The number of Facebook users in the United States was forecast to continuously increase between 2024 and 2028 by in total 12.6 million users (+5.04 percent). After the ninth consecutive increasing year, the Facebook user base is estimated to reach 262.8 million users and therefore a new peak in 2028. Notably, the number of Facebook users of was continuously increasing over the past years.User figures, shown here regarding the platform facebook, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period and count multiple accounts by persons only once.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Facebook is fast approaching 3 billion monthly active users. That’s about 36% of the world’s entire population that log in and use Facebook at least once a month.
The number of Facebook users in Indonesia was forecast to continuously decrease between 2024 and 2028 by in total 20 million users (-11.04 percent). According to this forecast, in 2028, the Facebook user base will have decreased for the fifth consecutive year to 161.16 million users. User figures, shown here regarding the platform facebook, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period and count multiple accounts by persons only once.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find further information concerning Thailand and Singapore.
http://www.gnu.org/licenses/old-licenses/gpl-2.0.en.htmlhttp://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html
Facebook is becoming an essential tool for more than just family and friends. Discover how Cheltenham Township (USA), a diverse community just outside of Philadelphia, deals with major issues such as the Bill Cosby trial, everyday traffic issues, sewer I/I problems and lost cats and dogs. And yes, theft.
Communities work when they're connected and exchanging information. What and who are the essential forces making a positive impact, and when and how do conversational threads get directed or misdirected?
Use Any Facebook Public Group
You can leverage the examples here for any public Facebook group. For an example of the source code used to collect this data, and a quick start docker image, take a look at the following project: facebook-group-scrape.
Data Sources
There are 4 csv files in the dataset, with data from the following 5 public Facebook groups:
post.csv
These are the main posts you will see on the page. It might help to take a quick look at the page. Commas in the msg field have been replaced with {COMMA}, and apostrophes have been replaced with {APOST}.
comment.csv
These are comments to the main post. Note, Facebook postings have comments, and comments on comments.
like.csv
These are likes and responses. The two keys in this file (pid,cid) will join to post and comment respectively.
member.csv
These are all the members in the group. Some members never, or rarely, post or comment. You may find multiple entries in this table for the same person. The name of the individual never changes, but they change their profile picture. Each profile picture change is captured in this table. Facebook gives users a new id in this table when they change their profile picture.
This statistical dataset contains estimates on the number of active online Facebook users living outside of their country of origin within the European Union. The dataset includes information on Facebook users' age, gender, country of residence, and country of previous residence. The data is divided in the number of Monthly Active Users and Daily Active Users. The data was collected through standard CSV format via an advertising API platform by using an R Studio code, and the data collection was conducted twice a month from January to November 2021. The dataset was originally published in DiVA and moved to SND in 2024. Detta statistiska dataset innehåller uppskattningar av antalet aktiva Facebook-användare online som bor utanför sitt ursprungsland inom Europeiska unionen. Se engelsk beskrivning för mer information. Datasetet har ursprungligen publicerats i DiVA och flyttades över till SND 2024.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This database contains regional estimates of Facebook users based on data from the Facebook Marketing API. It includes information on the number of individuals aged 18 and older who have accessed Facebook in the past month, with data separated by region. These estimates are intended for trend identification and triangulation purposes and are not designed to match official census data or other government sources.
This data can be used as a proxy of internet access.
It should be noted that there could be duplicates across different regions, and the data is anonymized by Meta.
The global number of Facebook users was forecast to continuously increase between 2023 and 2027 by in total 391 million users (+14.36 percent). After the fourth consecutive increasing year, the Facebook user base is estimated to reach 3.1 billion users and therefore a new peak in 2027. Notably, the number of Facebook users was continuously increasing over the past years.User figures, shown here regarding the platform Facebook, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period and count multiple accounts by persons only once.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
The LiLaH-HAG dataset (HAG is short for hate-age-gender) consists of metadata on Facebook comments to Facebook posts of mainstream media in Great Britain, Flanders, Slovenia and Croatia. The metadata available in the dataset are the hatefulness of the comment (0 is acceptable, 1 is hateful), age of the commenter (0-25, 26-30, 36-65, 65-), gender of the commenter (M or F), and the language in which the comment was written (EN, NL, SL, HR).
The hatefulness of the comment was assigned by multiple well-trained annotators by reading comments in the order of appearance in a discussion thread, while the age and gender variables were estimated from the Facebook profile of a specific user by a single annotator.
This statistical dataset contains estimates on the number of active online Facebook users living outside of their country of origin within the European Union. The dataset includes information on Facebook users' age, gender, country of residence, and country of previous residence. The data is divided in the number of Monthly Active Users and Daily Active Users. The data was collected through standard CSV format via an advertising API platform by using an R Studio code, and the data collection was conducted twice a month from January to November 2021.
The dataset was originally published in DiVA and moved to SND in 2024.
The number of Facebook users in Malaysia was forecast to continuously decrease between 2024 and 2028 by in total 2.2 million users (-9.36 percent). According to this forecast, in 2028, the Facebook user base will have decreased for the sixth consecutive year to 21.33 million users. User figures, shown here regarding the platform facebook, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period and count multiple accounts by persons only once.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find further information concerning Indonesia and Singapore.
The metrics in this dataset measure users who viewed posts with links to civic news URLs. The dataset contains URL-level metrics from Facebook activity data for adult U.S. monthly active users, aggregated over the study period. Includes content views, audience size, content attributes, user attributes.
This dataset is a product generated to track the change of migrant numbers from Ukraine since the war began in 2023-02-05.This data provides the percent change of population detected from Facebook users compared to a pre-war baseline for the same administrative unit. For more information about the Facebook data, please refer to the Population Maps page from Data for Good at Meta.How was the pre-event baseline calculated?The pre-war baseline was calculated as an average over a 90-day time window prior to the earthquake event (2023-02-05).Key metricsPercent change between current and baseline. Change in percentage between the trackable population by Facebook of the current date and the baseline period.Baseline FB users. Anonymized and aggregated Facebook users that are trackable (consent to be included in the dataset) of 90 days before the event.
The metrics in this dataset measure users who potentially viewed posts with links to civic news URLs that were shared by one of their connections. The dataset contains URL-level metrics from Facebook activity data for adult U.S. monthly active users, aggregated over the study period. Includes potential audience size, content attributes, user attributes, political interest.
The number of Facebook users in India was forecast to continuously increase between 2024 and 2028 by in total 59.2 million users (+8.7 percent). After the ninth consecutive increasing year, the Facebook user base is estimated to reach 739.66 million users and therefore a new peak in 2028. Notably, the number of Facebook users of was continuously increasing over the past years.User figures, shown here regarding the platform facebook, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period and count multiple accounts by persons only once.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of Facebook users in countries like Nepal and Pakistan.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Purpose For the purpose of informing tobacco intervention programs, this dataset was created and used to explore how online social networks of smokers differed from those of nonsmokers. The study was a secondary analysis of data collected as part of a randomized control trial conducted within Facebook. (See "Other References" in "Metadata" for parent study information.) Basic description of 4 anonymized data files of study participants. fbr_friends: Anonymized Facebook friends networks, basic ego demographics, basic ego social media activity fbr_family: Anonymized Facebook family networks, basic ego demographics, basic ego social media activity fbr_photos: Anonymized Facebook photo networks, basic ego demographics, basic ego social media activity fbr_groups: Anonymized Facebook group networks, basic ego demographics, basic ego social media activity Each network comprises the ego, the ego's first degree connections, and the (second degree) connections between the ego's friends. Missing data and users who did not have friend, family, photo, or group networks were cleaned from the data beforehand. Each data file contains the following columns of data, taken with participant knowledge and consent participant_id: Nonidentifying ids assigned to different study participants. is_smoker: Binary value (0,1) that takes on the value 1 if participant was a smoker and 0 otherwise. gender: One of three categories: male, female, or blank, which signified Other (different from missing data). country: One of four categories: Canada (ca), US (us), Mexico (mx), or Other (xx). likes_count: Numeric data indicating number of Facebook likes the participant had made up to the date the data was collected. wall_count: Numeric data indicating number of Facebook wall posts the participant had made up to the date the data was collected. t_count_page_views: Numeric data indicating number of pages participant had visited in the UbiQUITous app up to the date the data was collected. yearsOld: Numeric data indicating age in years of the participant; right censored at 90 years for data anonymity. vertices: Number of people in the participant's network. edges: Number of connections between people in the network. density: The portion of potential connections in a network that are actual connections; a network-level metric; calculated after removing ego and isolates. mean_betweenness_centrality: An average of the relative importance of all individuals within their own network; a network-level metric; calculated after removing ego and isolates. transitivity: The extent to which the relationship between two nodes in a network that are connected by an edge is transitive (calculated as the number of triads divided by all possible connections); a network-level metric; calculated after removing ego and isolates. mean_closeness: Average of how closely associated members are to one another; a network-level metric; calculated after removing ego and isolates. isolates2: Number of individuals with no connections other than to the ego; a network-level metric. diameter3: Maximum degree of separation between any two individuals in the network; a network-level metric; calculated after removing ego and isolates. clusters3: Number of subnetworks; a network-level metric; calculated after removing ego and isolates. communities3: Number of groups, sorted to increase dense connections within the group and decrease sparse connections outside it (i.e., to maximize modularity); a network-level metric; calculated after removing ego and isolates. modularity3: The strength of division of a network into communities (calculated as the fraction of ties between community members in excess of the expected number of ties within communities if ties were random); a network-level metric. Detailed information on network metrics in the associated manuscript: "An exploration of the Facebook social networks of smokers and non-smokers" by Fu, L, Jacobs MA, Brookover J, Valente TW, Cobb NK, and Graham AL.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The average Twitter user spends 5.1 hours per month on the platform.
Facebook’s Survey on Gender Equality at Home generates a global snapshot of women and men’s access to resources, their time spent on unpaid care work, and their attitudes about equality. This survey covers topics about gender dynamics and norms, unpaid caregiving, and life during the COVID-19 pandemic. Aggregated data is available publicly on Humanitarian Data Exchange (HDX). De-identified microdata is also available to eligible nonprofits and universities through Facebook’s Data for Good (DFG) program. For more information, please email dataforgood@fb.com.
This survey is fielded once a year in over 200 countries and 60 languages. The data can help researchers track trends in gender equality and progress on the Sustainable Development Goals.
The survey was fielded to active Facebook users.
Sample survey data [ssd]
Respondents were sampled across seven regions: - East Asia and Pacific; Europe and Central Asia - Latin America and Caribbean - Middle East and North Africa - North America - Sub-Saharan Africa - South Asia
For the purposes of this report, responses have been aggregated up to the regional level; these regional estimates form the basis of this report and its associated products (Regional Briefs). In order to ensure respondent confidentiality, these estimates are based on responses where a sufficient number of people responded to each question and thus where confidentiality can be assured. This results in a sample of 461,748 respondents.
The sampling frame for this survey is the global database of Facebook users who were active on the platform at least once over the past 28 days, which offers a number of advantages: It allows for the design, implementation, and launch of a survey in a timely manner. Large sample sizes allow for more questions to be asked through random assignment of modules, avoiding respondent fatigue. Samples may be drawn from diverse segments of the online population. Knowledge of the overall sampling frame allowed for more rigorous probabilistic sampling techniques and non-response adjustments than is typical for online and phone surveys
Internet [int]
The survey includes a total of 75 questions, split across into the following sections: - Basic demographics and gender norms - Decision making and resource allocation across household members - Unpaid caregiving - Additional household demographics and COVID-19 impact - Optional questions for special groups (e.g. students, business owners, the employed, and the unemployed)
Questions were developed collaboratively by a team of economists and gender experts from the World Bank, UN Women, Equal Measures 2030, and Ladysmith. Some of the questions have been borrowed from other surveys that employ alternative modes of administration (e.g., face-to-face, telephone surveys, etc.); this allows for comparability and identification of potential gaps and biases inherent to Facebook and other online survey platforms. As such, the survey also generates methodological insights that are useful to researchers undertaking alternative modes of data collection during the COVID-19 era.
In order to avoid “survey fatigue,” wherein respondents begin to disengage from the survey content and responses become less reliable, each respondent was only asked to answer a subset of questions. Specifically, each respondent saw a maximum of 30 questions, comprising demographics (asked of all respondents) and a set of additional questions randomly and purposely allocated to them.
Response rates to online surveys vary widely depending on a number of factors including survey length, region, strength of the relationship with invitees, incentive mechanisms, invite copy, interest of respondents in the topic and survey design.
Any survey data is prone to several forms of error and biases that need to be considered to understand how closely the results reflect the intended population. In particular, the following components of the total survey error are noteworthy:
Sampling error is a natural characteristic of every survey based on samples and reflects the uncertainty in any survey result that is attributable to the fact that not the whole population is surveyed.
Other factors beyond sampling error that contribute to such potential differences are frame or coverage error and nonresponse error.
Survey Limitations The survey only captures respondents who: (1) have access to the Internet (2) are Facebook users (3) opt to take this survey through the Facebook platform. Knowledge of the overall demographics of the online population in each region allows for calibration such that estimates are representative at this level. However, this means the results only tell us something about the online population in each region, not the overall population. As such, the survey cannot generate global estimates or meaningful comparisons across countries and regions, given the heterogeneity in internet connectivity across countries. Estimates have only been generated for respondents who gave their gender as male or female. The survey included an “other” option but very few respondents selected it, making it impossible to generate meaningful estimates for non-binary populations. It is important to note that the survey was not designed to paint a comprehensive picture of household dynamics but rather to shed light on respondents’ reported experiences and roles within households
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The data presented in this paper is used to examine the behavioral factors that influence the preferences of foods in Indonesia, and Indonesian audiences’ segmentation behind those preferences, provided by social media data. We collected the data through an online platform by performing a query search on Facebook Audience Insights Interests. The keywords that we use in the question quest are based on the United Nations Food and Agriculture Organisation (FAO) Food Balance Sheet (FBS) which is retrieved from FAOStat in May 2020. The data was gathered between 15 May and 2 July 2020. With a sample size of 100-150 million viewers or about 36.95 per cent-55.43 per cent of Indonesia 's 2019 population, we limited our sample to Indonesia. The dataset is made up of ten tables that can be separately analyzed. For each table, we carry out exploratory data analysis (EDA) to provide more insights. Such data could be of interest to various fields, including food scientists, government and policymakers, data scientists/analysts, and marketers. This data could also be the complementary source for the scarcity of food survey data from the government, particularly the behavioral aspects.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Social mobilization is a process that enlists a large number of people to achieve a goal within a limited time, especially through the use of social media. There is increasing interest in understanding the factors that affect the speed of social mobilization. Based on the Langley Knights competition data set, we analyzed the differences in mobilization speed between users of Facebook and e-mail. We include other factors that may influence mobilization speed (gender, age, timing, and homophily of information source) in our model as control variables in order to isolate the effect of such factors. We show that, in this experiment, although more people used e-mail to recruit, the mobilization speed of Facebook users was faster than that of those that used e-mail. We were also able to measure and show that the mobilization speed for Facebook users was on average seven times faster compared to e-mail before controlling for other factors. After controlling for other factors, we show that Facebook users were 1.84 times more likely to register compared to e-mail users in the next period if they have not done so at any point in time. This finding could provide useful insights for future social mobilization efforts.
The main goal of the DFS data collection project is to map the online friendship networks of Dutch adolescents. Specifically, the Facebook networks of Dutch adolescents participating in the offline CILS4EU and CILSNL data collection are mapped. Facebook is an American social networking site (SNS) where users create an online profile, provide personal information on this profile and invite other users to become connected as friends. With these connections, users can interact via personal messaging, post directly on others’ personal profile pages and react to others’ posts. During the time of our data collection, in 2014, Facebook was the largest SNS of the world with approximately 1.3 billion members. The DFS data are collected to study the relationship between offline face-to-face contacts, and online friendship network on Facebook. To this purpose we coded variables that show respondents’ Facebook friends’ gender, numbers of friends, privacy settings and ethnicity.
The number of Facebook users in the United States was forecast to continuously increase between 2024 and 2028 by in total 12.6 million users (+5.04 percent). After the ninth consecutive increasing year, the Facebook user base is estimated to reach 262.8 million users and therefore a new peak in 2028. Notably, the number of Facebook users of was continuously increasing over the past years.User figures, shown here regarding the platform facebook, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period and count multiple accounts by persons only once.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).