100+ datasets found
  1. Twitter users in the United States 2019-2028

    • statista.com
    • ai-chatbox.pro
    Updated Jun 13, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2024). Twitter users in the United States 2019-2028 [Dataset]. https://www.statista.com/topics/3196/social-media-usage-in-the-united-states/
    Explore at:
    Dataset updated
    Jun 13, 2024
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Area covered
    United States
    Description

    The number of Twitter users in the United States was forecast to continuously increase between 2024 and 2028 by in total 4.3 million users (+5.32 percent). After the ninth consecutive increasing year, the Twitter user base is estimated to reach 85.08 million users and therefore a new peak in 2028. Notably, the number of Twitter users of was continuously increasing over the past years.User figures, shown here regarding the platform twitter, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of Twitter users in countries like Canada and Mexico.

  2. s

    Twitter cascade dataset

    • researchdata.smu.edu.sg
    • figshare.com
    pdf
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Living Analytics Research Centre (2023). Twitter cascade dataset [Dataset]. http://doi.org/10.25440/smu.12062709.v1
    Explore at:
    pdfAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    SMU Research Data Repository (RDR)
    Authors
    Living Analytics Research Centre
    License

    http://rightsstatements.org/vocab/InC/1.0/http://rightsstatements.org/vocab/InC/1.0/

    Description

    This dataset comprises a set of information cascades generated by Singapore Twitter users. Here a cascade is defined as a set of tweets about the same topic. This dataset was collected via the Twitter REST and streaming APIs in the following way. Starting from popular seed users (i.e., users having many followers), we crawled their follow, retweet, and user mention links. We then added those followers/followees, retweet sources, and mentioned users who state Singapore in their profile location. With this, we have a total of 184,794 Twitter user accounts. Then tweets are crawled from these users from 1 April to 31 August 2012. In all, we got 32,479,134 tweets. To identify cascades, we extracted all the URL links and hashtags from the above tweets. And these URL links and hashtags are considered as the identities of cascades. In other words, all the tweets which contain the same URL link (or the same hashtag) represent a cascade. Mathematically, a cascade is represented as a set of user-timestamp pairs. Figure 1 provides an example, i.e. cascade C = {< u1, t1 >, < u2, t2 >, < u1, t3 >, < u3, t4 >, < u4, t5 >}. For evaluation, the dataset was split into two parts: four months data for training and the last one month data for testing. Table 1summarizes the basic (count) statistics of the dataset. Each line in each file represents a cascade. The first term in each line is a hashtag or URL, the second term is a list of user-timestamp pairs. Due to privacy concerns, all user identities are anonymized.

  3. g

    Just Another Day on Twitter: A Complete 24 Hours of Twitter Data

    • search.gesis.org
    Updated Oct 16, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pfeffer, Jürgen (2022). Just Another Day on Twitter: A Complete 24 Hours of Twitter Data [Dataset]. https://search.gesis.org/research_data/SDN-10.7802-2516
    Explore at:
    Dataset updated
    Oct 16, 2022
    Dataset provided by
    GESIS, Köln
    GESIS search
    Authors
    Pfeffer, Jürgen
    License

    https://www.gesis.org/en/institute/data-usage-termshttps://www.gesis.org/en/institute/data-usage-terms

    Description

    At the end of October 2022, Elon Musk concluded his acquisition of Twitter. In the weeks and months before that, several questions were publicly discussed that were not only of interest to the platform's future buyers, but also of high relevance to the Computational Social Science research community. For example, how many active users does the platform have? What percentage of accounts on the site are bots? And, what are the dominating topics and sub-topical spheres on the platform? In a globally coordinated effort of 80 scholars to shed light on these questions, and to offer a dataset that will equip other researchers to do the same, we have collected 375 million tweets published within a 24-hour time period starting on September 21, 2022. To the best of our knowledge, this is the first complete 24-hour Twitter dataset that is available for the research community. With it, the present work aims to accomplish two goals. First, we seek to answer the aforementioned questions and provide descriptive metrics about Twitter that can serve as references for other researchers. Second, we create a baseline dataset for future research that can be used to study the potential impact of the platform's ownership change.

  4. Data from: IA Tweets Analysis Dataset (Spanish)

    • zenodo.org
    • data.niaid.nih.gov
    csv
    Updated Aug 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gabriel Guerrero-Contreras; Gabriel Guerrero-Contreras; Sara Balderas-Díaz; Sara Balderas-Díaz; Alejandro Serrano-Fernández; Andrés Muñoz; Andrés Muñoz; Alejandro Serrano-Fernández (2024). IA Tweets Analysis Dataset (Spanish) [Dataset]. http://doi.org/10.5281/zenodo.10821485
    Explore at:
    csvAvailable download formats
    Dataset updated
    Aug 3, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Gabriel Guerrero-Contreras; Gabriel Guerrero-Contreras; Sara Balderas-Díaz; Sara Balderas-Díaz; Alejandro Serrano-Fernández; Andrés Muñoz; Andrés Muñoz; Alejandro Serrano-Fernández
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    General Description

    This dataset comprises 4,038 tweets in Spanish, related to discussions about artificial intelligence (AI), and was created and utilized in the publication "Enhancing Sentiment Analysis on Social Media: Integrating Text and Metadata for Refined Insights," (10.1109/IE61493.2024.10599899) presented at the 20th International Conference on Intelligent Environments. It is designed to support research on public perception, sentiment, and engagement with AI topics on social media from a Spanish-speaking perspective. Each entry includes detailed annotations covering sentiment analysis, user engagement metrics, and user profile characteristics, among others.

    Data Collection Method

    Tweets were gathered through the Twitter API v1.1 by targeting keywords and hashtags associated with artificial intelligence, focusing specifically on content in Spanish. The dataset captures a wide array of discussions, offering a holistic view of the Spanish-speaking public's sentiment towards AI.

    Dataset Content

    • ID: A unique identifier for each tweet.
    • text: The textual content of the tweet. It is a string with a maximum allowed length of 280 characters.
    • polarity: The tweet's sentiment polarity (e.g., Positive, Negative, Neutral).
    • favorite_count: Indicates how many times the tweet has been liked by Twitter users. It is a non-negative integer.
    • retweet_count: The number of times this tweet has been retweeted. It is a non-negative integer.
    • user_verified: When true, indicates that the user has a verified account, which helps the public recognize the authenticity of accounts of public interest. It is a boolean data type with two allowed values: True or False.
    • user_default_profile: When true, indicates that the user has not altered the theme or background of their user profile. It is a boolean data type with two allowed values: True or False.
    • user_has_extended_profile: When true, indicates that the user has an extended profile. An extended profile on Twitter allows users to provide more detailed information about themselves, such as an extended biography, a header image, details about their location, website, and other additional data. It is a boolean data type with two allowed values: True or False.
    • user_followers_count: The current number of followers the account has. It is a non-negative integer.
    • user_friends_count: The number of users that the account is following. It is a non-negative integer.
    • user_favourites_count: The number of tweets this user has liked since the account was created. It is a non-negative integer.
    • user_statuses_count: The number of tweets (including retweets) posted by the user. It is a non-negative integer.
    • user_protected: When true, indicates that this user has chosen to protect their tweets, meaning their tweets are not publicly visible without their permission. It is a boolean data type with two allowed values: True or False.
    • user_is_translator: When true, indicates that the user posting the tweet is a verified translator on Twitter. This means they have been recognized and validated by the platform as translators of content in different languages. It is a boolean data type with two allowed values: True or False.

    Cite as

    Guerrero-Contreras, G., Balderas-Díaz, S., Serrano-Fernández, A., & Muñoz, A. (2024, June). Enhancing Sentiment Analysis on Social Media: Integrating Text and Metadata for Refined Insights. In 2024 International Conference on Intelligent Environments (IE) (pp. 62-69). IEEE.

    Potential Use Cases

    This dataset is aimed at academic researchers and practitioners with interests in:

    • Sentiment analysis and natural language processing (NLP) with a focus on AI discussions in the Spanish language.
    • Social media analysis on public engagement and perception of artificial intelligence among Spanish speakers.
    • Exploring correlations between user engagement metrics and sentiment in discussions about AI.

    Data Format and File Type

    The dataset is provided in CSV format, ensuring compatibility with a wide range of data analysis tools and programming environments.

    License

    The dataset is available under the Creative Commons Attribution 4.0 International (CC BY 4.0) license, permitting sharing, copying, distribution, transmission, and adaptation of the work for any purpose, including commercial, provided proper attribution is given.

  5. o

    Gender Prediction from Tweet Typo Data

    • opendatabay.com
    .undefined
    Updated Jul 5, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Datasimple (2025). Gender Prediction from Tweet Typo Data [Dataset]. https://www.opendatabay.com/data/ai-ml/05c9578a-719d-4ab0-82cd-0aa99bfa2bbe
    Explore at:
    .undefinedAvailable download formats
    Dataset updated
    Jul 5, 2025
    Dataset authored and provided by
    Datasimple
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Social Media and Networking
    Description

    This dataset provides simple Twitter analytics data, focusing on user profiles and tweet content. Its primary purpose is to enable the classification of gender based on tweet characteristics, specifically exploring the likelihood of different genders committing typos on their tweets. It serves as a valuable resource for emerging Natural Language Processing (NLP) enthusiasts looking to apply basic models to real-world social media data. The dataset includes unformatted tweet text, user information, and confidence scores related to various attributes.

    Columns

    The dataset contains the following key columns: * _unit_id: A unique identifier for the unit. * Tweet ID: The unique identifier for a tweet. * _golden: Indicates whether a user is a Golden User. * _unit_state: The state of the tweet. * _trusted_judgments: The level of trust associated with the judgment. * _last_judgment_at: The timestamp of the last judgment. * gender: The declared or inferred sex of the user. * gender:confidence: The confidence level associated with the gender classification. * profile_yn: A boolean indicating whether the user's profile is active or exists. * profile_yn:confidence: The confidence level for the profile's existence. * created: The date and time when the user's account was created. * Label Count: A count related to various labels within the dataset.

    Distribution

    The dataset is provided as a single data file, typically in CSV format. It comprises approximately 20,000 records. The structure includes various data types, such as IDs, boolean indicators, numerical confidence scores, and datetime stamps.

    Usage

    This dataset is ideal for: * Classifying user gender based on tweet content and user profile information. * Analysing spelling errors or typos in tweets in relation to user demographics. * Developing and testing Natural Language Processing (NLP) models, particularly for tasks like text classification and sentiment analysis. * Exploring patterns in social media behaviour and user characteristics on Twitter. * Educational purposes for those new to applying machine learning techniques to real-world tweet data.

    Coverage

    The dataset offers global geographical coverage as indicated by its region. The time range for tweet activity appears to be concentrated around 26th to 27th October 2015. However, the account creation dates for the users span a much broader period, from 5th August 2006 to 26th October 2015. In terms of demographics, the dataset includes gender distribution, with approximately 33% female, 31% male, and 36% categorised as 'Other'.

    License

    CCO

    Who Can Use It

    This dataset is primarily intended for: * Data scientists and analysts interested in social media analytics and user behaviour. * Machine learning practitioners, especially those working on classification problems and NLP tasks. * Students and researchers in fields such as computer science, linguistics, and social sciences. * NLP enthusiasts who are developing or looking to test basic linear or naive models on real-world text data.

    Dataset Name Suggestions

    • Twitter User Profile & Activity Data
    • Gender Prediction from Tweet Typo Data
    • Social Media Analytics: Twitter User Gender
    • Tweet Classification for Gender Studies

    Attributes

    Original Data Source: Twitter Data

  6. H

    Tweets Dataset - Top 20 most followed users in Twitter social platform

    • dataverse.harvard.edu
    Updated Aug 18, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Raad Bin Tareaf (2017). Tweets Dataset - Top 20 most followed users in Twitter social platform [Dataset]. http://doi.org/10.7910/DVN/JBXKFD
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 18, 2017
    Dataset provided by
    Harvard Dataverse
    Authors
    Raad Bin Tareaf
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    -This Dataset was gathered by crawling Twitter's REST API using the Python library tweepy 3. This dataset contains the tweets of the 20 most popular twitter users (with the most followers) whereby retweets are neglected. These accounts belong to public people, such as Katy Perry and Barack Obama, platforms, YouTube, Instagram, and television channels shows, e.g., CNN Breaking News and The Ellen Show. -Consequently, the dataset contains a mix of relatively structured tweets, tweets written in a formal and informative manner, and completely unstructured tweets written in a colloquial style. Unfortunately, the geocoordinates were not available for those tweets. - H -This Dataset has been used to generate reserach paper under title "Machine Learning Techniques for Anomalies Detection in Post Arrays". -Crawled attributes are: Author (Twitter User), Content (Tweet), Date_Time, id (Twitter User ID), language (Tweet Langugage), Number_of_Likes, Number_of_Shares. Overall: 52543 tweets of top 20 users in twitter Screen_Name #Tweets Time span (in days) TheEllenShow 3,147 - 662 jimmyfallon 3,123 - 1231 ArianaGrande 3,104 - 613 YouTube 3,077 - 411 KimKardashian 2,939 - 603 katyperry 2,924 - 1,598 selenagomez 2,913 - 2,266 rihanna 2,877 - 1,557 BarackObama 2,863 - 849 britneyspears 2,776 - 1,548 instagram 2,577 - 456 shakira 2,530 - 1,850 Cristiano 2,507 - 2,407 jtimberlake 2,478 - 2,491 ladygaga 2,329 - 894 Twitter 2,290 - 2,593 ddlovato 2,217 - 741 taylorswift13 2,029 - 2,091 justinbieber 2,000 - 664 cnnbrk 1,842 - 183

  7. f

    Twitter bot profiling

    • figshare.com
    • researchdata.smu.edu.sg
    • +1more
    pdf
    Updated May 31, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Living Analytics Research Centre (2023). Twitter bot profiling [Dataset]. http://doi.org/10.25440/smu.12062706.v1
    Explore at:
    pdfAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    SMU Research Data Repository (RDR)
    Authors
    Living Analytics Research Centre
    License

    http://rightsstatements.org/vocab/InC/1.0/http://rightsstatements.org/vocab/InC/1.0/

    Description

    This dataset comprises a set of Twitter accounts in Singapore that are used for social bot profiling research conducted by the Living Analytics Research Centre (LARC) at Singapore Management University (SMU). Here a bot is defined as a Twitter account that generates contents and/or interacts with other users automatically (at least according to human judgment). In this research, Twitter bots have been categorized into three major types:

    Broadcast bot. This bot aims at disseminating information to general audience by providing, e.g., benign links to news, blogs or sites. Such bot is often managed by an organization or a group of people (e.g., bloggers). Consumption bot. The main purpose of this bot is to aggregate contents from various sources and/or provide update services (e.g., horoscope reading, weather update) for personal consumption or use. Spam bot. This type of bots posts malicious contents (e.g., to trick people by hijacking certain account or redirecting them to malicious sites), or promotes harmless but invalid/irrelevant contents aggressively.

    This categorization is general enough to cater for new, emerging types of bot (e.g., chatbots can be viewed as a special type of broadcast bots). The dataset was collected from 1 January to 30 April 2014 via the Twitter REST and streaming APIs. Starting from popular seed users (i.e., users having many followers), their follow, retweet, and user mention links were crawled. The data collection proceeds by adding those followers/followees, retweet sources, and mentioned users who state Singapore in their profile location. Using this procedure, a total of 159,724 accounts have been collected. To identify bots, the first step is to check active accounts who tweeted at least 15 times within the month of April 2014. These accounts were then manually checked and labelled, of which 589 bots were found. As many more human users are expected in the Twitter population, the remaining accounts were randomly sampled and manually checked. With this, 1,024 human accounts were identified. In total, this results in 1,613 labelled accounts. Related Publication: R. J. Oentaryo, A. Murdopo, P. K. Prasetyo, and E.-P. Lim. (2016). On profiling bots in social media. Proceedings of the International Conference on Social Informatics (SocInfo’16), 92-109. Bellevue, WA. https://doi.org/10.1007/978-3-319-47880-7_6

  8. Twitter users in Brazil 2019-2028

    • statista.com
    Updated Jul 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Twitter users in Brazil 2019-2028 [Dataset]. https://www.statista.com/forecasts/1146589/twitter-users-in-brazil
    Explore at:
    Dataset updated
    Jul 9, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Brazil
    Description

    The number of Twitter users in Brazil was forecast to continuously increase between 2024 and 2028 by in total *** million users (+***** percent). After the ninth consecutive increasing year, the Twitter user base is estimated to reach ***** million users and therefore a new peak in 2028. Notably, the number of Twitter users of was continuously increasing over the past years.User figures, shown here regarding the platform twitter, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to *** countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).

  9. Twitter Information Operations Classification

    • kaggle.com
    Updated Dec 8, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    pookiewiggington (2020). Twitter Information Operations Classification [Dataset]. https://www.kaggle.com/pookiewiggington/twitter-information-operations-classification/activity
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 8, 2020
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    pookiewiggington
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    This data was created using Twitter's publicly available Russian information operations datasets as well as legitimate users scraped from Twitter's API and filtered for bots using the Botometer API.

    Content

    The user csv contains identifying user information fields created from their tweets as well as a column with a Bag of Words created from the aggregate of their tweet content. The tweet csv contains a sample of 2000-3000 tweets per user. The legitimate user tweets are primarily from 2020, while the Russian information operations tweets primarily range from 2014-2017. ### Context

    This data was created using Twitter's publicly available Russian information operations datasets as well as legitimate users scraped from Twitter's API and filtered for bots using the Botometer API.

    Content

    The user csv contains identifying user information fields created from their tweets as well as a column with a Bag of Words created from the aggregate of their tweet content. The tweet csv contains a sample of 2000-3000 tweets per user. The legitimate user tweets are primarily from 2020, while the Russian information operations tweets primarily range from 2014-2017. All identifying user information has been hashed for anonymity.

  10. u

    Data from: Google Analytics & Twitter dataset from a movies, TV series and...

    • portalcientificovalencia.univeuropea.com
    • figshare.com
    Updated 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Google Analytics & Twitter dataset from a movies, TV series and videogames website [Dataset]. https://portalcientificovalencia.univeuropea.com/documentos/67321ed3aea56d4af0485dc8
    Explore at:
    Dataset updated
    2024
    Authors
    Yeste, Víctor; Yeste, Víctor
    Description

    Author: Víctor Yeste. Universitat Politècnica de Valencia.The object of this study is the design of a cybermetric methodology whose objectives are to measure the success of the content published in online media and the possible prediction of the selected success variables.In this case, due to the need to integrate data from two separate areas, such as web publishing and the analysis of their shares and related topics on Twitter, has opted for programming as you access both the Google Analytics v4 reporting API and Twitter Standard API, always respecting the limits of these.The website analyzed is hellofriki.com. It is an online media whose primary intention is to solve the need for information on some topics that provide daily a vast number of news in the form of news, as well as the possibility of analysis, reports, interviews, and many other information formats. All these contents are under the scope of the sections of cinema, series, video games, literature, and comics.This dataset has contributed to the elaboration of the PhD Thesis:Yeste Moreno, VM. (2021). Diseño de una metodología cibermétrica de cálculo del éxito para la optimización de contenidos web [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/176009Data have been obtained from each last-minute news article published online according to the indicators described in the doctoral thesis. All related data are stored in a database, divided into the following tables:tesis_followers: User ID list of media account followers.tesis_hometimeline: data from tweets posted by the media account sharing breaking news from the web.status_id: Tweet IDcreated_at: date of publicationtext: content of the tweetpath: URL extracted after processing the shortened URL in textpost_shared: Article ID in WordPress that is being sharedretweet_count: number of retweetsfavorite_count: number of favoritestesis_hometimeline_other: data from tweets posted by the media account that do not share breaking news from the web. Other typologies, automatic Facebook shares, custom tweets without link to an article, etc. With the same fields as tesis_hometimeline.tesis_posts: data of articles published by the web and processed for some analysis.stats_id: Analysis IDpost_id: Article ID in WordPresspost_date: article publication date in WordPresspost_title: title of the articlepath: URL of the article in the middle webtags: Tags ID or WordPress tags related to the articleuniquepageviews: unique page viewsentrancerate: input ratioavgtimeonpage: average visit timeexitrate: output ratiopageviewspersession: page views per sessionadsense_adunitsviewed: number of ads viewed by usersadsense_viewableimpressionpercent: ad display ratioadsense_ctr: ad click ratioadsense_ecpm: estimated ad revenue per 1000 page viewstesis_stats: data from a particular analysis, performed at each published breaking news item. Fields with statistical values can be computed from the data in the other tables, but total and average calculations are saved for faster and easier further processing.id: ID of the analysisphase: phase of the thesis in which analysis has been carried out (right now all are 1)time: "0" if at the time of publication, "1" if 14 days laterstart_date: date and time of measurement on the day of publicationend_date: date and time when the measurement is made 14 days latermain_post_id: ID of the published article to be analysedmain_post_theme: Main section of the published article to analyzesuperheroes_theme: "1" if about superheroes, "0" if nottrailer_theme: "1" if trailer, "0" if notname: empty field, possibility to add a custom name manuallynotes: empty field, possibility to add personalized notes manually, as if some tag has been removed manually for being considered too generic, despite the fact that the editor put itnum_articles: number of articles analysednum_articles_with_traffic: number of articles analysed with traffic (which will be taken into account for traffic analysis)num_articles_with_tw_data: number of articles with data from when they were shared on the media’s Twitter accountnum_terms: number of terms analyzeduniquepageviews_total: total page viewsuniquepageviews_mean: average page viewsentrancerate_mean: average input ratioavgtimeonpage_mean: average duration of visitsexitrate_mean: average output ratiopageviewspersession_mean: average page views per sessiontotal: total of ads viewedadsense_adunitsviewed_mean: average of ads viewedadsense_viewableimpressionpercent_mean: average ad display ratioadsense_ctr_mean: average ad click ratioadsense_ecpm_mean: estimated ad revenue per 1000 page viewsTotal: total incomeretweet_count_mean: average incomefavorite_count_total: total of favoritesfavorite_count_mean: average of favoritesterms_ini_num_tweets: total tweets on the terms on the day of publicationterms_ini_retweet_count_total: total retweets on the terms on the day of publicationterms_ini_retweet_count_mean: average retweets on the terms on the day of publicationterms_ini_favorite_count_total: total of favorites on the terms on the day of publicationterms_ini_favorite_count_mean: average of favorites on the terms on the day of publicationterms_ini_followers_talking_rate: ratio of followers of the media Twitter account who have recently published a tweet talking about the terms on the day of publicationterms_ini_user_num_followers_mean: average followers of users who have spoken of the terms on the day of publicationterms_ini_user_num_tweets_mean: average number of tweets published by users who spoke about the terms on the day of publicationterms_ini_user_age_mean: average age in days of users who have spoken of the terms on the day of publicationterms_ini_ur_inclusion_rate: URL inclusion ratio of tweets talking about terms on the day of publicationterms_end_num_tweets: total tweets on terms 14 days after publicationterms_ini_retweet_count_total: total retweets on terms 14 days after publicationterms_ini_retweet_count_mean: average retweets on terms 14 days after publicationterms_ini_favorite_count_total: total bookmarks on terms 14 days after publicationterms_ini_favorite_count_mean: average of favorites on terms 14 days after publicationterms_ini_followers_talking_rate: ratio of media Twitter account followers who have recently posted a tweet talking about the terms 14 days after publicationterms_ini_user_num_followers_mean: average followers of users who have spoken of the terms 14 days after publicationterms_ini_user_num_tweets_mean: average number of tweets published by users who have spoken about the terms 14 days after publicationterms_ini_user_age_mean: the average age in days of users who have spoken of the terms 14 days after publicationterms_ini_ur_inclusion_rate: URL inclusion ratio of tweets talking about terms 14 days after publication.tesis_terms: data of the terms (tags) related to the processed articles.stats_id: Analysis IDtime: "0" if at the time of publication, "1" if 14 days laterterm_id: Term ID (tag) in WordPressname: Name of the termslug: URL of the termnum_tweets: number of tweetsretweet_count_total: total retweetsretweet_count_mean: average retweetsfavorite_count_total: total of favoritesfavorite_count_mean: average of favoritesfollowers_talking_rate: ratio of followers of the media Twitter account who have recently published a tweet talking about the termuser_num_followers_mean: average followers of users who were talking about the termuser_num_tweets_mean: average number of tweets published by users who were talking about the termuser_age_mean: average age in days of users who were talking about the termurl_inclusion_rate: URL inclusion ratio

  11. Data from: TWITTER DATA

    • kaggle.com
    Updated Mar 30, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    smmmmmmmmmmmm (2024). TWITTER DATA [Dataset]. https://www.kaggle.com/datasets/smmmmmmmmmmmm/twitter-data
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 30, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    smmmmmmmmmmmm
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    The dataset consists of various columns containing information related to tweets posted on Twitter. Each row in the dataset represents a single tweet. Here's an explanation of the columns in the dataset from a third-person perspective:

    Tweet: This column contains the actual text content of the tweet. It includes the message that the user posted on Twitter. Tweets can vary in length from a few characters to the maximum allowed by Twitter.

    Sentiment: This column indicates the sentiment or emotional tone of the tweet. Sentiment can be classified into categories such as positive, negative, or neutral. It reflects the overall opinion or attitude expressed in the tweet.

    Username: This column contains the username of the Twitter account that posted the tweet. Each Twitter user has a unique username that identifies their account.

    Timestamp: This column contains the timestamp indicating when the tweet was posted. It includes information about the date and time when the tweet was published on Twitter.

    Retweets: This column represents the number of times the tweet has been retweeted by other Twitter users. A retweet is when a user shares another user's tweet with their followers.

    Likes: This column indicates the number of likes or favorites received by the tweet. Users can express their appreciation for a tweet by liking it.

    Hashtags: This column contains any hashtags included in the tweet. Hashtags are keywords or phrases preceded by the "#" symbol, used to categorize or label tweets and make them more discoverable.

    Mentions: This column includes any Twitter usernames mentioned in the tweet. Mentions are when a user tags another user in their tweet by including their username preceded by the "@" symbol.

    Location: This column provides information about the location associated with the tweet. It may include details such as the city, state, country, or geographical coordinates from which the tweet was posted, if available.

    Source: This column specifies the source or platform used to post the tweet. It indicates whether the tweet was posted from the Twitter website, a mobile app, or a third-party application.

  12. Twitter Tweets Sentiment Dataset

    • kaggle.com
    • opendatabay.com
    Updated Apr 8, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    M Yasser H (2022). Twitter Tweets Sentiment Dataset [Dataset]. https://www.kaggle.com/datasets/yasserh/twitter-tweets-sentiment-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 8, 2022
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    M Yasser H
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    https://raw.githubusercontent.com/Masterx-AI/Project_Twitter_Sentiment_Analysis_/main/twitt.jpg" alt="">

    Description:

    Twitter is an online Social Media Platform where people share their their though as tweets. It is observed that some people misuse it to tweet hateful content. Twitter is trying to tackle this problem and we shall help it by creating a strong NLP based-classifier model to distinguish the negative tweets & block such tweets. Can you build a strong classifier model to predict the same?

    Each row contains the text of a tweet and a sentiment label. In the training set you are provided with a word or phrase drawn from the tweet (selected_text) that encapsulates the provided sentiment.

    Make sure, when parsing the CSV, to remove the beginning / ending quotes from the text field, to ensure that you don't include them in your training.

    You're attempting to predict the word or phrase from the tweet that exemplifies the provided sentiment. The word or phrase should include all characters within that span (i.e. including commas, spaces, etc.)

    Columns:

    1. textID - unique ID for each piece of text
    2. text - the text of the tweet
    3. sentiment - the general sentiment of the tweet

    Acknowledgement:

    The dataset is download from Kaggle Competetions:
    https://www.kaggle.com/c/tweet-sentiment-extraction/data?select=train.csv

    Objective:

    • Understand the Dataset & cleanup (if required).
    • Build classification models to predict the twitter sentiments.
    • Compare the evaluation metrics of vaious classification algorithms.
  13. f

    101 Twitter users

    • figshare.com
    application/x-rar
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hsien-Tsung Chang; Clief Hendro Sengkey; Minh-Khoi Le (2023). 101 Twitter users [Dataset]. http://doi.org/10.6084/m9.figshare.12643865.v2
    Explore at:
    application/x-rarAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    figshare
    Authors
    Hsien-Tsung Chang; Clief Hendro Sengkey; Minh-Khoi Le
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    We collected the data of a Twitter user using Tweepy to access the Twitter API. We crawled the list of each user account’s followers. Twitter allowed a request of a maximum of 200 tweets per time window and because of limitations of the Twitter API, we could only make a request every 15 minutes. Next, we obtained the most recent tweets of each user in the study. We extracted the most common hashtags used in the sample tweets and crawled the most recent 50 tweets that contained each hashtag and tweets that mentioned a particular user, for example ’@username.’ Initially, we chose 101 user accounts and documented the attributes of each user’s account (number of followers, a list of followers, and the recent tweets of each follower).

  14. o

    Twitter Public Sentiment Dataset

    • opendatabay.com
    .undefined
    Updated Jul 6, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Datasimple (2025). Twitter Public Sentiment Dataset [Dataset]. https://www.opendatabay.com/data/ai-ml/04ea3224-1b10-48d4-871a-496c9a2633ff
    Explore at:
    .undefinedAvailable download formats
    Dataset updated
    Jul 6, 2025
    Dataset authored and provided by
    Datasimple
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Telecommunications & Network Data
    Description

    This dataset provides a collection of 1000 tweets designed for sentiment analysis. The tweets were sourced from Twitter using Python and systematically generated using various modules to ensure a balanced representation of different tweet types, user behaviours, and sentiments. This includes the use of a random module for IDs and text, a faker module for usernames and dates, and a textblob module for assigning sentiment. The dataset's purpose is to offer a robust foundation for analysing and visualising sentiment trends and patterns, aiding in the initial exploration of data and the identification of significant patterns or trends.

    Columns

    • Tweet ID: A unique identifier assigned to each individual tweet.
    • Text: The actual textual content of the tweet.
    • User: The username of the individual who posted the tweet.
    • Created At: The date and time when the tweet was originally published.
    • Likes: The total number of likes or approvals the tweet received.
    • Retweets: The total count of times the tweet was shared by other users.
    • Sentiment: The categorised emotional tone of the tweet, typically labelled as positive, neutral, or negative.

    Distribution

    The dataset is provided in a CSV file format. It consists of 1000 individual tweet records, structured in a tabular layout with the columns detailed above. A sample file will be made available separately on the platform.

    Usage

    This dataset is ideal for: * Analysing and visualising sentiment trends and patterns in social media. * Initial data exploration to uncover insights into tweet characteristics and user emotions. * Identifying underlying patterns or trends within social media conversations. * Developing and training machine learning models for sentiment classification. * Academic research into Natural Language Processing (NLP) and social media dynamics. * Educational purposes, allowing students to practise data analysis and visualisation techniques.

    Coverage

    The dataset spans tweets created between January and April 2023, as observed from the included data samples. While specific geographic or demographic information for users is not available within the dataset, the nature of Twitter implies a general global scope, reflecting a variety of user behaviours and sentiments without specific regional or population group focus.

    License

    CC0

    Who Can Use It

    This dataset is valuable for: * Data Scientists and Machine Learning Engineers working on NLP tasks and model development. * Researchers in fields such as Natural Language Processing, Machine Learning Algorithms, Deep Learning, and Computer Science. * Data Analysts looking to extract insights from social media content. * Academics and Students undertaking projects related to sentiment analysis or social media studies. * Anyone interested in understanding online sentiment and user behaviour on social media platforms.

    Dataset Name Suggestions

    • Twitter Public Sentiment Dataset
    • Social Media Text Sentiment Analysis
    • General Tweet Mood Data
    • Twitter Sentiment Collection 2023
    • Microblog Sentiment Dataset

    Attributes

    Original Data Source: Twitter Sentiment Analysis using Roberta and VaderTwitter Sentiment Analysis using Roberta and Vader

  15. u

    Data from: IA Tweets Analysis Dataset (Spanish)

    • produccioncientifica.uca.es
    Updated 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Guerrero-Contreras, Gabriel; Balderas-Díaz, Sara; Serrano-Fernández, Alejandro; Muñoz, Andrés; Guerrero-Contreras, Gabriel; Balderas-Díaz, Sara; Serrano-Fernández, Alejandro; Muñoz, Andrés (2024). IA Tweets Analysis Dataset (Spanish) [Dataset]. https://produccioncientifica.uca.es/documentos/67321e53aea56d4af04854c2
    Explore at:
    Dataset updated
    2024
    Authors
    Guerrero-Contreras, Gabriel; Balderas-Díaz, Sara; Serrano-Fernández, Alejandro; Muñoz, Andrés; Guerrero-Contreras, Gabriel; Balderas-Díaz, Sara; Serrano-Fernández, Alejandro; Muñoz, Andrés
    Description

    Cite as

    Guerrero-Contreras, G., Balderas-Díaz, S., Serrano-Fernández, A., & Muñoz, A. (2024, June). Enhancing Sentiment Analysis on Social Media: Integrating Text and Metadata for Refined Insights. In 2024 International Conference on Intelligent Environments (IE) (pp. 62-69). IEEE.

    General Description

    This dataset comprises 4,038 tweets in Spanish, related to discussions about artificial intelligence (AI), and was created and utilized in the publication "Enhancing Sentiment Analysis on Social Media: Integrating Text and Metadata for Refined Insights," (10.1109/IE61493.2024.10599899) presented at the 20th International Conference on Intelligent Environments. It is designed to support research on public perception, sentiment, and engagement with AI topics on social media from a Spanish-speaking perspective. Each entry includes detailed annotations covering sentiment analysis, user engagement metrics, and user profile characteristics, among others.

    Data Collection Method

    Tweets were gathered through the Twitter API v1.1 by targeting keywords and hashtags associated with artificial intelligence, focusing specifically on content in Spanish. The dataset captures a wide array of discussions, offering a holistic view of the Spanish-speaking public's sentiment towards AI.

    Dataset Content

    ID: A unique identifier for each tweet.

    text: The textual content of the tweet. It is a string with a maximum allowed length of 280 characters.

    polarity: The tweet's sentiment polarity (e.g., Positive, Negative, Neutral).

    favorite_count: Indicates how many times the tweet has been liked by Twitter users. It is a non-negative integer.

    retweet_count: The number of times this tweet has been retweeted. It is a non-negative integer.

    user_verified: When true, indicates that the user has a verified account, which helps the public recognize the authenticity of accounts of public interest. It is a boolean data type with two allowed values: True or False.

    user_default_profile: When true, indicates that the user has not altered the theme or background of their user profile. It is a boolean data type with two allowed values: True or False.

    user_has_extended_profile: When true, indicates that the user has an extended profile. An extended profile on Twitter allows users to provide more detailed information about themselves, such as an extended biography, a header image, details about their location, website, and other additional data. It is a boolean data type with two allowed values: True or False.

    user_followers_count: The current number of followers the account has. It is a non-negative integer.

    user_friends_count: The number of users that the account is following. It is a non-negative integer.

    user_favourites_count: The number of tweets this user has liked since the account was created. It is a non-negative integer.

    user_statuses_count: The number of tweets (including retweets) posted by the user. It is a non-negative integer.

    user_protected: When true, indicates that this user has chosen to protect their tweets, meaning their tweets are not publicly visible without their permission. It is a boolean data type with two allowed values: True or False.

    user_is_translator: When true, indicates that the user posting the tweet is a verified translator on Twitter. This means they have been recognized and validated by the platform as translators of content in different languages. It is a boolean data type with two allowed values: True or False.

    Potential Use Cases

    This dataset is aimed at academic researchers and practitioners with interests in:

    Sentiment analysis and natural language processing (NLP) with a focus on AI discussions in the Spanish language.

    Social media analysis on public engagement and perception of artificial intelligence among Spanish speakers.

    Exploring correlations between user engagement metrics and sentiment in discussions about AI.

    Data Format and File Type

    The dataset is provided in CSV format, ensuring compatibility with a wide range of data analysis tools and programming environments.

    License

    The dataset is available under the Creative Commons Attribution 4.0 International (CC BY 4.0) license, permitting sharing, copying, distribution, transmission, and adaptation of the work for any purpose, including commercial, provided proper attribution is given.

  16. i

    Information Diffusion Dataset on Twitter with User Tweets

    • ieee-dataport.org
    Updated Dec 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zejian Wang (2023). Information Diffusion Dataset on Twitter with User Tweets [Dataset]. https://ieee-dataport.org/documents/information-diffusion-dataset-twitter-user-tweets
    Explore at:
    Dataset updated
    Dec 3, 2023
    Authors
    Zejian Wang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    We looked at 10

  17. Data from: GeoCoV19: A Dataset of Hundreds of Millions of Multilingual...

    • zenodo.org
    • data.niaid.nih.gov
    zip
    Updated Jun 16, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Umair Qazi; Muhammad Imran; Muhammad Imran; Ferda Ofli; Ferda Ofli; Umair Qazi (2020). GeoCoV19: A Dataset of Hundreds of Millions of Multilingual COVID-19 Tweets with Location Information [Dataset]. http://doi.org/10.5281/zenodo.3878599
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jun 16, 2020
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Umair Qazi; Muhammad Imran; Muhammad Imran; Ferda Ofli; Ferda Ofli; Umair Qazi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    We present GeoCoV19, a large-scale Twitter dataset related to the ongoing COVID-19 pandemic. The dataset has been collected over a period of 90 days from February 1 to May 1, 2020 and consists of more than 524 million multilingual tweets. As the geolocation information is essential for many tasks such as disease tracking and surveillance, we employed a gazetteer-based approach to extract toponyms from user location and tweet content to derive their geolocation information using the Nominatim (Open Street Maps) data at different geolocation granularity levels. In terms of geographical coverage, the dataset spans over 218 countries and 47K cities in the world. The tweets in the dataset are from more than 43 million Twitter users, including around 209K verified accounts. These users posted tweets in 62 different languages.

  18. E

    Data from: The Twitter user dataset for discriminating between Bosnian,...

    • live.european-language-grid.eu
    binary format
    Updated Jan 25, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). The Twitter user dataset for discriminating between Bosnian, Croatian, Montenegrin and Serbian Twitter-HBS 1.0 [Dataset]. https://live.european-language-grid.eu/catalogue/corpus/20171
    Explore at:
    binary formatAvailable download formats
    Dataset updated
    Jan 25, 2022
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    The Twitter-HBS dataset consists of Twitter users, their tweets, and the label of their predominantly used language - Bosnian, Croatian, Montenegrin, or Serbian. Among the tweets, there are also tweets in other languages (mainly English) as the label encodes the predominantly used language of a user only. The main intended usage of this dataset is discrimination between closely-related languages on the level of a Twitter user (not a single tweet). The only pre-processing performed on the texts of the tweets is the transliteration from the Cyrillic into the Latin script so that the dataset measures the quality of the user classifications regardless of the script used.

  19. Z

    COVID-19 Tweets : A dataset contaning more than 600k tweets on the novel...

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jan 23, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Habiba Drias (2021). COVID-19 Tweets : A dataset contaning more than 600k tweets on the novel CoronaVirus [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_4024176
    Explore at:
    Dataset updated
    Jan 23, 2021
    Dataset provided by
    Habiba Drias
    Yassine Drias
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset contains 653 996 tweets related to the Coronavirus topic and highlighted by hashtags such as: #COVID-19, #COVID19, #COVID, #Coronavirus, #NCoV and #Corona. The tweets' crawling period started on the 27th of February and ended on the 25th of March 2020, which is spread over four weeks.

    The tweets were generated by 390 458 users from 133 different countries and were written in 61 languages. English being the most used language with almost 400k tweets, followed by Spanish with around 80k tweets.

    The data is stored in as a CSV file, where each line represents a tweet. The CSV file provides information on the following fields:

    Author: the user who posted the tweet

    Recipient: contains the name of the user in case of a reply, otherwise it would have the same value as the previous field

    Tweet: the full content of the tweet

    Hashtags: the list of hashtags present in the tweet

    Language: the language of the tweet

    Relationship: gives information on the type of the tweet, whether it is a retweet, a reply, a tweet with a mention, etc.

    Location: the country of the author of the tweet, which is unfortunately not always available

    Date: the publication date of the tweet

    Source: the device or platform used to send the tweet

    The dataset can as well be used to construct a social graph since it includes the relations "Replies to", "Retweet", "MentionsInRetweet" and "Mentions".

  20. Twitter users worldwide 2019-2028

    • statista.com
    • ai-chatbox.pro
    Updated Dec 10, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2024). Twitter users worldwide 2019-2028 [Dataset]. https://www.statista.com/topics/2297/twitter-marketing/
    Explore at:
    Dataset updated
    Dec 10, 2024
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Description

    The global number of Twitter users in was forecast to continuously increase between 2024 and 2028 by in total 74.3 million users (+17.32 percent). After the ninth consecutive increasing year, the Twitter user base is estimated to reach 503.42 million users and therefore a new peak in 2028. Notably, the number of Twitter users of was continuously increasing over the past years.User figures, shown here regarding the platform twitter, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of Twitter users in countries like South America and the Americas.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista Research Department (2024). Twitter users in the United States 2019-2028 [Dataset]. https://www.statista.com/topics/3196/social-media-usage-in-the-united-states/
Organization logo

Twitter users in the United States 2019-2028

Explore at:
74 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jun 13, 2024
Dataset provided by
Statistahttp://statista.com/
Authors
Statista Research Department
Area covered
United States
Description

The number of Twitter users in the United States was forecast to continuously increase between 2024 and 2028 by in total 4.3 million users (+5.32 percent). After the ninth consecutive increasing year, the Twitter user base is estimated to reach 85.08 million users and therefore a new peak in 2028. Notably, the number of Twitter users of was continuously increasing over the past years.User figures, shown here regarding the platform twitter, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of Twitter users in countries like Canada and Mexico.

Search
Clear search
Close search
Google apps
Main menu