynamics/pytok and clone the repo locally
    2. Run pip install -e . in the pytok directory
    3. Run pip install pandas tqdm to install these libraries if not already installed
    4. Run get_videos.py to get the video data
    5. Run video_comments.py to get the comment data
    6. Run user_tiktoks.py to get the video history of the users
    7. Run hashtag_tiktoks.py or search_tiktoks.py to get more videos from other hashtags and search terms
    8. Run load_json_to_csv.py to compile the JSON files into two CSV files, comments.csv and videos.csv

    If you get an error about the wrong chrome version, use the command line argument get_videos.py --chrome-version YOUR_CHROME_VERSION Please note pulling data from TikTok takes a while! We recommend leaving the scripts running on a server for a while for them to finish downloading everything. Feel free to play around with the delay constants to either speed up the process or avoid TikTok rate limiting.

    Please do not hesitate to make an issue in this repo to get our help with this!

    The videos.csv will contain the following columns:

    video_id: Unique video ID

    createtime: UTC datetime of video creation time in YYYY-MM-DD HH:MM:SS format

    author_name: Unique author name

    author_id: Unique author ID

    desc: The full video description from the author

    hashtags: A list of hashtags used in the video description

    share_video_id: If the video is sharing another video, this is the video ID of that original video, else empty

    share_video_user_id: If the video is sharing another video, this the user ID of the author of that video, else empty

    share_video_user_name: If the video is sharing another video, this is the user name of the author of that video, else empty

    share_type: If the video is sharing another video, this is the type of the share, stitch, duet etc.

    mentions: A list of users mentioned in the video description, if any

    The comments.csv will contain the following columns:

    comment_id: Unique comment ID

    createtime: UTC datetime of comment creation time in YYYY-MM-DD HH:MM:SS format

    author_name: Unique author name

    author_id: Unique author ID

    text: Text of the comment

    mentions: A list of users that are tagged in the comment

    video_id: The ID of the video the comment is on

    comment_language: The language of the comment, as predicted by the TikTok API

    reply_comment_id: If the comment is replying to another comment, this is the ID of that comment

    The date can be compiled into a user interaction network to facilitate study of interaction dynamics. There is code to help with that here: https://github.com/networkdynamics/polar-seeds. Additional scripts for further preprocessing of this data can be found there too.

  10. d

    Data from: #Coronavirus on TikTok: User engagement with misinformation as a...

    • dataone.org
    • datasetcatalog.nlm.nih.gov
    • +3more
    Updated Jul 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jonathan Baghdadi; K. C. Coffey; Rachael Belcher; James Frisbie; Naeemul Hassan; Danielle Sim; Rena D. Malik (2025). #Coronavirus on TikTok: User engagement with misinformation as a potential threat to public health behavior [Dataset]. http://doi.org/10.5061/dryad.bvq83bkdp
    Explore at:
    Dataset updated
    Jul 22, 2025
    Dataset provided by
    Dryad Digital Repository
    Authors
    Jonathan Baghdadi; K. C. Coffey; Rachael Belcher; James Frisbie; Naeemul Hassan; Danielle Sim; Rena D. Malik
    Time period covered
    Jan 1, 2023
    Description

    Background: COVID-related misinformation is prevalent online, including on social media. The purpose of this study was to explore factors associated with user engagement with COVID-related misinformation on the social media platform, TikTok. Methods: A sample of TikTok videos associated with the hashtag #coronavirus were downloaded on September 20, 2020. Misinformation was evaluated on a scale (low, medium, high) using a codebook developed by experts in infectious diseases. Multivariable modeling was used to evaluate factors associated with number of views and presence of user comments indicating intention to change behavior. Results: 166 TikTok videos were identified. Moderate misinformation was present in 36 (22%) videos, and high-level misinformation was present in 11 (7%). After controlling for characteristics and content, videos containing moderate misinformation were less likely to generate a user response indicating intended behavior change. By contrast, videos containing high-le..., ,

  11. b

    TikTok Shop Datasets

    • brightdata.com
    .json, .csv, .xlsx
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bright Data (2025). TikTok Shop Datasets [Dataset]. https://brightdata.com/products/datasets/tiktok/shop
    Explore at:
    .json, .csv, .xlsxAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset authored and provided by
    Bright Data
    License

    https://brightdata.com/licensehttps://brightdata.com/license

    Area covered
    Worldwide
    Description

    Use our TikTok Shop dataset to extract detailed e-commerce insights, including product names, prices, discounts, seller details, product descriptions, categories, customer ratings, and reviews. You may purchase the entire dataset or a customized subset tailored to your needs. Popular use cases include trend analysis, pricing optimization, customer behavior studies, and marketing strategy refinement. The TikTok Shop dataset includes key data points: product performance metrics, user engagement, customer reviews, and more. Unlock the potential of TikTok's shopping platform today with our comprehensive dataset!

  12. Most liked TikTok videos of all time 2023

    • statista.com
    • es.statista.com
    • +1more
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department, Most liked TikTok videos of all time 2023 [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Description

    With barely 10 seconds and 61 million likes, Bella Poach's lip syncing "M to the B" by Millie B was the most engaging video on TikTok as of March 2023. Bella Poarch, who as of the beginning of 2023 was the third-most followed creator on the popular social video platform, rose to popularity as a singer and content creators since opening a TikTok account in January 2020. Second ranked "dancing in front of the bathroom mirror," by user @jamie32bsh generated almost 52 million likes between its upload time - January 2022 and March 2023.

  13. H

    Dataset for The use and impact of TikTok in the 2022 Brazilian presidential...

    • dataverse.harvard.edu
    • search.dataone.org
    Updated Jun 11, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Juliana Lima; Maria Santana; Andreiwid Correa; Kellyton Brito (2023). Dataset for The use and impact of TikTok in the 2022 Brazilian presidential election [Dataset]. http://doi.org/10.7910/DVN/9L7LEI
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 11, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Juliana Lima; Maria Santana; Andreiwid Correa; Kellyton Brito
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Brazil
    Description

    This dataset was initially used in the paper "The use and impact of TikTok in the 2022 Brazilian presidential election". It contains data from official TikTok accounts of the two main candidates running for the 2022 Brazilian presidential election, Lula (@lulaoficial) and Bolsonaro (@bolsonaromessiasjair). It was collected 576 posts of the candidates and more than 540 million interactions on these posts. Data encompass three periods of 2022: (i) Pre-campaign (Jun 30 to Aug 15); (ii) 1st round campaign (Aug 16 to Oct 1); and (iii) 2nd round campaign (Oct 2 - Oct 29). It contains two files. (i) Accounts: How many followers the candidate has, on a day-to-day basis, starting on Sept 5; and (ii) Posts and interactions: Individual data and metrics of each post, including date of the post, text, link for the post, number of plays, likes, comments and shares.

  14. Tiktok Reviews [DAILY UPDATED]

    • kaggle.com
    Updated Jul 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ashish Kumar (2025). Tiktok Reviews [DAILY UPDATED] [Dataset]. https://www.kaggle.com/datasets/ashishkumarak/tiktok-reviews-daily-updated/versions/417
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 9, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Ashish Kumar
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    The dataset primarily encompasses daily-refreshed reviews and ratings from users of the Tiktok App. Supplementary data, such as the relevancy of the reviews and the dates they were published, is also part of the dataset.

  15. f

    Data from: DataSet "Political communication on TikTok: from the feminisation...

    • figshare.com
    • portalcienciaytecnologia.jcyl.es
    • +2more
    xlsx
    Updated Nov 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Salvador Gómez García; Raquel Quevedo Redondo (2023). DataSet "Political communication on TikTok: from the feminisation of discourse to incivility expressed in emoji form" [Dataset]. http://doi.org/10.6084/m9.figshare.24599562.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Nov 21, 2023
    Dataset provided by
    figshare
    Authors
    Salvador Gómez García; Raquel Quevedo Redondo
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    In a context where there is permanent electoral campaigning, an increasing number of political communication experts are trying to unravel the resources used by government officials and their parties to influence TikTok users. From a broad perspective, the subject matter is not new, but it is topical; nonetheless, this research discloses a gap in the literature by amalgamating the recognition of idiosyncratic attributes of the feminisation of political discourse on TikTok with the analysis of the reactions (text and emojis) that the audiovisual content imbued by this trend elicits in users. The purpose is to ascertain whether the inclusive tone of the feminised rhetorical style can be extrapolated to TikTok and, if so, whether its particular characteristics mitigate expressions of incivility. To do so, the initial content posted (first seven months) on TikTok by the Spanish political platform Sumar with its leader, Yolanda Díaz, featuring prominently in most of the videos, were selected for scrutiny. A mixed methodology analysis of audiovisual content and comments showed that the anti-polarisation rhetoric and storytelling contributed to neutralising the extreme forms of flaming, although Sumar did not use a strategy tailor-made to suit TikTok.

  16. S

    The desensitized dataset of online comments about the autonomous vehicle...

    • scidb.cn
    Updated Jul 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jiang jilin (2025). The desensitized dataset of online comments about the autonomous vehicle "Apollo Go" [Dataset]. http://doi.org/10.57760/sciencedb.27758
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 10, 2025
    Dataset provided by
    Science Data Bank
    Authors
    Jiang jilin
    License

    Attribution-NoDerivs 4.0 (CC BY-ND 4.0)https://creativecommons.org/licenses/by-nd/4.0/
    License information was derived automatically

    Description

    This study systematically collected user comments related to the topic "Apollo Go" on the Douyin platform using Python-based automated web scraping technology. By developing efficient scraping scripts, a large volume of user interaction data was automatically gathered. After rigorous data cleaning and preprocessing, a dataset containing 5,985 valid comments was constructed.During the data cleaning process, all personally identifiable information was anonymized to ensure compliance and data security. Sensitive fields such as usernames and geographic locations were removed. The final dataset retains the following two fields:Time: Records the exact timestamp when each comment was posted, formatted as "2024/7/13 20:42:55", accurate to the second, facilitating subsequent time-series analysis.Comment: Contains the original user-generated text, preserved in its raw form, suitable for natural language processing tasks such as sentiment analysis and topic modeling.This dataset is well-structured and authentic, making it suitable for various applications including social media public opinion analysis, public sentiment monitoring, and research on topic dissemination pathways.

  17. Dataset of Mexican Newspapers and TV Channels on TikTok

    • zenodo.org
    Updated Apr 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Arnoldo Delgadillo-Grajeda; Arnoldo Delgadillo-Grajeda (2025). Dataset of Mexican Newspapers and TV Channels on TikTok [Dataset]. http://doi.org/10.5281/zenodo.15265061
    Explore at:
    Dataset updated
    Apr 22, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Arnoldo Delgadillo-Grajeda; Arnoldo Delgadillo-Grajeda
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset compiles the presence of traditional Mexican media—specifically 330 daily newspapers and 127 television channels—on TikTok. The dataset was developed as part of a national study on the migration of legacy media to this short video platform. The newspapers were identified using the National Registry of Print Media from the Mexican Ministry of Interior, while the television channels were drawn from the Virtual Channels List of the Federal Telecommunications Institute (IFT). Each outlet was searched manually on TikTok between June 2021 and September 2022 to verify the existence of official accounts.

  18. Z

    KuaiSAR: A Unified Search And Recommendation Dataset

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jul 25, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Leng, Dewei (2023). KuaiSAR: A Unified Search And Recommendation Dataset [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_8031219
    Explore at:
    Dataset updated
    Jul 25, 2023
    Dataset provided by
    Xu, Jun
    Niu, Yanan
    Zang, Xiaoxue
    Sun, Zhongxiang
    Song, Yang
    Leng, Dewei
    Zhang, Xiao
    Si, Zihua
    Description

    The confluence of Search and Recommendation (S&R) services is a vital aspect of online content platforms like Kuaishou and TikTok. The integration of S&R modeling is a highly intuitive approach adopted by industry practitioners. However, there is a noticeable lack of research conducted in this area within the academia, primarily due to the absence of publicly available datasets. Consequently, a substantial gap has emerged between academia and industry regarding research endeavors in this field. To bridge this gap, we introduce the first large-scale, real-world dataset KuaiSAR of integrated Search And Recommendation behaviors collected from Kuaishou, a leading short-video app in China with over 300 million daily active users. Previous research in this field has predominantly employed publicly available datasets that are semi-synthetic and simulated, with artificially fabricated search behaviors. Distinct from previous datasets, KuaiSAR records genuine user behaviors, the occurrence of each interaction within either search or recommendation service, and the users’ transitions between the two services. This work aids in joint modeling of S&R, and the utilization of search data for recommenders (and recommendation data for search engines). Additionally, due to the diverse feedback labels of user-video interactions, KuaiSAR also supports a wide range of other tasks, including intent recommendation, multi-task learning, and long sequential multi-behavior modeling etc. We believe this dataset will facilitate innovative research and enrich our understanding of S&R services integration in real-world applications.

  19. Facebook users worldwide 2017-2027

    • statista.com
    • de.statista.com
    • +1more
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stacy Jo Dixon, Facebook users worldwide 2017-2027 [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Stacy Jo Dixon
    Description

    The global number of Facebook users was forecast to continuously increase between 2023 and 2027 by in total 391 million users (+14.36 percent). After the fourth consecutive increasing year, the Facebook user base is estimated to reach 3.1 billion users and therefore a new peak in 2027. Notably, the number of Facebook users was continuously increasing over the past years. User figures, shown here regarding the platform Facebook, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period and count multiple accounts by persons only once.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).

  20. Pinterest users in the United Kingdom 2019-2028

    • statista.com
    Updated Nov 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2024). Pinterest users in the United Kingdom 2019-2028 [Dataset]. https://www.statista.com/topics/3236/social-media-usage-in-the-uk/
    Explore at:
    Dataset updated
    Nov 22, 2024
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Area covered
    United Kingdom
    Description

    The number of Pinterest users in the United Kingdom was forecast to continuously increase between 2024 and 2028 by in total 0.3 million users (+3.14 percent). After the ninth consecutive increasing year, the Pinterest user base is estimated to reach 9.88 million users and therefore a new peak in 2028. Notably, the number of Pinterest users of was continuously increasing over the past years.User figures, shown here regarding the platform pinterest, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period and count multiple accounts by persons only once.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Bright Data (2022). TikTok Datasets [Dataset]. https://brightdata.com/products/datasets/tiktok
Organization logo

TikTok Datasets

Explore at:
.json, .csv, .xlsxAvailable download formats
Dataset updated
Sep 9, 2022
Dataset authored and provided by
Bright Datahttps://brightdata.com/
License

https://brightdata.com/licensehttps://brightdata.com/license

Area covered
Worldwide
Description

Use our TikTok profiles dataset to extract business and non-business information from complete public profiles and filter by account name, followers, create date, or engagement score. You may purchase the entire dataset or a customized subset depending on your needs. Popular use cases include sentiment analysis, brand monitoring, influencer marketing, and more. The TikTok dataset includes all major data points: timestamp, account name, nickname, bio,average engagement score, creation date, is_verified,l ikes, followers, external link in bio, and more. Get your TikTok dataset today!

Search
Clear search
Close search
Google apps
Main menu