Facebook
TwitterIn January 2025, Google accounted for 93.89 percent of the global mobile search engine market worldwide. Ever since the release of Google Search in 1997, the company's search engine has dominated the search engine market, maintaining a margin of more than 93 percentage points since January 2015. Currently owned by the parent corporation Alphabet Inc., Google has one of the highest tech company revenues, with roughly 305.63 billion U.S. dollars in 2023.
Facebook
Twitterhttps://sqmagazine.co.uk/privacy-policy/https://sqmagazine.co.uk/privacy-policy/
It starts with a simple habit: you open your browser and type a question. A few keystrokes later, Google gives you answers, videos, maps, and suggestions before you even finish your thought. For billions of people around the world, this daily interaction is second nature. But behind that blinking cursor...
Facebook
TwitterIn the first half of 2024, Google received over 82,000 requests for disclosure of user information from the U.S. federal agencies and other government entities. The Indian government ranked second by the number of requests about user information disclosure sent to Google, followed by Germany.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Alphabet Inc. is a listed US holding company of the former Google LLC, which continues to exist as a subsidiary. The headquarters is Mountain View in Silicon Valley. The company is led by Sundar Pichai as CEO.
With sales of $137 billion, a profit of $30.7 billion and a market value of $ 863.2 billion, Alphabet Inc. ranks 17th among the world's largest companies according to Forbes Global 2000 (as of 4th November 2019). The company had a market cap of $ 766.4 billion in early 2018. In 2019, Alphabet had annual sales of $161.9 billion and an annual profit of $34.3 billion.
Market capitalization of Alphabet (Google) (GOOG)
Market cap: $2.442 Trillion USD
As of August 2025 Alphabet (Google) has a market cap of $2.442 Trillion USD. This makes Alphabet (Google) the world's 4th most valuable company by market cap according to our data. The market capitalization, commonly called market cap, is the total market value of a publicly traded company's outstanding shares and is commonly used to measure how much a company is worth.
Geography: USA
Time period: August 2004- August 2025
Unit of analysis: Google Stock Data 2025
| Variable | Description |
|---|---|
| date | date |
| open | The price at market open. |
| high | The highest price for that day. |
| low | The lowest price for that day. |
| close | The price at market close, adjusted for splits. |
| adj_close | The closing price after adjustments for all applicable splits and dividend distributions. Data is adjusted using appropriate split and dividend multipliers, adhering to Center for Research in Security Prices (CRSP) standards. |
| volume | The number of shares traded on that day. |
This dataset belongs to me. I’m sharing it here for free. You may do with it as you wish.
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F18335022%2F84937d0d9ac664fa6c705c0da59564e0%2FScreenshot%202024-12-18%20153807.png?generation=1734532695847825&alt=media" alt="">
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F18335022%2Fa927d7f9ef11a23685bbb86a25b44d8d%2FScreenshot%202024-12-18%20153822.png?generation=1734532715073647&alt=media" alt="">
Facebook
TwitterAttribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically
Key Google Play StatisticsGoogle Play App and Game RevenueGoogle Play Gaming App RevenueGoogle Play App RevenueGoogle Play App and Game DownloadsGoogle Play Game DownloadsGoogle Play App...
Facebook
TwitterBetween January and July 2024, Google received ****** requests for disclosure of user information from the United States federal agencies and courts. This is a slight decrease in comparison to the second half of 2023, in which over ****** requests were issued.
Facebook
TwitterThis is a mutli-modal dataset for restaurants from Google Local (Google Maps). Data includes images and reviews posted by users, as well as metadata for each restaurant.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
Meta Kaggle Code is an extension to our popular Meta Kaggle dataset. This extension contains all the raw source code from hundreds of thousands of public, Apache 2.0 licensed Python and R notebooks versions on Kaggle used to analyze Datasets, make submissions to Competitions, and more. This represents nearly a decade of data spanning a period of tremendous evolution in the ways ML work is done.
By collecting all of this code created by Kaggle’s community in one dataset, we hope to make it easier for the world to research and share insights about trends in our industry. With the growing significance of AI-assisted development, we expect this data can also be used to fine-tune models for ML-specific code generation tasks.
Meta Kaggle for Code is also a continuation of our commitment to open data and research. This new dataset is a companion to Meta Kaggle which we originally released in 2016. On top of Meta Kaggle, our community has shared nearly 1,000 public code examples. Research papers written using Meta Kaggle have examined how data scientists collaboratively solve problems, analyzed overfitting in machine learning competitions, compared discussions between Kaggle and Stack Overflow communities, and more.
The best part is Meta Kaggle enriches Meta Kaggle for Code. By joining the datasets together, you can easily understand which competitions code was run against, the progression tier of the code’s author, how many votes a notebook had, what kinds of comments it received, and much, much more. We hope the new potential for uncovering deep insights into how ML code is written feels just as limitless to you as it does to us!
While we have made an attempt to filter out notebooks containing potentially sensitive information published by Kaggle users, the dataset may still contain such information. Research, publications, applications, etc. relying on this data should only use or report on publicly available, non-sensitive information.
The files contained here are a subset of the KernelVersions in Meta Kaggle. The file names match the ids in the KernelVersions csv file. Whereas Meta Kaggle contains data for all interactive and commit sessions, Meta Kaggle Code contains only data for commit sessions.
The files are organized into a two-level directory structure. Each top level folder contains up to 1 million files, e.g. - folder 123 contains all versions from 123,000,000 to 123,999,999. Each sub folder contains up to 1 thousand files, e.g. - 123/456 contains all versions from 123,456,000 to 123,456,999. In practice, each folder will have many fewer than 1 thousand files due to private and interactive sessions.
The ipynb files in this dataset hosted on Kaggle do not contain the output cells. If the outputs are required, the full set of ipynbs with the outputs embedded can be obtained from this public GCS bucket: kaggle-meta-kaggle-code-downloads. Note that this is a "requester pays" bucket. This means you will need a GCP account with billing enabled to download. Learn more here: https://cloud.google.com/storage/docs/requester-pays
We love feedback! Let us know in the Discussion tab.
Happy Kaggling!
Facebook
TwitterIn the second half of 2023, Google received more than 216 thousand requests for disclosure of user information from federal agencies and governments worldwide. In the same period, the number of accounts subject to those requests was approximately 441 thousand.
Facebook
TwitterAuthor: Víctor Yeste. Universitat Politècnica de Valencia.The object of this study is the design of a cybermetric methodology whose objectives are to measure the success of the content published in online media and the possible prediction of the selected success variables.In this case, due to the need to integrate data from two separate areas, such as web publishing and the analysis of their shares and related topics on Twitter, has opted for programming as you access both the Google Analytics v4 reporting API and Twitter Standard API, always respecting the limits of these.The website analyzed is hellofriki.com. It is an online media whose primary intention is to solve the need for information on some topics that provide daily a vast number of news in the form of news, as well as the possibility of analysis, reports, interviews, and many other information formats. All these contents are under the scope of the sections of cinema, series, video games, literature, and comics.This dataset has contributed to the elaboration of the PhD Thesis:Yeste Moreno, VM. (2021). Diseño de una metodología cibermétrica de cálculo del éxito para la optimización de contenidos web [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/176009Data have been obtained from each last-minute news article published online according to the indicators described in the doctoral thesis. All related data are stored in a database, divided into the following tables:tesis_followers: User ID list of media account followers.tesis_hometimeline: data from tweets posted by the media account sharing breaking news from the web.status_id: Tweet IDcreated_at: date of publicationtext: content of the tweetpath: URL extracted after processing the shortened URL in textpost_shared: Article ID in WordPress that is being sharedretweet_count: number of retweetsfavorite_count: number of favoritestesis_hometimeline_other: data from tweets posted by the media account that do not share breaking news from the web. Other typologies, automatic Facebook shares, custom tweets without link to an article, etc. With the same fields as tesis_hometimeline.tesis_posts: data of articles published by the web and processed for some analysis.stats_id: Analysis IDpost_id: Article ID in WordPresspost_date: article publication date in WordPresspost_title: title of the articlepath: URL of the article in the middle webtags: Tags ID or WordPress tags related to the articleuniquepageviews: unique page viewsentrancerate: input ratioavgtimeonpage: average visit timeexitrate: output ratiopageviewspersession: page views per sessionadsense_adunitsviewed: number of ads viewed by usersadsense_viewableimpressionpercent: ad display ratioadsense_ctr: ad click ratioadsense_ecpm: estimated ad revenue per 1000 page viewstesis_stats: data from a particular analysis, performed at each published breaking news item. Fields with statistical values can be computed from the data in the other tables, but total and average calculations are saved for faster and easier further processing.id: ID of the analysisphase: phase of the thesis in which analysis has been carried out (right now all are 1)time: "0" if at the time of publication, "1" if 14 days laterstart_date: date and time of measurement on the day of publicationend_date: date and time when the measurement is made 14 days latermain_post_id: ID of the published article to be analysedmain_post_theme: Main section of the published article to analyzesuperheroes_theme: "1" if about superheroes, "0" if nottrailer_theme: "1" if trailer, "0" if notname: empty field, possibility to add a custom name manuallynotes: empty field, possibility to add personalized notes manually, as if some tag has been removed manually for being considered too generic, despite the fact that the editor put itnum_articles: number of articles analysednum_articles_with_traffic: number of articles analysed with traffic (which will be taken into account for traffic analysis)num_articles_with_tw_data: number of articles with data from when they were shared on the media’s Twitter accountnum_terms: number of terms analyzeduniquepageviews_total: total page viewsuniquepageviews_mean: average page viewsentrancerate_mean: average input ratioavgtimeonpage_mean: average duration of visitsexitrate_mean: average output ratiopageviewspersession_mean: average page views per sessiontotal: total of ads viewedadsense_adunitsviewed_mean: average of ads viewedadsense_viewableimpressionpercent_mean: average ad display ratioadsense_ctr_mean: average ad click ratioadsense_ecpm_mean: estimated ad revenue per 1000 page viewsTotal: total incomeretweet_count_mean: average incomefavorite_count_total: total of favoritesfavorite_count_mean: average of favoritesterms_ini_num_tweets: total tweets on the terms on the day of publicationterms_ini_retweet_count_total: total retweets on the terms on the day of publicationterms_ini_retweet_count_mean: average retweets on the terms on the day of publicationterms_ini_favorite_count_total: total of favorites on the terms on the day of publicationterms_ini_favorite_count_mean: average of favorites on the terms on the day of publicationterms_ini_followers_talking_rate: ratio of followers of the media Twitter account who have recently published a tweet talking about the terms on the day of publicationterms_ini_user_num_followers_mean: average followers of users who have spoken of the terms on the day of publicationterms_ini_user_num_tweets_mean: average number of tweets published by users who spoke about the terms on the day of publicationterms_ini_user_age_mean: average age in days of users who have spoken of the terms on the day of publicationterms_ini_ur_inclusion_rate: URL inclusion ratio of tweets talking about terms on the day of publicationterms_end_num_tweets: total tweets on terms 14 days after publicationterms_ini_retweet_count_total: total retweets on terms 14 days after publicationterms_ini_retweet_count_mean: average retweets on terms 14 days after publicationterms_ini_favorite_count_total: total bookmarks on terms 14 days after publicationterms_ini_favorite_count_mean: average of favorites on terms 14 days after publicationterms_ini_followers_talking_rate: ratio of media Twitter account followers who have recently posted a tweet talking about the terms 14 days after publicationterms_ini_user_num_followers_mean: average followers of users who have spoken of the terms 14 days after publicationterms_ini_user_num_tweets_mean: average number of tweets published by users who have spoken about the terms 14 days after publicationterms_ini_user_age_mean: the average age in days of users who have spoken of the terms 14 days after publicationterms_ini_ur_inclusion_rate: URL inclusion ratio of tweets talking about terms 14 days after publication.tesis_terms: data of the terms (tags) related to the processed articles.stats_id: Analysis IDtime: "0" if at the time of publication, "1" if 14 days laterterm_id: Term ID (tag) in WordPressname: Name of the termslug: URL of the termnum_tweets: number of tweetsretweet_count_total: total retweetsretweet_count_mean: average retweetsfavorite_count_total: total of favoritesfavorite_count_mean: average of favoritesfollowers_talking_rate: ratio of followers of the media Twitter account who have recently published a tweet talking about the termuser_num_followers_mean: average followers of users who were talking about the termuser_num_tweets_mean: average number of tweets published by users who were talking about the termuser_age_mean: average age in days of users who were talking about the termurl_inclusion_rate: URL inclusion ratio
Facebook
Twitterhttps://brightdata.com/licensehttps://brightdata.com/license
This dataset encompasses a wide-ranging collection of Google Play applications, providing a holistic view of the diverse ecosystem within the platform. It includes information on various attributes such as the title, developer, monetization features, images, app descriptions, data safety measures, user ratings, number of reviews, star rating distributions, user feedback, recent updates, related applications by the same developer, content ratings, estimated downloads, and timestamps. By aggregating this data, the dataset offers researchers, developers, and analysts an extensive resource to explore and analyze trends, patterns, and dynamics within the Google Play Store. Researchers can utilize this dataset to conduct comprehensive studies on user behavior, market trends, and the impact of various factors on app success. Developers can leverage the insights derived from this dataset to inform their app development strategies, improve user engagement, and optimize monetization techniques. Analysts can employ the dataset to identify emerging trends, assess the performance of different categories of applications, and gain valuable insights into consumer preferences. Overall, this dataset serves as a valuable tool for understanding the broader landscape of the Google Play Store and unlocking actionable insights for various stakeholders in the mobile app industry.
Facebook
TwitterAttribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically
App Download Key StatisticsApp and Game DownloadsiOS App and Game DownloadsGoogle Play App and Game DownloadsGame DownloadsiOS Game DownloadsGoogle Play Game DownloadsApp DownloadsiOS App...
Facebook
TwitterOpenWeb Ninja's Google Images Data (Google SERP Data) API provides real-time image search capabilities for images sourced from all public sources on the web.
The API enables you to search and access more than 100 billion images from across the web including advanced filtering capabilities as supported by Google Advanced Image Search. The API provides Google Images Data (Google SERP Data) including details such as image URL, title, size information, thumbnail, source information, and more data points. The API supports advanced filtering and options such as file type, image color, usage rights, creation time, and more. In addition, any Advanced Google Search operators can be used with the API.
OpenWeb Ninja's Google Images Data & Google SERP Data API common use cases:
Creative Media Production: Enhance digital content with a vast array of real-time images, ensuring engaging and brand-aligned visuals for blogs, social media, and advertising.
AI Model Enhancement: Train and refine AI models with diverse, annotated images, improving object recognition and image classification accuracy.
Trend Analysis: Identify emerging market trends and consumer preferences through real-time visual data, enabling proactive business decisions.
Innovative Product Design: Inspire product innovation by exploring current design trends and competitor products, ensuring market-relevant offerings.
Advanced Search Optimization: Improve search engines and applications with enriched image datasets, providing users with accurate, relevant, and visually appealing search results.
OpenWeb Ninja's Annotated Imagery Data & Google SERP Data Stats & Capabilities:
100B+ Images: Access an extensive database of over 100 billion images.
Images Data from all Public Sources (Google SERP Data): Benefit from a comprehensive aggregation of image data from various public websites, ensuring a wide range of sources and perspectives.
Extensive Search and Filtering Capabilities: Utilize advanced search operators and filters to refine image searches by file type, color, usage rights, creation time, and more, making it easy to find exactly what you need.
Rich Data Points: Each image comes with more than 10 data points, including URL, title (annotation), size information, thumbnail, and source information, providing a detailed context for each image.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
DataSF seeks to transform the way that the City of San Francisco works -- through the use of data.
This dataset contains the following tables: ['311_service_requests', 'bikeshare_stations', 'bikeshare_status', 'bikeshare_trips', 'film_locations', 'sffd_service_calls', 'sfpd_incidents', 'street_trees']
This dataset is deprecated and not being updated.
Fork this kernel to get started with this dataset.
Dataset Source: SF OpenData. This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://sfgov.org/ - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.
Banner Photo by @meric from Unplash.
Which neighborhoods have the highest proportion of offensive graffiti?
Which complaint is most likely to be made using Twitter and in which neighborhood?
What are the most complained about Muni stops in San Francisco?
What are the top 10 incident types that the San Francisco Fire Department responds to?
How many medical incidents and structure fires are there in each neighborhood?
What’s the average response time for each type of dispatched vehicle?
Which category of police incidents have historically been the most common in San Francisco?
What were the most common police incidents in the category of LARCENY/THEFT in 2016?
Which non-criminal incidents saw the biggest reporting change from 2015 to 2016?
What is the average tree diameter?
What is the highest number of a particular species of tree planted in a single year?
Which San Francisco locations feature the largest number of trees?
Facebook
TwitterIn the U.S. public companies, certain insiders and broker-dealers are required to regularly file with the SEC. The SEC makes this data available online for anybody to view and use via their Electronic Data Gathering, Analysis, and Retrieval (EDGAR) database. The SEC updates this data every quarter going back to January, 2009. To aid analysis a quick summary view of the data has been created that is not available in the original dataset. The quick summary view pulls together signals into a single table that otherwise would have to be joined from multiple tables and enables a more streamlined user experience. This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets.Scopri di più
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
The dataset provides 12 months (August 2016 to August 2017) of obfuscated Google Analytics 360 data from the Google Merchandise Store , a real ecommerce store that sells Google-branded merchandise, in BigQuery. It’s a great way analyze business data and learn the benefits of using BigQuery to analyze Analytics 360 data Learn more about the data The data includes The data is typical of what an ecommerce website would see and includes the following information:Traffic source data: information about where website visitors originate, including data about organic traffic, paid search traffic, and display trafficContent data: information about the behavior of users on the site, such as URLs of pages that visitors look at, how they interact with content, etc. Transactional data: information about the transactions on the Google Merchandise Store website.Limitations: All users have view access to the dataset. This means you can query the dataset and generate reports but you cannot complete administrative tasks. Data for some fields is obfuscated such as fullVisitorId, or removed such as clientId, adWordsClickInfo and geoNetwork. “Not available in demo dataset” will be returned for STRING values and “null” will be returned for INTEGER values when querying the fields containing no data.This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery
Facebook
Twitterhttps://brightdata.com/licensehttps://brightdata.com/license
The Google Maps dataset is ideal for getting extensive information on businesses anywhere in the world. Easily filter by location, business type, and other factors to get the exact data you need. The Google Maps dataset includes all major data points: timestamp, name, category, address, description, open website, phone number, open_hours, open_hours_updated, reviews_count, rating, main_image, reviews, url, lat, lon, place_id, country, and more.
Facebook
Twitterhttps://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global market size of Google Workspace was estimated to be around USD 3.2 billion in 2023 and is projected to reach approximately USD 9.8 billion by 2032, growing at a compound annual growth rate (CAGR) of 13.1% during the forecast period. The growth of the Google Workspace market is largely driven by the increasing trend of remote work, the need for streamlined business communication, and the growing adoption of cloud-based solutions.
One of the primary growth factors for the Google Workspace market is the increasing trend towards remote and hybrid work models. The COVID-19 pandemic had a significant impact on how businesses operate, pushing a vast number of organizations to adopt remote working solutions. Google Workspace offers a comprehensive suite of productivity tools that enable seamless collaboration and communication among remote teams. This shift is not merely a temporary change but is expected to persist, thereby driving sustained demand for cloud-based productivity suites like Google Workspace.
Additionally, the emphasis on digital transformation across various industries is another crucial driver. Companies are increasingly moving away from traditional paper-based workflows and manual processes to digital solutions that offer greater efficiency and scalability. Google Workspace provides an integrated platform that supports this transformation by offering tools for document creation, storage, and sharing, all within a secure and accessible environment. This transition is particularly attractive for small and medium enterprises (SMEs) looking to scale operations without a significant investment in IT infrastructure.
Furthermore, the growing emphasis on data security and compliance is propelling the adoption of Google Workspace. Enterprises today are highly conscious of the need to secure their data and comply with industry regulations. Google Workspace addresses these concerns with robust security features, including data encryption, two-factor authentication, and administrative controls. These features make it a favored choice among organizations that prioritize data security and regulatory compliance, adding another layer to its market growth.
From a regional perspective, North America holds a significant share of the Google Workspace market, driven by high adoption rates of cloud solutions and advanced IT infrastructure. However, the Asia Pacific region is expected to exhibit the highest growth rate during the forecast period. Factors such as increasing digitalization, economic growth, and rising awareness about the benefits of cloud-based productivity tools are contributing to the expansion of the Google Workspace market in this region.
The Google Workspace suite comprises various components, including Gmail, Google Drive, Google Docs, Google Meet, Google Calendar, and others. Each of these components plays a critical role in driving the market growth, catering to different aspects of business productivity and communication. Gmail, for instance, remains one of the most widely used email services globally, known for its user-friendly interface and robust spam filters. Its integration with other Google Workspace tools enhances its functionality, making it a cornerstone of the suite's offering.
Google Drive is another crucial component, offering cloud storage solutions that enable users to store, share, and access files from anywhere. The demand for cloud storage solutions has surged, driven by the need for remote access and data backup. Google Drive's integration with Google Docs, Sheets, and Slides allows for real-time collaboration, which is a significant selling point for enterprises looking to improve team productivity.
Google Docs, Sheets, and Slides form the core of Google Workspace's productivity tools, allowing users to create and edit documents, spreadsheets, and presentations in real-time. These tools offer a collaborative environment where multiple users can work on the same document simultaneously, significantly enhancing workflow efficiency. The ease of use and accessibility of these tools make them popular choices for businesses of all sizes.
Google Meet has seen a substantial increase in usage, particularly in light of the COVID-19 pandemic. As businesses shifted to remote work, the need for reliable video conferencing solutions became paramount. Google Meet offers high-quality video and audio, along with features like screen sharing and meeting recording, making it a robust tool for v
Facebook
TwitterThe International Google Trends dataset will provide critical signals that individual users and businesses alike can leverage to make better data-driven decisions. This dataset simplifies the manual interaction with the existing Google Trends UI by automating and exposing anonymized, aggregated, and indexed search data in BigQuery. This dataset includes the Top 25 stories and Top 25 Rising queries from Google Trends. It will be made available as two separate BigQuery tables, with a set of new top terms appended daily. Each set of Top 25 and Top 25 rising expires after 30 days, and will be accompanied by a rolling five-year window of historical data for each country and region across the globe, where data is available. This Google dataset is hosted in Google BigQuery as part of Google Cloud's Datasets solution and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery
Facebook
TwitterAttribution-ShareAlike 3.0 (CC BY-SA 3.0)https://creativecommons.org/licenses/by-sa/3.0/
License information was derived automatically
While many public datasets (on Kaggle and the like) provide Apple App Store data, there are not many counterpart datasets available for Google Play Store apps anywhere on the web. On digging deeper, I found out that iTunes App Store page deploys a nicely indexed appendix-like structure to allow for simple and easy web scraping. On the other hand, Google Play Store uses sophisticated modern-day techniques (like dynamic page load) using JQuery making scraping more challenging.
Each app (row) has values for catergory, rating, size, and more.
The Play Store apps data has enormous potential to drive app-making businesses to success. Actionable insights can be drawn for developers to work on and capture the Android market!
| Columns | Description |
|---|---|
| App | Application name |
| Category | Category the app belongs to |
| Ratings | Overall user rating of the app (as when scraped) |
| Reviews | Number of user reviews for the app (as when scraped) |
| Size | Size of the app (as when scraped) |
| Installs | Number of user downloads/installs for the app (as when scraped) |
| Type | Paid or Free |
| Price | Price of the app (as when scraped) |
| Content Rating | Age group the app is targeted at - Children / Mature 21+ / Adult |
| Genre | An app can belong to multiple genres (apart from its main category). For eg, a musical family game will belong to |
| Current Ver | Current version of the app available on Play Store (as when scraped) |
| Android Ver | Min required Android version (as when scraped) |
| Columns | Description |
|---|---|
| App | Name of app |
| Translated Reviews | User review (Preprocessed and translated to English) |
| Sentiment | Positive/Negative/Neutral (Preprocessed) |
| Sentiment_polarity | Sentiment polarity score |
| Sentiment_subjectivity | Sentiment subjectivity score |
More - Find More Exciting🙀 Datasets Here - An Upvote👍 A Dayᕙ(`▿´)ᕗ , Keeps Aman Hurray Hurray..... ٩(˘◡˘)۶Haha
Facebook
TwitterIn January 2025, Google accounted for 93.89 percent of the global mobile search engine market worldwide. Ever since the release of Google Search in 1997, the company's search engine has dominated the search engine market, maintaining a margin of more than 93 percentage points since January 2015. Currently owned by the parent corporation Alphabet Inc., Google has one of the highest tech company revenues, with roughly 305.63 billion U.S. dollars in 2023.