7 datasets found
  1. Number of Apple Music subscribers worldwide 2015-2024

    • statista.com
    Updated Jun 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Number of Apple Music subscribers worldwide 2015-2024 [Dataset]. https://www.statista.com/statistics/604959/number-of-apple-music-subscribers/
    Explore at:
    Dataset updated
    Jun 11, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Oct 2015 - Jun 2024
    Area covered
    Worldwide
    Description

    Estimates suggest that Apple Music had 95 million subscribers worldwide in June 2024, up by 2 million from the previous year. Launched in 2015 by U.S. tech giant Apple, Apple Music is the second largest music streaming service worldwide, competing with market leader Spotify. Spotify remains market leader While Apple Music is a popular music streaming platform, accounting for 12.6 percent of subscribers worldwide, the 2008 founded streaming service Spotify remains the market leader with a subscriber share of nearly 32 percent. Financially this meant that the Swedish company generated a global revenue of 3.7 billion euros through its Premium accounts in the fourth quarter of 2024 alone.Music streaming overall increasesOverall, music streaming has experienced significant growth over the last decade. Even if the annual growth rate is gradually declining, it still stood at over 7 percent in 2024, becoming the music industry’s main revenue driver and reaching a revenue of 20 billion U.S. dollars worldwide in 2024.

  2. Most popular music streaming services in the U.S. 2018-2019, by audience

    • statista.com
    Updated May 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Most popular music streaming services in the U.S. 2018-2019, by audience [Dataset]. https://www.statista.com/statistics/798125/most-popular-us-music-streaming-services-ranked-by-audience/
    Explore at:
    Dataset updated
    May 20, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Mar 2018 - Sep 2019
    Area covered
    United States
    Description

    The most successful music streaming service in the United States was Apple Music as of September, with the most up to date information showing that 49.5 million users accessed the platform each month. Spotify closely followed, with a similarly impressive 47.7 million monthly users.

    What is a music streaming service?

    Music streaming services provide their users with a database compiled of songs, playlists, albums and videos, where content can be accessed online, downloaded, shared, bookmarked and organized.

    The music streaming business is huge, and has sometimes been lauded as the savior of the music industry. The biggest two services are in constant competition for the monopoly of the market. Apple Music was launched in 2015, whereas Spotify has been around since 2008. Other popular streaming services include Deezer, SoundCloud and iHeartRadio.

    Do artists make a lot of money from streaming services? 

    In short, unfortunately not. Both Apple Music and Spotify have been frequently criticized for the tiny royalty payments they offer artists. Particularly for emerging talent, streaming services are far from a lucrative source of income. Bigger, established stars like Taylor Swift are more likely to regularly make a good amount of money this way. But either way, a track needs to go viral or be streamed several million times before it earns any real cash.

  3. A

    ‘K-Pop Hits Through The Years’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Nov 12, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2021). ‘K-Pop Hits Through The Years’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-k-pop-hits-through-the-years-0b70/be8b4573/?iid=032-298&v=presentation
    Explore at:
    Dataset updated
    Nov 12, 2021
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘K-Pop Hits Through The Years’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/sberj127/kpop-hits-through-the-years on 12 November 2021.

    --- Dataset description provided by original source is as follows ---

    What is the data?

    The datasets contain the top songs from the said era or year accordingly (as presented in the name of each dataset). Note that only the KPopHits90s dataset represents an era (1989-2001). Although there is a lack of easily available and reliable sources to show the actual K-Pop hits per year during the 90s, this era was still included as this time period was when the first generation of K-Pop stars appeared. Each of the other datasets represent a specific year after the 90s.

    How was it obtained?

    A song is considered to be a K-Pop hit during that era or year if it is included in the annual series of K-Pop Hits playlists, which is created officially by Apple Music. Note that for the dataset that represents the 90s, the playlist 90s K-Pop Essentials was used as the reference.

    1. These playlists were transferred into Spotify through the Tune My Music site. After transferring, the site also presented all the missing songs from each Spotify playlist when compared to the original Apple Music playlists.
      • Any data besides the names and artists of the hit songs were not directly obtained from Apple Music since these other details of songs in this music service are only available for those enrolled as members of the Apple Developer Program.
    2. The presented missing songs from each playlist was manually searched and, if found, added to the respective Spotify playlist.
      • For the songs that were found, there are three types: (1) the song by the original artist, (2) the instrumental of the original song and (3) a cover of the song. When the first type is not found, the two other types are searched and are compared to each other. The one that sounded the most like the original song (from the Apple Music playlist) is chosen as the substitute in the Spotify playlist.
      • Presented is a link containing all the missing data per playlist (when the initial Spotify playlists were compared to the original Apple Music playlists) and the action done to each one.
    3. The necessary identification details and specific audio features of each track were obtained through the use of the Spotipy library and Spotify Web API documentation.

    Why did you make this?

    As someone who has a particular curiosity to the field of data science and a genuine love for the musicality in the K-Pop scene, this data set was created to make something out of the strong interest I have for these separate subjects.

    Acknowledgements

    I would like to express my sincere gratitude to Apple Music for creating the annual K-Pop playlists, Spotify for making their API very accessible, Spotipy for making it easier to get the desired data from the Spotify Web API, Tune My Music for automating the process of transferring one's library into another service's library and, of course, all those involved in the making of these songs and artists included in these datasets for creating such high quality music and concepts digestible even for the general public.

    --- Original source retains full ownership of the source dataset ---

  4. K-Pop Hits Through The Years

    • kaggle.com
    Updated Feb 24, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sandra Angela Berjamin (2022). K-Pop Hits Through The Years [Dataset]. https://www.kaggle.com/sberj127/kpop-hits-through-the-years/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 24, 2022
    Dataset provided by
    Kaggle
    Authors
    Sandra Angela Berjamin
    Description

    What is the data?

    The datasets contain the top songs from the said era or year accordingly (as presented in the name of each dataset). Note that only the KPopHits90s dataset represents an era (1989-2001). Although there is a lack of easily available and reliable sources to show the actual K-Pop hits per year during the 90s, this era was still included as this time period was when the first generation of K-Pop stars appeared. Each of the other datasets represent a specific year after the 90s.

    How was it obtained?

    A song is considered to be a K-Pop hit during that era or year if it is included in the annual series of K-Pop Hits playlists, which is created officially by Apple Music. Note that for the dataset that represents the 90s, the playlist 90s K-Pop Essentials was used as the reference.

    1. These playlists were transferred into Spotify through the Tune My Music site. After transferring, the site also presented all the missing songs from each Spotify playlist when compared to the original Apple Music playlists.
      • Any data besides the names and artists of the hit songs were not directly obtained from Apple Music since these other details of songs in this music service are only available for those enrolled as members of the Apple Developer Program.
    2. The presented missing songs from each playlist was manually searched and, if found, added to the respective Spotify playlist.
      • For the songs that were found, there are three types: (1) the song by the original artist, (2) the instrumental of the original song and (3) a cover of the song. When the first type is not found, the two other types are searched and are compared to each other. The one that sounded the most like the original song (from the Apple Music playlist) is chosen as the substitute in the Spotify playlist.
      • Presented is a link containing all the missing data per playlist (when the initial Spotify playlists were compared to the original Apple Music playlists) and the action done to each one.
    3. The necessary identification details and specific audio features of each track were obtained through the use of the Spotipy library and Spotify Web API documentation.

    Why did you make this?

    As someone who has a particular curiosity to the field of data science and a genuine love for the musicality in the K-Pop scene, this data set was created to make something out of the strong interest I have for these separate subjects.

    Acknowledgements

    I would like to express my sincere gratitude to Apple Music for creating the annual K-Pop playlists, Spotify for making their API very accessible, Spotipy for making it easier to get the desired data from the Spotify Web API, Tune My Music for automating the process of transferring one's library into another service's library and, of course, all those involved in the making of these songs and artists included in these datasets for creating such high quality music and concepts digestible even for the general public.

  5. Audio Commons Ground Truth Data for deliverables D4.4, D4.10 and D4.12

    • zenodo.org
    • explore.openaire.eu
    Updated Jan 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Frederic Font; Frederic Font (2020). Audio Commons Ground Truth Data for deliverables D4.4, D4.10 and D4.12 [Dataset]. http://doi.org/10.5281/zenodo.2545728
    Explore at:
    Dataset updated
    Jan 24, 2020
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Frederic Font; Frederic Font
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset contains the ground truth data used to evaluate the musical pitch, tempo and key estimation algorithms developed during the AudioCommons H2020 EU project and which are part of the Audio Commons Audio Extractor tool. It also includes ground truth information for the single-eventness audio descriptor also developed for the same tool.

    This ground truth data has been used to generate the following documents:

    • Deliverable D4.4: Evaluation report on the first prototype tool for the automatic semantic description of music samples
    • Deliverable D4.10: Evaluation report on the second prototype tool for the automatic semantic description of music samples
    • Deliverable D4.12: Release of tool for the automatic semantic description of music samples

    All these documents are available in the materials section of the AudioCommons website.

    All ground truth data in this repository is provided in the form of CSV files. Each CSV file corresponds to one of the individual datasets used in one or more evaluation tasks of the aforementioned deliverables. This repository does not include the audio files of each individual dataset, but includes references to the audio files. The following paragraphs describe the structure of the CSV files and give some notes about how to obtain the audio files in case these would be needed.


    Structure of the CSV files

    All CSV files in this repository (with the sole exception of SINGLE EVENT - Ground Truth.csv) feature the following 5 columns:

    1. Audio reference: reference to the corresponding audio file. This will either be a string withe the filename, or the Freesound ID (for one dataset based on Freesound content). See below for details about how to obtain those files.
    2. Audio reference type: will be one of Filename or Freesound ID, and specifies how the previous column should be interpreted.
    3. Key annotation: tonality information as a string with the form "RootNote minor/major". Audio files with no ground truth annotation for tonality are left blank. Ground truth annotations are parsed from the original data source as described in the text of deliverables D4.4 and D4.10.
    4. Tempo annotation: tempo information as an integer representing beats per minute. Audio files with no ground truth annotation for tempo are left blank. Ground truth annotations are parsed from the original data source as described in the text of deliverables D4.4 and D4.10. Note that integer values are used here because we only have tempo annotations for music loops which typically only feature integer tempo values.
    5. Pitch annotation: pitch information as an integer representing the MIDI note number corresponding to annotated pitch's frequency. Audio files with no ground truth pitch for tempo are left blank. Ground truth annotations are parsed from the original data source as described in the text of deliverables D4.4 and D4.10.

    The remaining CSV file, SINGLE EVENT - Ground Truth.csv, has only the following 2 columns:

    • Freesound ID: sound ID used in Freesound to identify the audio clip.
    • Single Event: boolean indicating whether the corresponding sound is considered to be a single event or not. Single event annotations were collected by the authors of the deliverables as described in deliverable D4.10.

    How to get the audio data

    In this section we provide some notes about how to obtain the audio files corresponding to the ground truth annotations provided here. Note that due to licensing restrictions we are not allowed to re-distribute the audio data corresponding to most of these ground truth annotations.

    • Apple Loops (APPL): This dataset includes some of the music loops included in Apple's music software such as Logic or GarageBand. Access to these loops requires owning a license for the software. Detailed instructions about how to set up this dataset are provided here.
    • Carlos Vaquero Instruments Dataset (CVAQ): This dataset includes single instrument recordings carried out by Carlos Vaquero as part of this master thesis. Sounds are available as Freesound packs and can be downloaded at this page: https://freesound.org/people/Carlos_Vaquero/packs
    • Freesound Loops 4k (FSL4): This dataset set includes a selection of music loops taken from Freesound. Detailed instructions about how to set up this dataset are provided here.
    • Giant Steps Key Dataset (GSKY): This dataset includes a selection of previews from Beatport annotated by key. Audio and original annotations available here.
    • Good-sounds Dataset (GSND): This dataset contains monophonic recordings of instrument samples. Full description, original annotations and audio are available here.
    • University of IOWA Musical Instrument Samples (IOWA): This dataset was created by the Electronic Music Studios of the University of IOWA and contains recordings of instrument samples. The dataset is available upon request by visiting this website.
    • Mixcraft Loops (MIXL): This dataset includes some of the music loops included in Acoustica's Mixcraft music software. Access to these loops requires owning a license for the software. Detailed instructions about how to set up this dataset are provided here.
    • NSynth Dataset Test and Validation sets (NSYT and NSYV): NSynth is a large-scale and high-quality dataset of annotated musical notes built with synthesized sounds by Google's Magenta team. Full dataset description including original annotations and audio files is available here.
    • Philarmonia Orchestra Sound Samples Dataset (PHIL): This includes thousands of free, downloadable sound samples specially recorded by Philharmonia Orchestra players. Audio files are freely downloadable from the philarmonia orchestra website.
    • Freesound Single Events Dataset (SINGLE EVENT): This includes a selection of Freesound audio clips representing audio signals containing either a single audio event or multiple ones. Original audio files can be retrieved by downloading individual audio clips from Freesound using the ID identifier provided in the CSV file. A similar procedure to that described here could be followed.
  6. 🏆Uber, FB, Waze, etc US Apple App Store Reviews

    • kaggle.com
    Updated Nov 19, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    BwandoWando (2023). 🏆Uber, FB, Waze, etc US Apple App Store Reviews [Dataset]. http://doi.org/10.34740/kaggle/ds/4023539
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 19, 2023
    Dataset provided by
    Kaggle
    Authors
    BwandoWando
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    App Reviews

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F1842206%2Fd4a6033b6bd31af45d5175d02e697934%2FAPPLEAPPS2.png?generation=1700357122842963&alt=media" alt="">

    1. uber-request-a-ride-us- 73787 rows
    2. waze-navigation-live-traffic-us- 26260 rows
    3. facebook-us- 24200 rows
    4. spotify-music-and-podcasts-us- 15580 rows
    5. netflix-us- 11760 rows
    6. pinterest-us- 10860 rows
    7. X-us- 8160 rows
    8. tiktok-us- 2542 rows
    9. tinder-dating-chat-friends-us- 1060 rows
    10. instagram-us- 300 rows

    These reviews are from Apple App Store

    Usage

    This dataset should paint a good picture on what is the public's perception of the apps over the years. Using this dataset, we can do the following

    1. Extract sentiments and trends
    2. Identify which version of an app had the most positive feedback, the worst.
    3. Use topic modelling to identify the pain points of the application.

    (AND MANY MORE!)

    Note

    Images generated using Bing Image Generator

  7. Data from: HTTPS traffic classification

    • kaggle.com
    Updated Mar 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Đinh Ngọc Ân (2024). HTTPS traffic classification [Dataset]. https://www.kaggle.com/datasets/inhngcn/https-traffic-classification/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 11, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Đinh Ngọc Ân
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    The people from Czech are publishing a dataset for the HTTPS traffic classification.

    Since the data were captured mainly in the real backbone network, they omitted IP addresses and ports. The datasets consist of calculated from bidirectional flows exported with flow probe Ipifixprobe. This exporter can export a sequence of packet lengths and times and a sequence of packet bursts and time. For more information, please visit ipfixprobe repository (Ipifixprobe).

    During research, they divided HTTPS into five categories: L -- Live Video Streaming, P -- Video Player, M -- Music Player, U -- File Upload, D -- File Download, W -- Website, and other traffic.

    They have chosen the service representatives known for particular traffic types based on the Alexa Top 1M list and Moz's list of the most popular 500 websites for each category. They also used several popular websites that primarily focus on the audience in Czech. The identified traffic classes and their representatives are provided below:

    Live Video Stream Twitch, Czech TV, YouTube Live Video Player DailyMotion, Stream.cz, Vimeo, YouTube Music Player AppleMusic, Spotify, SoundCloud File Upload/Download FileSender, OwnCloud, OneDrive, Google Drive Website and Other Traffic Websites from Alexa Top 1M list

  8. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Number of Apple Music subscribers worldwide 2015-2024 [Dataset]. https://www.statista.com/statistics/604959/number-of-apple-music-subscribers/
Organization logo

Number of Apple Music subscribers worldwide 2015-2024

Explore at:
21 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jun 11, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
Oct 2015 - Jun 2024
Area covered
Worldwide
Description

Estimates suggest that Apple Music had 95 million subscribers worldwide in June 2024, up by 2 million from the previous year. Launched in 2015 by U.S. tech giant Apple, Apple Music is the second largest music streaming service worldwide, competing with market leader Spotify. Spotify remains market leader While Apple Music is a popular music streaming platform, accounting for 12.6 percent of subscribers worldwide, the 2008 founded streaming service Spotify remains the market leader with a subscriber share of nearly 32 percent. Financially this meant that the Swedish company generated a global revenue of 3.7 billion euros through its Premium accounts in the fourth quarter of 2024 alone.Music streaming overall increasesOverall, music streaming has experienced significant growth over the last decade. Even if the annual growth rate is gradually declining, it still stood at over 7 percent in 2024, becoming the music industry’s main revenue driver and reaching a revenue of 20 billion U.S. dollars worldwide in 2024.

Search
Clear search
Close search
Google apps
Main menu