Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically
Apple is one of the most influential and recognisable brands in the world, responsible for the rise of the smartphone with the iPhone. Valued at over $2 trillion in 2021, it is also the most valuable...
The number of smartphone users in the United States was forecast to continuously increase between 2024 and 2029 by in total 17.4 million users (+5.61 percent). After the fifteenth consecutive increasing year, the smartphone user base is estimated to reach 327.54 million users and therefore a new peak in 2029. Notably, the number of smartphone users of was continuously increasing over the past years.Smartphone users here are limited to internet users of any age using a smartphone. The shown figures have been derived from survey data that has been processed to estimate missing demographics.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of smartphone users in countries like Mexico and Canada.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Property-Plant-and-Equipment-Gross Time Series for Apple Inc. Apple Inc. designs, manufactures, and markets smartphones, personal computers, tablets, wearables, and accessories worldwide. The company offers iPhone, a line of smartphones; Mac, a line of personal computers; iPad, a line of multi-purpose tablets; and wearables, home, and accessories comprising AirPods, Apple TV, Apple Watch, Beats products, and HomePod. It also provides AppleCare support and cloud services; and operates various platforms, including the App Store that allow customers to discover and download applications and digital content, such as books, music, video, games, and podcasts, as well as advertising services include third-party licensing arrangements and its own advertising platforms. In addition, the company offers various subscription-based services, such as Apple Arcade, a game subscription service; Apple Fitness+, a personalized fitness service; Apple Music, which offers users a curated listening experience with on-demand radio stations; Apple News+, a subscription news and magazine service; Apple TV+, which offers exclusive original content; Apple Card, a co-branded credit card; and Apple Pay, a cashless payment service, as well as licenses its intellectual property. The company serves consumers, and small and mid-sized businesses; and the education, enterprise, and government markets. It distributes third-party applications for its products through the App Store. The company also sells its products through its retail and online stores, and direct sales force; and third-party cellular network carriers, wholesalers, retailers, and resellers. Apple Inc. was founded in 1976 and is headquartered in Cupertino, California.
Open Jackson is the City of Jackson's open data portal to find facts, figures, and maps related to our lives within the city. We are working to make this the default technology platform to support the publication of the City's public information, in the form of data, and to make this information easy to find, access, and use by a broad audience. The release of Open Jackson marks the culminating point of our efforts to transition to a transparent government. We will continue our work to curate high-quality and up-to-date datasets and develop a platform that is widely accessible. If you have feedback, please contact [email protected]. In 2015, a new law created the online open data portal to increase transparency and accountability in Jackson by making key information easily accessible and usable to both city officials and citizens. Click here to view the Jackson Open Data Policy. You may use the search bar at the top of the page to find data. Once you find a dataset you would like to download, select the data and view the available download options. Datasets can also be filtered to display only the features of the dataset that you are interested in for download. Data is offered for download in several formats. Spatial and tabular data formats (CSV, KML, shapefile, and JSON) are available for use in GIS and other applications. Mobile users may require additional software to view downloaded data. To edit a shapefile on an iOS device, users will need to unzip the file with an app such as iZip and then open the file in a viewer/editor such as iGIS. By using data made available through this site, the user agrees to all the conditions stated in the following paragraphs as well as the terms and conditions described under the City of Jackson homepage. The data made available has been modified for use from its original source, which is the City of Jackson. The City of Jackson makes no claims as to the completeness, accuracy, timeliness, or content of any data contained in this application; makes no representation of any kind, including, but not limited to, warranty of the accuracy or fitness for a particular use; nor are any such warranties to be implied or inferred with respect to the information or data furnished herein. The data is subject to change as modifications and updates are complete. It is understood that the information contained in the site is being used at one's own risk. The City of Jackson reserves the right to discontinue providing any or all of the data feeds at any time and to require the termination of any and all displaying, distributing or otherwise using any or all of the data for any reason including, without limitation, your violation of any provision of these Terms of Use. If you have questions, suggestions, requests or any other feedback, please contact or email at [email protected]
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Includes three .csv files. Any analysis is appreciated, even if it is a short one 😎
Benchmarks allow for easy comparison between multiple devices by scoring their performance on a standardized series of tests, and they are useful in many instances: When buying a new phone or tablet
smartphone cpu_stats.csv is the main data. Updated performance rating of smartphone SoCs as of 2022. Includes summary of Geekbench 5 and AnTuTu v9 scores. Includes CPU specs such as clock speed, core count, core config, and GPU.
ML ALL_benchmarks.csv is the Geekbench ML Benchmark data. This tells you how well each smartphone device performs when performing Machine Learning tasks. The data is gathered from user-submitted Geekbench ML results from the Geekbench Browser. To make sure the results accurately reflect the average performance of each device, the dataset only includes devices with at least five unique results in the Geekbench Browser.
antutu android vs ios_v4.csv is the AnTuTu benchmarks data. It includes information about CPU, GPU, MEM, UX and Total score.
Benchmark apps gives your device an overall numerical score as well as individual scores for each test it performs. The overall score is created by adding the results of those individual scores. These score numbers don't mean much on their own, they're just helpful for comparing different devices. For example, if your device's score is 300000, a device with a score of 600000 is about twice as fast. You can use individual test scores to compare the relative performance of specific parts of different devices. For example, you could compare how fast your phone's storage performs compared to another phone's storage.
The first part of the overall score is your CPU score. The CPU score in turn includes the output of CPU Mathematical Operations, CPU Common Algorithms, and CPU Multi-Core. In simpler words, the CPU score means how fast your phone processes commands. Your device's central processing unit (CPU) does most of the number-crunching. A faster CPU can run apps faster, so everything on your device will seem faster. Of course, once you get to a certain point, CPU speed won't affect performance much. However, a faster CPU may still help when running more demanding applications, such as high-end games.
The second part of the overall score is your GPU score. This score is comprised of the output of graphical components like Metal, OpenGL or Vulkan, depending on your device. The GPU score means how well your phone displays 2D and 3D graphics. Your device's graphics processing unit (GPU) handles accelerated graphics. When you play a game, your GPU kicks into gear and renders the 3D graphics or accelerates the shiny 2D graphics. Many interface animations and other transitions also use the GPU. The GPU is optimized for these sorts of graphics operations. The CPU could perform them, but it's more general-purpose and would take more time and battery power. You can say that your GPU does the graphics number-crunching, so a higher score here is better.
The third part of the overall score is your MEM score. The MEM score includes the results of the output of RAM Access, ROM APP IO, ROM Sequential Read and Write, and ROM Random Access. In simpler words, the MEM score means how fast and how much memory your phone possesses. RAM stands for random-access memory; while ROM stands for read-only memory. Your device uses RAM as working memory, while flash storage or an internal SD card is used for long-term storage. The faster it can write to and read data from its RAM, the faster your device will perform. Your RAM is constantly being used on your device, whatever you're doing. While RAM is volatile in nature, ROM is its opposite. RAM mostly stores temporary data, while ROM is used to store permanent data like the firmware of your phone. Both the RAM and ROM make up the memory of your phone, helping it to perform tasks efficiently.
The fourth and final part of the overall score is your UX score. The UX score is made up of the results of the output of the Data Security, Data Processing, Image Processing, User Experience, and Video CTS and Decode tests. The UX score means an overall score that represents how the device's "user experience" will be in the real world. It's a number you can look at to get a feel for a device's overall performance without digging into the above benchmarks or relying too much on the overall score.
Sourced from Geekbench and AnTuTu.
You may use the search bar at the top of the page to find data. Once you find a dataset you would like to download, select the data and view the available download options. Datasets can also be filtered to display only the features of the dataset that you are interested in for download. Data is offered for download in several formats. Spatial and tabular data formats (CSV, KML, shapefile, and JSON) are available for use in GIS and other applications. Mobile users may require additional software to view downloaded data. To edit a shapefile on an iOS device, users will need to unzip the file with an app such as iZip and then open the file in a viewer/editor such as iGIS. If you need a quick primer on City of Denton Open Data platform, watch this intro video By using data made available through this site, the user agrees to all the conditions stated in the following paragraphs as well as the terms and conditions described under the City of Denton homepage. The data made available has been modified for use from its original source, which is the City of Denton. The City of Denton makes no claims as to the completeness, accuracy, timeliness, or content of any data contained in this application; makes no representation of any kind, including, but not limited to, warranty of the accuracy or fitness for a particular use; nor are any such warranties to be implied or inferred with respect to the information or data furnished herein. The data is subject to change as modifications and updates are complete. It is understood that the information contained in the site is being used at one's own risk. The City of Denton reserves the right to discontinue providing any or all of the data feeds at any time and to require the termination of any and all displaying, distributing or otherwise using any or all of the data for any reason including, without limitation, your violation of any provision of these Terms of Use. If you have questions, suggestions, requests or any other feedback, please contact or email at [email protected]
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
We are publishing a walking activity dataset including inertial and positioning information from 19 volunteers, including reference distance measured using a trundle wheel. The dataset includes a total of 96.7 Km walked by the volunteers, split into 203 separate tracks. The trundle wheel is of two types: it is either an analogue trundle wheel, which provides the total amount of meters walked in a single track, or it is a sensorized trundle wheel, which measures every revolution of the wheel, therefore recording a continuous incremental distance.
Each track has data from the accelerometer and gyroscope embedded in the phones, location information from the Global Navigation Satellite System (GNSS), and the step count obtained by the device. The dataset can be used to implement walking distance estimation algorithms and to explore data quality in the context of walking activity and physical capacity tests, fitness, and pedestrian navigation.
Methods
The proposed dataset is a collection of walks where participants used their own smartphones to capture inertial and positioning information. The participants involved in the data collection come from two sites. The first site is the Oxford University Hospitals NHS Foundation Trust, United Kingdom, where 10 participants (7 affected by cardiovascular diseases and 3 healthy individuals) performed unsupervised 6MWTs in an outdoor environment of their choice (ethical approval obtained by the UK National Health Service Health Research Authority protocol reference numbers: 17/WM/0355). All participants involved provided informed consent. The second site is at Malm ̈o University, in Sweden, where a group of 9 healthy researchers collected data. This dataset can be used by researchers to develop distance estimation algorithms and how data quality impacts the estimation.
All walks were performed by holding a smartphone in one hand, with an app collecting inertial data, the GNSS signal, and the step counting. On the other free hand, participants held a trundle wheel to obtain the ground truth distance. Two different trundle wheels were used: an analogue trundle wheel that allowed the registration of a total single value of walked distance, and a sensorized trundle wheel which collected timestamps and distance at every 1-meter revolution, resulting in continuous incremental distance information. The latter configuration is innovative and allows the use of temporal windows of the IMU data as input to machine learning algorithms to estimate walked distance. In the case of data collected by researchers, if the walks were done simultaneously and at a close distance from each other, only one person used the trundle wheel, and the reference distance was associated with all walks that were collected at the same time.The walked paths are of variable length, duration, and shape. Participants were instructed to walk paths of increasing curvature, from straight to rounded. Irregular paths are particularly useful in determining limitations in the accuracy of walked distance algorithms. Two smartphone applications were developed for collecting the information of interest from the participants' devices, both available for Android and iOS operating systems. The first is a web-application that retrieves inertial data (acceleration, rotation rate, orientation) while connecting to the sensorized trundle wheel to record incremental reference distance [1]. The second app is the Timed Walk app [2], which guides the user in performing a walking test by signalling when to start and when to stop the walk while collecting both inertial and positioning data. All participants in the UK used the Timed Walk app.
The data collected during the walk is from the Inertial Measurement Unit (IMU) of the phone and, when available, the Global Navigation Satellite System (GNSS). In addition, the step count information is retrieved by the sensors embedded in each participant’s smartphone. With the dataset, we provide a descriptive table with the characteristics of each recording, including brand and model of the smartphone, duration, reference total distance, types of signals included and additionally scoring some relevant parameters related to the quality of the various signals. The path curvature is one of the most relevant parameters. Previous literature from our team, in fact, confirmed the negative impact of curved-shaped paths with the use of multiple distance estimation algorithms [3]. We visually inspected the walked paths and clustered them in three groups, a) straight path, i.e. no turns wider than 90 degrees, b) gently curved path, i.e. between one and five turns wider than 90 degrees, and c) curved path, i.e. more than five turns wider than 90 degrees. Other features relevant to the quality of collected signals are the total amount of time above a threshold (0.05s and 6s) where, respectively, inertial and GNSS data were missing due to technical issues or due to the app going in the background thus losing access to the sensors, sampling frequency of different data streams, average walking speed and the smartphone position. The start of each walk is set as 0 ms, thus not reporting time-related information. Walks locations collected in the UK are anonymized using the following approach: the first position is fixed to a central location of the city of Oxford (latitude: 51.7520, longitude: -1.2577) and all other positions are reassigned by applying a translation along the longitudinal and latitudinal axes which maintains the original distance and angle between samples. This way, the exact geographical location is lost, but the path shape and distances between samples are maintained. The difference between consecutive points “as the crow flies” and path curvature was numerically and visually inspected to obtain the same results as the original walks. Computations were made possible by using the Haversine Python library.
Multiple datasets are available regarding walking activity recognition among other daily living tasks. However, few studies are published with datasets that focus on the distance for both indoor and outdoor environments and that provide relevant ground truth information for it. Yan et al. [4] introduced an inertial walking dataset within indoor scenarios using a smartphone placed in 4 positions (on the leg, in a bag, in the hand, and on the body) by six healthy participants. The reference measurement used in this study is a Visual Odometry System embedded in a smartphone that has to be worn at the chest level, using a strap to hold it. While interesting and detailed, this dataset lacks GNSS data, which is likely to be used in outdoor scenarios, and the reference used for localization also suffers from accuracy issues, especially outdoors. Vezovcnik et al. [5] analysed estimation models for step length and provided an open-source dataset for a total of 22 km of only inertial walking data from 15 healthy adults. While relevant, their dataset focuses on steps rather than total distance and was acquired on a treadmill, which limits the validity in real-world scenarios. Kang et al. [6] proposed a way to estimate travelled distance by using an Android app that uses outdoor walking patterns to match them in indoor contexts for each participant. They collect data outdoors by including both inertial and positioning information and they use average values of speed obtained by the GPS data as reference labels. Afterwards, they use deep learning models to estimate walked distance obtaining high performances. Their results share that 3% to 11% of the data for each participant was discarded due to low quality. Unfortunately, the name of the used app is not reported and the paper does not mention if the dataset can be made available.
This dataset is heterogeneous under multiple aspects. It includes a majority of healthy participants, therefore, it is not possible to generalize the outcomes from this dataset to all walking styles or physical conditions. The dataset is heterogeneous also from a technical perspective, given the difference in devices, acquired data, and used smartphone apps (i.e. some tests lack IMU or GNSS, sampling frequency in iPhone was particularly low). We suggest selecting the appropriate track based on desired characteristics to obtain reliable and consistent outcomes.
This dataset allows researchers to develop algorithms to compute walked distance and to explore data quality and reliability in the context of the walking activity. This dataset was initiated to investigate the digitalization of the 6MWT, however, the collected information can also be useful for other physical capacity tests that involve walking (distance- or duration-based), or for other purposes such as fitness, and pedestrian navigation.
The article related to this dataset will be published in the proceedings of the IEEE MetroXRAINE 2024 conference, held in St. Albans, UK, 21-23 October.
This research is partially funded by the Swedish Knowledge Foundation and the Internet of Things and People research center through the Synergy project Intelligent and Trustworthy IoT Systems.
Birmingham, Alabama Mayor William A. Bell signed an executive order to improve the way citizens interact with their government. The new law allowed the creation of this online open data portal to increase transparency and accountability in Birmingham by making key information easily accessible and usable to both city officials and citizens. Click here to view the Birmingham Open Data Policy. You may use the search bar at the top of the page to find data. Once you find a dataset you would like to download, select the data and view the available download options. Datasets can also be filtered to display only the features of the dataset that you are interested in for download. Data is offered for download in several formats. Spatial and tabular data formats (CSV, KML, shapefile, and JSON) are available for use in GIS and other applications. Mobile users may require additional software to view downloaded data. To edit a shapefile on an iOS device, users will need to unzip the file with an app such as iZip and then open the file in a viewer/editor such as iGIS. By using data made available through this site, the user agrees to all the conditions stated in the following paragraphs as well as the terms and conditions described under the City of Birmingham homepage. The data made available has been modified for use from its original source, which is the City of Birmingham. The City of Birmingham makes no claims as to the completeness, accuracy, timeliness, or content of any data contained in this application; makes no representation of any kind, including, but not limited to, warranty of the accuracy or fitness for a particular use; nor are any such warranties to be implied or inferred with respect to the information or data furnished herein. The data is subject to change as modifications and updates are complete. It is understood that the information contained in the site is being used at one's own risk. The City of Birmingham reserves the right to discontinue providing any or all of the data feeds at any time and to require the termination of any and all displaying, distributing or otherwise using any or all of the data for any reason including, without limitation, your violation of any provision of these Terms of Use. If you have questions, suggestions, requests or any other feedback, please contact or email at [email protected]
Replay-Mobile is a dataset for face recognition and presentation attack detection (anti-spoofing). The dataset consists of 1190 video clips of photo and video presentation attacks (spoofing attacks) to 40 clients, under different lighting conditions. These videos were recorded with an iPad Mini2 (running iOS) and a LG-G4 smartphone (running Android).
Database Description
All videos have been captured using the front-camera of the mobile device (tablet or phone). The front-camera produces colour videos with a resolution of 720 pixels (width) by 1280 pixels (height) and saved in ".mov" file-format. The frame rate is about 25 Hz. Real-accesses have been performed by the genuine user (presenting one's true face to the device). Attack-accesses have been performed by displaying a photo or a video recording of the attacked client, for at least 10 seconds.
Real client accesses have been recorded under five different lighting conditions (controlled, adverse, direct, lateral and diffuse). In addition, to produce the attacks, high-resolution photos and videos from each client were taken under conditions similar to those in their authentication sessions (lighton, lightoff).
The 1190 real-accesses and attacks videos were then grouped in the following way:
Training set: contains 120 real-accesses and 192 attacks under different lighting conditions;
Development set: contains 160 real-accesses and 256 attacks under different lighting conditions;
Test set: contains 110 real-accesses and 192 attacks under different lighting conditions;
Enrollment set: contains 160 real-accesses under different lighting conditions, to be used exclusively for studying the baseline performance of face recognition systems. (This set is again partitioned into 'Training', 'Development' and 'Test' sets.)
Attacks
For photos attacks a Nikon coolix P520 camera, which records 18Mpixel photographs, has been used. Video attacks were captured using the back-camera of a smartphone LG-G4, which records 1080p FHD video clips using its 16 Mpixel camera.
Attacks have been performed in two ways:
A matte-screen was used to perform the attacks (i.e., to display the digital photo or video of the attacked identity). For all such (matte-screen) attacks, a stand was used to hold capturing devices.
Print attacks. For "fixed" attacks, both capturing devices were supported on a stand (as for matte-screen attacks). For "hand" attacks, the spoofer held the capturing device in his/her own hands while the spoof-resource (printed photo) was stationary.
In total, 16 attack videos were registered for each client, 8 for each of the attacking modes described above.
4 x mobile attacks using an Philips 227ELH screen (with resolution 1920x1080 pixels)
4 x tablet attacks using an Philips 227ELH screen (with resolution 1920x1080 pixels)
2 x mobile attacks using hard-copy print attacks fixed (produced on a Konica Minolta ineo+ 224e color laser printer) occupying the whole available printing surface on A4 paper
2 x mobile attacks using hard-copy print attacks fixed (produced on a Konica Minolta ineo+ 224e color laser printer) occupying the whole available printing surface on A4 paper
2 x mobile attacks using hard-copy print attacks hand (produced on a Konica Minolta ineo+ 224e color laser printer) occupying the whole available printing surface on A4 paper
2 x mobile attacks using hard-copy print attacks hand (produced on a Konica Minolta ineo+ 224e color laser printer) occupying the whole available printing surface on A4 paper
Reference
If you use this database, please cite the following publication:
Artur Costa-Pazo, Sushil Bhattacharjee, Esteban Vazquez-Fernandez and Sébastien Marcel,"The REPLAY-MOBILE Face Presentation-Attack Database", IEEE BIOSIG 2016. 10.1109/BIOSIG.2016.7736936 http://publications.idiap.ch/index.php/publications/show/3477
The number of Apple iPhone unit sales dramatically increased between 2007 and 2023. Indeed, in 2007, when the iPhone was first introduced, Apple shipped around *** million smartphones. By 2023, this number reached over *** million units. The newest models and iPhone’s lasting popularity Apple has ventured into its 17th smartphone generation with its Phone ** lineup, which, released in September 2023, includes the **, ** Plus, ** Pro and Pro Max. Powered by the A16 bionic chip and running on iOS **, these models present improved displays, cameras, and functionalities. On the one hand, such features come, however, with hefty price tags, namely, an average of ***** U.S. dollars. On the other hand, they contribute to making Apple among the leading smartphone vendors worldwide, along with Samsung and Xiaomi. In the first quarter of 2024, Samsung shipped over ** million smartphones, while Apple recorded shipments of roughly ** million units. Success of Apple’s other products Apart from the iPhone, which is Apple’s most profitable product, Apple is also the inventor of other heavy-weight players in the consumer electronics market. The Mac computer and the iPad, like the iPhone, are both pioneers in their respective markets and have helped popularize the use of PCs and tablets. The iPad is especially successful, having remained as the largest vendor in the tablet market ever since its debut. The hottest new Apple gadget is undoubtedly the Apple Watch, which is a line of smartwatches that has fitness tracking capabilities and can be integrated via iOS with other Apple products and services. The Apple Watch has also been staying ahead of other smart watch vendors since its initial release and secures around ** percent of the market share as of the latest quarter.
The number of smartphone users in the Philippines was forecast to increase between 2024 and 2029 by in total 5.6 million users (+7.29 percent). This overall increase does not happen continuously, notably not in 2026, 2027, 2028 and 2029. The smartphone user base is estimated to amount to 82.33 million users in 2029. Smartphone users here are limited to internet users of any age using a smartphone. The shown figures have been derived from survey data that has been processed to estimate missing demographics.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of smartphone users in countries like Thailand and Indonesia.
The smartphone penetration in the Philippines was forecast to continuously decrease between 2024 and 2029 by in total 6.4 percentage points. According to this forecast, in 2029, the penetration will have decreased for the fourth consecutive year to 65.75 percent. The penetration rate refers to the share of the total population.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the smartphone penetration in countries like Laos and Malaysia.
The number of mobile broadband connections in the Philippines was forecast to continuously increase between 2024 and 2029 by in total 18.3 million connections (+20.46 percent). After the ninth consecutive increasing year, the number of connections is estimated to reach 107.69 million connections and therefore a new peak in 2029. Mobile broadband connections include cellular connections with a download speed of at least 256 kbit/s (without satellite or fixed-wireless connections). Cellular Internet-of-Things (IoT) or machine-to-machine (M2M) connections are excluded. The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of mobile broadband connections in countries like Vietnam and Laos.
In the fourth quarter of 2024, Samsung shipped around ** million smartphones, a decrease from the both the previous quarter and the same quarter of the previous year. Samsung’s sales consistently place the smartphone giant among the top three smartphone vendors in the world, alongside Xiaomi and Apple. Samsung smartphone sales – how many phones does Samsung sell? Global smartphone sales reached over *** billion units during 2024. While the global smartphone market is led by Samsung and Apple, Xiaomi has gained ground following the decline of Huawei. Together, these three companies hold more than ** percent of the global smartphone market share.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically
Apple is one of the most influential and recognisable brands in the world, responsible for the rise of the smartphone with the iPhone. Valued at over $2 trillion in 2021, it is also the most valuable...