Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Advertising makes up 89% of its total revenue and data licensing makes up about 11%.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The US has historically been the target country for Twitter since its launch in 2006. This is the full breakdown of Twitter users by country.
As of December 2022, X/Twitter's audience accounted for over *** million monthly active users worldwide. This figure was projected to ******** to approximately *** million by 2024, a ******* of around **** percent compared to 2022.
https://www.gesis.org/en/institute/data-usage-termshttps://www.gesis.org/en/institute/data-usage-terms
At the end of October 2022, Elon Musk concluded his acquisition of Twitter. In the weeks and months before that, several questions were publicly discussed that were not only of interest to the platform's future buyers, but also of high relevance to the Computational Social Science research community. For example, how many active users does the platform have? What percentage of accounts on the site are bots? And, what are the dominating topics and sub-topical spheres on the platform? In a globally coordinated effort of 80 scholars to shed light on these questions, and to offer a dataset that will equip other researchers to do the same, we have collected 375 million tweets published within a 24-hour time period starting on September 21, 2022. To the best of our knowledge, this is the first complete 24-hour Twitter dataset that is available for the research community. With it, the present work aims to accomplish two goals. First, we seek to answer the aforementioned questions and provide descriptive metrics about Twitter that can serve as references for other researchers. Second, we create a baseline dataset for future research that can be used to study the potential impact of the platform's ownership change.
https://brightdata.com/licensehttps://brightdata.com/license
Utilize our Twitter dataset for diverse applications to enrich business strategies and market insights. Analyzing this dataset provides a comprehensive understanding of social media trends, empowering organizations to refine their communication and marketing strategies. Access the entire dataset or customize a subset to fit your needs. Popular use cases include market research to identify trending topics and hashtags, AI training by reviewing factors such as tweet content, retweets, and user interactions for predictive analytics, and trend forecasting by examining correlations between specific themes and user engagement to uncover emerging social media preferences.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The following data-set consists of very simple twitter analytics data, including text, user information, confidence, profile dates etc.
Basically the dataset is self explanatory and the objective is basically to classify which gender is more likely to commit typos on their tweets.
Since this dataset contains pretty simple and easy-to-deal-with features, I hope many emerging NLP enthusiasts who have been developing just basic linear/naive models until now, can explore how to apply these techniques to real word tweet data.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
General Description
This dataset comprises 4,038 tweets in Spanish, related to discussions about artificial intelligence (AI), and was created and utilized in the publication "Enhancing Sentiment Analysis on Social Media: Integrating Text and Metadata for Refined Insights," (10.1109/IE61493.2024.10599899) presented at the 20th International Conference on Intelligent Environments. It is designed to support research on public perception, sentiment, and engagement with AI topics on social media from a Spanish-speaking perspective. Each entry includes detailed annotations covering sentiment analysis, user engagement metrics, and user profile characteristics, among others.
Data Collection Method
Tweets were gathered through the Twitter API v1.1 by targeting keywords and hashtags associated with artificial intelligence, focusing specifically on content in Spanish. The dataset captures a wide array of discussions, offering a holistic view of the Spanish-speaking public's sentiment towards AI.
Dataset Content
ID: A unique identifier for each tweet.
text: The textual content of the tweet. It is a string with a maximum allowed length of 280 characters.
polarity: The tweet's sentiment polarity (e.g., Positive, Negative, Neutral).
favorite_count: Indicates how many times the tweet has been liked by Twitter users. It is a non-negative integer.
retweet_count: The number of times this tweet has been retweeted. It is a non-negative integer.
user_verified: When true, indicates that the user has a verified account, which helps the public recognize the authenticity of accounts of public interest. It is a boolean data type with two allowed values: True or False.
user_default_profile: When true, indicates that the user has not altered the theme or background of their user profile. It is a boolean data type with two allowed values: True or False.
user_has_extended_profile: When true, indicates that the user has an extended profile. An extended profile on Twitter allows users to provide more detailed information about themselves, such as an extended biography, a header image, details about their location, website, and other additional data. It is a boolean data type with two allowed values: True or False.
user_followers_count: The current number of followers the account has. It is a non-negative integer.
user_friends_count: The number of users that the account is following. It is a non-negative integer.
user_favourites_count: The number of tweets this user has liked since the account was created. It is a non-negative integer.
user_statuses_count: The number of tweets (including retweets) posted by the user. It is a non-negative integer.
user_protected: When true, indicates that this user has chosen to protect their tweets, meaning their tweets are not publicly visible without their permission. It is a boolean data type with two allowed values: True or False.
user_is_translator: When true, indicates that the user posting the tweet is a verified translator on Twitter. This means they have been recognized and validated by the platform as translators of content in different languages. It is a boolean data type with two allowed values: True or False.
Cite as
Guerrero-Contreras, G., Balderas-Díaz, S., Serrano-Fernández, A., & Muñoz, A. (2024, June). Enhancing Sentiment Analysis on Social Media: Integrating Text and Metadata for Refined Insights. In 2024 International Conference on Intelligent Environments (IE) (pp. 62-69). IEEE.
Potential Use Cases
This dataset is aimed at academic researchers and practitioners with interests in:
Sentiment analysis and natural language processing (NLP) with a focus on AI discussions in the Spanish language.
Social media analysis on public engagement and perception of artificial intelligence among Spanish speakers.
Exploring correlations between user engagement metrics and sentiment in discussions about AI.
Data Format and File Type
The dataset is provided in CSV format, ensuring compatibility with a wide range of data analysis tools and programming environments.
License
The dataset is available under the Creative Commons Attribution 4.0 International (CC BY 4.0) license, permitting sharing, copying, distribution, transmission, and adaptation of the work for any purpose, including commercial, provided proper attribution is given.
Author: Víctor Yeste. Universitat Politècnica de Valencia.The object of this study is the design of a cybermetric methodology whose objectives are to measure the success of the content published in online media and the possible prediction of the selected success variables.In this case, due to the need to integrate data from two separate areas, such as web publishing and the analysis of their shares and related topics on Twitter, has opted for programming as you access both the Google Analytics v4 reporting API and Twitter Standard API, always respecting the limits of these.The website analyzed is hellofriki.com. It is an online media whose primary intention is to solve the need for information on some topics that provide daily a vast number of news in the form of news, as well as the possibility of analysis, reports, interviews, and many other information formats. All these contents are under the scope of the sections of cinema, series, video games, literature, and comics.This dataset has contributed to the elaboration of the PhD Thesis:Yeste Moreno, VM. (2021). Diseño de una metodología cibermétrica de cálculo del éxito para la optimización de contenidos web [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/176009Data have been obtained from each last-minute news article published online according to the indicators described in the doctoral thesis. All related data are stored in a database, divided into the following tables:tesis_followers: User ID list of media account followers.tesis_hometimeline: data from tweets posted by the media account sharing breaking news from the web.status_id: Tweet IDcreated_at: date of publicationtext: content of the tweetpath: URL extracted after processing the shortened URL in textpost_shared: Article ID in WordPress that is being sharedretweet_count: number of retweetsfavorite_count: number of favoritestesis_hometimeline_other: data from tweets posted by the media account that do not share breaking news from the web. Other typologies, automatic Facebook shares, custom tweets without link to an article, etc. With the same fields as tesis_hometimeline.tesis_posts: data of articles published by the web and processed for some analysis.stats_id: Analysis IDpost_id: Article ID in WordPresspost_date: article publication date in WordPresspost_title: title of the articlepath: URL of the article in the middle webtags: Tags ID or WordPress tags related to the articleuniquepageviews: unique page viewsentrancerate: input ratioavgtimeonpage: average visit timeexitrate: output ratiopageviewspersession: page views per sessionadsense_adunitsviewed: number of ads viewed by usersadsense_viewableimpressionpercent: ad display ratioadsense_ctr: ad click ratioadsense_ecpm: estimated ad revenue per 1000 page viewstesis_stats: data from a particular analysis, performed at each published breaking news item. Fields with statistical values can be computed from the data in the other tables, but total and average calculations are saved for faster and easier further processing.id: ID of the analysisphase: phase of the thesis in which analysis has been carried out (right now all are 1)time: "0" if at the time of publication, "1" if 14 days laterstart_date: date and time of measurement on the day of publicationend_date: date and time when the measurement is made 14 days latermain_post_id: ID of the published article to be analysedmain_post_theme: Main section of the published article to analyzesuperheroes_theme: "1" if about superheroes, "0" if nottrailer_theme: "1" if trailer, "0" if notname: empty field, possibility to add a custom name manuallynotes: empty field, possibility to add personalized notes manually, as if some tag has been removed manually for being considered too generic, despite the fact that the editor put itnum_articles: number of articles analysednum_articles_with_traffic: number of articles analysed with traffic (which will be taken into account for traffic analysis)num_articles_with_tw_data: number of articles with data from when they were shared on the media’s Twitter accountnum_terms: number of terms analyzeduniquepageviews_total: total page viewsuniquepageviews_mean: average page viewsentrancerate_mean: average input ratioavgtimeonpage_mean: average duration of visitsexitrate_mean: average output ratiopageviewspersession_mean: average page views per sessiontotal: total of ads viewedadsense_adunitsviewed_mean: average of ads viewedadsense_viewableimpressionpercent_mean: average ad display ratioadsense_ctr_mean: average ad click ratioadsense_ecpm_mean: estimated ad revenue per 1000 page viewsTotal: total incomeretweet_count_mean: average incomefavorite_count_total: total of favoritesfavorite_count_mean: average of favoritesterms_ini_num_tweets: total tweets on the terms on the day of publicationterms_ini_retweet_count_total: total retweets on the terms on the day of publicationterms_ini_retweet_count_mean: average retweets on the terms on the day of publicationterms_ini_favorite_count_total: total of favorites on the terms on the day of publicationterms_ini_favorite_count_mean: average of favorites on the terms on the day of publicationterms_ini_followers_talking_rate: ratio of followers of the media Twitter account who have recently published a tweet talking about the terms on the day of publicationterms_ini_user_num_followers_mean: average followers of users who have spoken of the terms on the day of publicationterms_ini_user_num_tweets_mean: average number of tweets published by users who spoke about the terms on the day of publicationterms_ini_user_age_mean: average age in days of users who have spoken of the terms on the day of publicationterms_ini_ur_inclusion_rate: URL inclusion ratio of tweets talking about terms on the day of publicationterms_end_num_tweets: total tweets on terms 14 days after publicationterms_ini_retweet_count_total: total retweets on terms 14 days after publicationterms_ini_retweet_count_mean: average retweets on terms 14 days after publicationterms_ini_favorite_count_total: total bookmarks on terms 14 days after publicationterms_ini_favorite_count_mean: average of favorites on terms 14 days after publicationterms_ini_followers_talking_rate: ratio of media Twitter account followers who have recently posted a tweet talking about the terms 14 days after publicationterms_ini_user_num_followers_mean: average followers of users who have spoken of the terms 14 days after publicationterms_ini_user_num_tweets_mean: average number of tweets published by users who have spoken about the terms 14 days after publicationterms_ini_user_age_mean: the average age in days of users who have spoken of the terms 14 days after publicationterms_ini_ur_inclusion_rate: URL inclusion ratio of tweets talking about terms 14 days after publication.tesis_terms: data of the terms (tags) related to the processed articles.stats_id: Analysis IDtime: "0" if at the time of publication, "1" if 14 days laterterm_id: Term ID (tag) in WordPressname: Name of the termslug: URL of the termnum_tweets: number of tweetsretweet_count_total: total retweetsretweet_count_mean: average retweetsfavorite_count_total: total of favoritesfavorite_count_mean: average of favoritesfollowers_talking_rate: ratio of followers of the media Twitter account who have recently published a tweet talking about the termuser_num_followers_mean: average followers of users who were talking about the termuser_num_tweets_mean: average number of tweets published by users who were talking about the termuser_age_mean: average age in days of users who were talking about the termurl_inclusion_rate: URL inclusion ratio
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
These Twitter user statistics will give you the complete story of where Twitter is at today and what the future looks like for the social media company.
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
This datasets is an extract of a wider database aimed at collecting Twitter user's friends (other accound one follows). The global goal is to study user's interest thru who they follow and connection to the hashtag they've used.
It's a list of Twitter user's informations. In the JSON format one twitter user is stored in one object of this more that 40.000 objects list. Each object holds :
avatar : URL to the profile picture
followerCount : the number of followers of this user
friendsCount : the number of people following this user.
friendName : stores the @name (without the '@') of the user (beware this name can be changed by the user)
id : user ID, this number can not change (you can retrieve screen name with this service : https://tweeterid.com/)
friends : the list of IDs the user follows (data stored is IDs of users followed by this user)
lang : the language declared by the user (in this dataset there is only "en" (english))
lastSeen : the time stamp of the date when this user have post his last tweet.
tags : the hashtags (whith or without #) used by the user. It's the "trending topic" the user tweeted about.
tweetID : Id of the last tweet posted by this user.
You also have the CSV format which uses the same naming convention.
These users are selected because they tweeted on Twitter trending topics, I've selected users that have at least 100 followers and following at least 100 other account (in order to filter out spam and non-informative/empty accounts).
This data set is build by Hubert Wassner (me) using the Twitter public API. More data can be obtained on request (hubert.wassner AT gmail.com), at this time I've collected over 5 milions in different languages. Some more information can be found here (in french only) : http://wassner.blogspot.fr/2016/06/recuperer-des-profils-twitter-par.html
No public research have been done (until now) on this dataset. I made a private application which is described here : http://wassner.blogspot.fr/2016/09/twitter-profiling.html (in French) which uses the full dataset (Millions of full profiles).
On can analyse a lot of stuff with this datasets :
Feel free to ask any question (or help request) via Twitter : @hwassner
Enjoy! ;)
Social network X/Twitter is particularly popular in the United States, and as of February 2025, the microblogging service had an audience reach of 103.9 million users in the country. Japan and the India were ranked second and third with more than 70 million and 25 million users respectively. Global Twitter usage As of the second quarter of 2021, X/Twitter had 206 million monetizable daily active users worldwide. The most-followed Twitter accounts include figures such as Elon Musk, Justin Bieber and former U.S. president Barack Obama. X/Twitter and politics X/Twitter has become an increasingly relevant tool in domestic and international politics. The platform has become a way to promote policies and interact with citizens and other officials, and most world leaders and foreign ministries have an official Twitter account. Former U.S. president Donald Trump used to be a prolific Twitter user before the platform permanently suspended his account in January 2021. During an August 2018 survey, 61 percent of respondents stated that Trump's use of Twitter as President of the United States was inappropriate.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Our dataset comprises 1000 tweets, which were taken from Twitter using the Python programming language. The dataset was stored in a CSV file and generated using various modules. The random module was used to generate random IDs and text, while the faker module was used to generate random user names and dates. Additionally, the textblob module was used to assign a random sentiment to each tweet.
This systematic approach ensures that the dataset is well-balanced and represents different types of tweets, user behavior, and sentiment. It is essential to have a balanced dataset to ensure that the analysis and visualization of the dataset are accurate and reliable. By generating tweets with a range of sentiments, we have created a diverse dataset that can be used to analyze and visualize sentiment trends and patterns.
In addition to generating the tweets, we have also prepared a visual representation of the data sets. This visualization provides an overview of the key features of the dataset, such as the frequency distribution of the different sentiment categories, the distribution of tweets over time, and the user names associated with the tweets. This visualization will aid in the initial exploration of the dataset and enable us to identify any patterns or trends that may be present.
Dataset consists of 5 emotion labels. These labels are anger, happy, distinguish, surprise and fear. There are 800 tweets in the dataset for each label. Hence, total tweet count is 4000 for dataset.
You can use the data set in many areas such as sentiment, emotion analysis and topic modeling.
Info: Hashtags and usernames was removed in the dataset. Dataset has used many studies and researches. These researches are followed as: -(please citation this article) Güven, Z. A., Diri, B., & Cąkaloglu, T. (2020). Comparison of n-stage Latent Dirichlet Allocation versus other topic modeling methods for emotion analysis. Journal of the Faculty of Engineering and Architecture of Gazi University. https://doi.org/10.17341/gazimmfd.556104 -Güven, Z. A., Diri, B., & Çakaloğlu, T. (2019). Emotion Detection with n-stage Latent Dirichlet Allocation for Turkish Tweets. Academic Platform Journal of Engineering and Science. https://doi.org/10.21541/apjes.459447 -Guven, Z. A., Diri, B., & Cakaloglu, T. (2019). Comparison Method for Emotion Detection of Twitter Users. Proceedings - 2019 Innovations in Intelligent Systems and Applications Conference, ASYU 2019. https://doi.org/10.1109/ASYU48272.2019.8946435
Cite as
Guerrero-Contreras, G., Balderas-Díaz, S., Serrano-Fernández, A., & Muñoz, A. (2024, June). Enhancing Sentiment Analysis on Social Media: Integrating Text and Metadata for Refined Insights. In 2024 International Conference on Intelligent Environments (IE) (pp. 62-69). IEEE.
General Description
This dataset comprises 4,038 tweets in Spanish, related to discussions about artificial intelligence (AI), and was created and utilized in the publication "Enhancing Sentiment Analysis on Social Media: Integrating Text and Metadata for Refined Insights," (10.1109/IE61493.2024.10599899) presented at the 20th International Conference on Intelligent Environments. It is designed to support research on public perception, sentiment, and engagement with AI topics on social media from a Spanish-speaking perspective. Each entry includes detailed annotations covering sentiment analysis, user engagement metrics, and user profile characteristics, among others.
Data Collection Method
Tweets were gathered through the Twitter API v1.1 by targeting keywords and hashtags associated with artificial intelligence, focusing specifically on content in Spanish. The dataset captures a wide array of discussions, offering a holistic view of the Spanish-speaking public's sentiment towards AI.
Dataset Content
ID: A unique identifier for each tweet.
text: The textual content of the tweet. It is a string with a maximum allowed length of 280 characters.
polarity: The tweet's sentiment polarity (e.g., Positive, Negative, Neutral).
favorite_count: Indicates how many times the tweet has been liked by Twitter users. It is a non-negative integer.
retweet_count: The number of times this tweet has been retweeted. It is a non-negative integer.
user_verified: When true, indicates that the user has a verified account, which helps the public recognize the authenticity of accounts of public interest. It is a boolean data type with two allowed values: True or False.
user_default_profile: When true, indicates that the user has not altered the theme or background of their user profile. It is a boolean data type with two allowed values: True or False.
user_has_extended_profile: When true, indicates that the user has an extended profile. An extended profile on Twitter allows users to provide more detailed information about themselves, such as an extended biography, a header image, details about their location, website, and other additional data. It is a boolean data type with two allowed values: True or False.
user_followers_count: The current number of followers the account has. It is a non-negative integer.
user_friends_count: The number of users that the account is following. It is a non-negative integer.
user_favourites_count: The number of tweets this user has liked since the account was created. It is a non-negative integer.
user_statuses_count: The number of tweets (including retweets) posted by the user. It is a non-negative integer.
user_protected: When true, indicates that this user has chosen to protect their tweets, meaning their tweets are not publicly visible without their permission. It is a boolean data type with two allowed values: True or False.
user_is_translator: When true, indicates that the user posting the tweet is a verified translator on Twitter. This means they have been recognized and validated by the platform as translators of content in different languages. It is a boolean data type with two allowed values: True or False.
Potential Use Cases
This dataset is aimed at academic researchers and practitioners with interests in:
Sentiment analysis and natural language processing (NLP) with a focus on AI discussions in the Spanish language.
Social media analysis on public engagement and perception of artificial intelligence among Spanish speakers.
Exploring correlations between user engagement metrics and sentiment in discussions about AI.
Data Format and File Type
The dataset is provided in CSV format, ensuring compatibility with a wide range of data analysis tools and programming environments.
License
The dataset is available under the Creative Commons Attribution 4.0 International (CC BY 4.0) license, permitting sharing, copying, distribution, transmission, and adaptation of the work for any purpose, including commercial, provided proper attribution is given.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains tweets labeled for sentiment analysis, categorized into Positive, Negative, and Neutral sentiments. The dataset includes tweet IDs, user metadata, sentiment labels, and tweet text, making it suitable for Natural Language Processing (NLP), machine learning, and AI-based sentiment classification research. Originally sourced from Kaggle, this dataset is curated for improved usability in social media sentiment analysis.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is composed of
Refer to the paper below for more details.
Cresci, S., Lillo, F., Regoli, D., Tardelli, S., & Tesconi, M. (2019). Cashtag Piggybacking: Uncovering Spam and Bot Activity in Stock Microblogs on Twitter. ACM Transactions on the Web (TWEB), 13(2), 11.
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
The Customer Support on Twitter dataset is a large, modern corpus of tweets and replies to aid innovation in natural language understanding and conversational models, and for study of modern customer support practices and impact.
https://i.imgur.com/nTv3Iuu.png" alt="Example Analysis - Inbound Volume for the Top 20 Brands">
Natural language remains the densest encoding of human experience we have, and innovation in NLP has accelerated to power understanding of that data, but the datasets driving this innovation don't match the real language in use today. The Customer Support on Twitter dataset offers a large corpus of modern English (mostly) conversations between consumers and customer support agents on Twitter, and has three important advantages over other conversational text datasets:
The size and breadth of this dataset inspires many interesting questions:
The dataset is a CSV, where each row is a tweet. The different columns are described below. Every conversation included has at least one request from a consumer and at least one response from a company. Which user IDs are company user IDs can be calculated using the inbound
field.
tweet_id
A unique, anonymized ID for the Tweet. Referenced by response_tweet_id
and in_response_to_tweet_id
.
author_id
A unique, anonymized user ID. @s in the dataset have been replaced with their associated anonymized user ID.
inbound
Whether the tweet is "inbound" to a company doing customer support on Twitter. This feature is useful when re-organizing data for training conversational models.
created_at
Date and time when the tweet was sent.
text
Tweet content. Sensitive information like phone numbers and email addresses are replaced with mask values like _email_
.
response_tweet_id
IDs of tweets that are responses to this tweet, comma-separated.
in_response_to_tweet_id
ID of the tweet this tweet is in response to, if any.
Know of other brands the dataset should include? Found something that needs to be fixed? Start a discussion, or email me directly at $FIRSTNAME
@$LASTNAME
.com!
A huge thank you to my friends who helped bootstrap the list of companies that do customer support on Twitter! There are many rocks that would have been left un-turned were it not for your suggestions!
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Kaggle has fixed the issue with gzip files and Version 510 should now reflect properly working files
Please use the version 508 of the dataset, as 509 is broken. See link below of the dataset that is properly working https://www.kaggle.com/datasets/bwandowando/ukraine-russian-crisis-twitter-dataset-1-2-m-rows/versions/508
The context and history of the current ongoing conflict can be found https://en.wikipedia.org/wiki/2022_Russian_invasion_of_Ukraine.
[Jun 16] (🌇Sunset) Twitter has finally pulled the plug on all of my remaining TWITTER API accounts as part of their efforts for developers to migrate to the new API. The last tweets that I pulled was dated last Jun 14, and no more data from Jun 15 onwards. It was fun til it lasted and I hope that this dataset was able and will continue to help a lot. I'll just leave the dataset here for future download and reference. Thank you all!
[Apr 19] Two additional developer accounts have been permanently suspended, expect a lower throughtput in the next few weeks. I will pull data til they ban my last account.
[Apr 08] I woke up this morning and saw that Twitter has banned/ permanently suspended 4 of my developer accounts, I have around a few more but it is just a matter of time till all my accounts will most likely get banned as well. This was a fun project that I maintained for as long as I can. I will pull data til my last account gets banned.
[Feb 26] I've started to pull in RETWEETS again, so I am expecting a significant amount of throughput in tweets again on top of the dedicated processes that I have that gets NONRETWEETS. If you don't want RETWEETS, just filter them out.
[Feb 24] It's been a year since I started getting tweets of this conflict and had no idea that a year later this is still ongoing. Almost everyone assumed that Ukraine will crumble in a matter of days, but it is not the case. To those who have been using my dataset, i hope that I am helping all of you in one way or another. Ill do my best to maintain updating this dataset as long as I can.
[Feb 02] I seem to be getting less tweets as my crawlers are getting throttled, i used to get 2500 tweets per 15 mins but around 2-3 of my crawlers are getting throttling limit errors. There may be some kind of update that Twitter has done about rate limits or something similar. Will try to find ways to increase the throughput again.
[Jan 02] For all new datasets, it will now be prefixed by a year, so for Jan 01, 2023, it will be 20230101_XXXX.
[Dec 28] For those looking for a cleaned version of my dataset, with the retweets removed from before Aug 08, here is a dataset by @@vbmokin https://www.kaggle.com/datasets/vbmokin/russian-invasion-ukraine-without-retweets
[Nov 19] I noticed that one of my developer accounts, which ISNT TWEETING ANYTHING and just pulling data out of twitter has been permanently banned by Twitter.com, thus the decrease of unique tweets. I will try to come up with a solution to increase my throughput and signup for a new developer account.
[Oct 19] I just noticed that this dataset is finally "GOLD", after roughly seven months since I first uploaded my gzipped csv files.
[Oct 11] Sudden spike in number of tweets revolving around most recent development(s) about the Kerch Bridge explosion and the response from Russia.
[Aug 19- IMPORTANT] I raised the missing dataset issue to Kaggle team and they confirmed it was a bug brought by a ReactJs upgrade, the conversation and details can be seen here https://www.kaggle.com/discussions/product-feedback/345915 . It has been fixed already and I've reuploaded all the gzipped files that were lost PLUS the new files that were generated AFTER the issue was identified.
[Aug 17] Seems the latest version of my dataset lost around 100+ files, good thing this dataset is versioned so one can just go back to the previous version(s) and download them. Version 188 HAS ALL THE LOST FILES, I wont be reuploading all datasets as it will be tedious and I've deleted them already in my local and I only store the latest 2-3 days.
[Aug 10] 3/5 of my Python processes errored out and resulted to around 10-12 hours of NO data gathering for those processes thus the sharp decrease of tweets for Aug 09 dataset. I've applied an exception/ error checking to prevent this from happening.
[Aug 09] Significant drop in tweets extracted, but I am now getting ORIGINAL/ NON-RETWEETS.
[Aug 08] I've noticed that I had a spike of Tweets extracted, but they are literally thousands of retweets of a single original tweet. I also noticed that my crawlers seem to deviate because of this tactic being used by some Twitter users where they flood Twitter w...
http://rightsstatements.org/vocab/InC/1.0/http://rightsstatements.org/vocab/InC/1.0/
This dataset comprises a set of information cascades generated by Singapore Twitter users. Here a cascade is defined as a set of tweets about the same topic. This dataset was collected via the Twitter REST and streaming APIs in the following way. Starting from popular seed users (i.e., users having many followers), we crawled their follow, retweet, and user mention links. We then added those followers/followees, retweet sources, and mentioned users who state Singapore in their profile location. With this, we have a total of 184,794 Twitter user accounts. Then tweets are crawled from these users from 1 April to 31 August 2012. In all, we got 32,479,134 tweets. To identify cascades, we extracted all the URL links and hashtags from the above tweets. And these URL links and hashtags are considered as the identities of cascades. In other words, all the tweets which contain the same URL link (or the same hashtag) represent a cascade. Mathematically, a cascade is represented as a set of user-timestamp pairs. Figure 1 provides an example, i.e. cascade C = {< u1, t1 >, < u2, t2 >, < u1, t3 >, < u3, t4 >, < u4, t5 >}. For evaluation, the dataset was split into two parts: four months data for training and the last one month data for testing. Table 1summarizes the basic (count) statistics of the dataset. Each line in each file represents a cascade. The first term in each line is a hashtag or URL, the second term is a list of user-timestamp pairs. Due to privacy concerns, all user identities are anonymized.
http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
The following information can also be found at https://www.kaggle.com/davidwallach/financial-tweets. Out of curosity, I just cleaned the .csv files to perform a sentiment analysis. So both the .csv files in this dataset are created by me.
Anything you read in the description is written by David Wallach and using all this information, I happen to perform my first ever sentiment analysis.
"I have been interested in using public sentiment and journalism to gather sentiment profiles on publicly traded companies. I first developed a Python package (https://github.com/dwallach1/Stocker) that scrapes the web for articles written about companies, and then noticed the abundance of overlap with Twitter. I then developed a NodeJS project that I have been running on my RaspberryPi to monitor Twitter for all tweets coming from those mentioned in the content section. If one of them tweeted about a company in the stocks_cleaned.csv file, then it would write the tweet to the database. Currently, the file is only from earlier today, but after about a month or two, I plan to update the tweets.csv file (hopefully closer to 50,000 entries.
I am not quite sure how this dataset will be relevant, but I hope to use these tweets and try to generate some sense of public sentiment score."
This dataset has all the publicly traded companies (tickers and company names) that were used as input to fill the tweets.csv. The influencers whose tweets were monitored were: ['MarketWatch', 'business', 'YahooFinance', 'TechCrunch', 'WSJ', 'Forbes', 'FT', 'TheEconomist', 'nytimes', 'Reuters', 'GerberKawasaki', 'jimcramer', 'TheStreet', 'TheStalwart', 'TruthGundlach', 'Carl_C_Icahn', 'ReformedBroker', 'benbernanke', 'bespokeinvest', 'BespokeCrypto', 'stlouisfed', 'federalreserve', 'GoldmanSachs', 'ianbremmer', 'MorganStanley', 'AswathDamodaran', 'mcuban', 'muddywatersre', 'StockTwits', 'SeanaNSmith'
The data used here is gathered from a project I developed : https://github.com/dwallach1/StockerBot
I hope to develop a financial sentiment text classifier that would be able to track Twitter's (and the entire public's) feelings about any publicly traded company (and cryptocurrency)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Advertising makes up 89% of its total revenue and data licensing makes up about 11%.