How many paid subscribers does Spotify have? As of the first quarter of 2025, Spotify had 268 million premium subscribers worldwide, up from 239 million in the corresponding quarter of 2024. Spotify’s subscriber base has increased dramatically in the last few years and has more than doubled since early 2019. Spotify and competitors Spotify is a music streaming service originally founded in 2006 in Sweden. The platform can be used from various devices and allows users to browse through a catalogue of music licensed through multiple record labels, as well as creating and sharing playlists with other users. Additionally, listeners are able to enjoy music for free with advertisements or are also given the option to purchase a subscription to allow for unlimited ad-free music streaming. Spotify’s largest competitors are Pandora, a company that offers a similar service and remains popular in the United States, and Apple Music, which was launched in 2015. While Pandora was once among the highest-grossing music apps in the Apple App Store, recent rankings show that global services like QQ Music, NetEase Cloud Music, and YouTube Music now generate higher monthly revenues.Users are also able to register Spotify accounts using Facebook directly through the website using an app. This enables them to connect with other Facebook friends and explore their music tastes and playlists. Spotify is a popular source for keeping up-to-date with music, and the ability to enjoy Spotify anywhere at any time allows consumers to shape their music consumption around their lifestyles and preferences.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
A dataset covering Spotify usage and artist performance in 2025, including metrics like monthly active users, premium subscriber counts, demographic breakdowns, and playlist analytics.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset was created using Spotify developer API. It consists of user-created as well as Spotify-curated playlists. The dataset consists of 1 million playlists, 3 million unique tracks, 3 million unique albums, and 1.3 million artists. The data is stored in a SQL database, with the primary entities being songs, albums, artists, and playlists. Each of the aforementioned entities are represented by unique IDs (Spotify URI). Data is stored into following tables:
album
artist
track
playlist
track_artist1
track_playlist1
album
| id | name | uri |
id: Album ID as provided by Spotify name: Album Name as provided by Spotify uri: Album URI as provided by Spotify
artist
| id | name | uri |
id: Artist ID as provided by Spotify name: Artist Name as provided by Spotify uri: Artist URI as provided by Spotify
track
| id | name | duration | popularity | explicit | preview_url | uri | album_id |
id: Track ID as provided by Spotify name: Track Name as provided by Spotify duration: Track Duration (in milliseconds) as provided by Spotify popularity: Track Popularity as provided by Spotify explicit: Whether the track has explicit lyrics or not. (true or false) preview_url: A link to a 30 second preview (MP3 format) of the track. Can be null uri: Track Uri as provided by Spotify album_id: Album Id to which the track belongs
playlist
| id | name | followers | uri | total_tracks |
id: Playlist ID as provided by Spotify name: Playlist Name as provided by Spotify followers: Playlist Followers as provided by Spotify uri: Playlist Uri as provided by Spotify total_tracks: Total number of tracks in the playlist.
track_artist1
| track_id | artist_id |
Track-Artist association table
track_playlist1
| track_id | playlist_id |
Track-Playlist association table
The data is in the form of a SQL dump. The download size is about 10 GB, and the database populated from it comes out to about 35GB.
spotifydbdumpschemashare.sql contains the schema for the database (for reference): spotifydbdumpshare.sql is the actual data dump.
Setup steps: 1. Create database 2. mysql -u -p < spotifydbdumpshare.sql
The description of this dataset can be found in the following paper:
Papreja P., Venkateswara H., Panchanathan S. (2020) Representation, Exploration and Recommendation of Playlists. In: Cellier P., Driessens K. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2019. Communications in Computer and Information Science, vol 1168. Springer, Cham
Spotify Million Playlist Dataset Challenge
Summary
The Spotify Million Playlist Dataset Challenge consists of a dataset and evaluation to enable research in music recommendations. It is a continuation of the RecSys Challenge 2018, which ran from January to July 2018. The dataset contains 1,000,000 playlists, including playlist titles and track titles, created by users on the Spotify platform between January 2010 and October 2017. The evaluation task is automatic playlist continuation: given a seed playlist title and/or initial set of tracks in a playlist, to predict the subsequent tracks in that playlist. This is an open-ended challenge intended to encourage research in music recommendations, and no prizes will be awarded (other than bragging rights).
Background
Playlists like Today’s Top Hits and RapCaviar have millions of loyal followers, while Discover Weekly and Daily Mix are just a couple of our personalized playlists made especially to match your unique musical tastes.
Our users love playlists too. In fact, the Digital Music Alliance, in their 2018 Annual Music Report, state that 54% of consumers say that playlists are replacing albums in their listening habits.
But our users don’t love just listening to playlists, they also love creating them. To date, over 4 billion playlists have been created and shared by Spotify users. People create playlists for all sorts of reasons: some playlists group together music categorically (e.g., by genre, artist, year, or city), by mood, theme, or occasion (e.g., romantic, sad, holiday), or for a particular purpose (e.g., focus, workout). Some playlists are even made to land a dream job, or to send a message to someone special.
The other thing we love here at Spotify is playlist research. By learning from the playlists that people create, we can learn all sorts of things about the deep relationship between people and music. Why do certain songs go together? What is the difference between “Beach Vibes” and “Forest Vibes”? And what words do people use to describe which playlists?
By learning more about nature of playlists, we may also be able to suggest other tracks that a listener would enjoy in the context of a given playlist. This can make playlist creation easier, and ultimately help people find more of the music they love.
Dataset
To enable this type of research at scale, in 2018 we sponsored the RecSys Challenge 2018, which introduced the Million Playlist Dataset (MPD) to the research community. Sampled from the over 4 billion public playlists on Spotify, this dataset of 1 million playlists consist of over 2 million unique tracks by nearly 300,000 artists, and represents the largest public dataset of music playlists in the world. The dataset includes public playlists created by US Spotify users between January 2010 and November 2017. The challenge ran from January to July 2018, and received 1,467 submissions from 410 teams. A summary of the challenge and the top scoring submissions was published in the ACM Transactions on Intelligent Systems and Technology.
In September 2020, we re-released the dataset as an open-ended challenge on AIcrowd.com. The dataset can now be downloaded by registered participants from the Resources page.
Each playlist in the MPD contains a playlist title, the track list (including track IDs and metadata), and other metadata fields (last edit time, number of playlist edits, and more). All data is anonymized to protect user privacy. Playlists are sampled with some randomization, are manually filtered for playlist quality and to remove offensive content, and have some dithering and fictitious tracks added to them. As such, the dataset is not representative of the true distribution of playlists on the Spotify platform, and must not be interpreted as such in any research or analysis performed on the dataset.
Dataset Contains
1000 examples of each scenario:
Title only (no tracks) Title and first track Title and first 5 tracks First 5 tracks only Title and first 10 tracks First 10 tracks only Title and first 25 tracks Title and 25 random tracks Title and first 100 tracks Title and 100 random tracks
Download Link
Full Details: https://www.aicrowd.com/challenges/spotify-million-playlist-dataset-challenge Download Link: https://www.aicrowd.com/challenges/spotify-million-playlist-dataset-challenge/dataset_files
💁♀️Please take a moment to carefully read through this description and metadata to better understand the dataset and its nuances before proceeding to the Suggestions and Discussions section.
This dataset compiles the tracks from Spotify's official "Top Tracks of 2023" playlist, showcasing the most popular and influential music of the year according to Spotify's streaming data. It represents a wide range array of genres, artists, and musical styles that have defined the musical landscapes of 2023. Each track in the dataset is detailed with a variety of features, popularity, and metadata. This dataset serves as an excellent resource for music enthusiasts, data analysts, and researchers aiming to explore music trends or develop music recommendation systems based on empirical data.
The data was obtained directly from the Spotify Web API, specifically from the "Top Tracks of 2023" official playlist curated by Spotify. The Spotify API provides detailed information about tracks, artists, and albums through various endpoints.
To process and structure the data, I developed Python scripts using data science libraries such as pandas
for data manipulation and spotipy
for API interactions specifically for Spotify data retrieval.
I encourage users who discover new insights, propose dataset enhancements, or craft analytics that illuminate aspects of the dataset's focus to share their findings with the community. - Kaggle Notebooks: To facilitate sharing and collaboration, users are encouraged to create and share their analyses through Kaggle notebooks. For ease of use, start your notebook by clicking "New Notebook" atop this dataset’s page on K...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is based on the subset of users in the #nowplaying dataset who publish their #nowplaying tweets via Spotify. In principle, the dataset holds users, their playlists and the tracks contained in these playlists.
The csv-file holding the dataset contains the following columns: "user_id", "artistname", "trackname", "playlistname", where
The separator used is , each entry is enclosed by double quotes and the escape character used is \.
A description of the generation of the dataset and the dataset itself can be found in the following paper:
Pichl, Martin; Zangerle, Eva; Specht, Günther: "Towards a Context-Aware Music Recommendation Approach: What is Hidden in the Playlist Name?" in 15th IEEE International Conference on Data Mining Workshops (ICDM 2015), pp. 1360-1365, IEEE, Atlantic City, 2015.
https://brightdata.com/licensehttps://brightdata.com/license
Gain valuable insights into music trends, artist popularity, and streaming analytics with our comprehensive Spotify Dataset. Designed for music analysts, marketers, and businesses, this dataset provides structured and reliable data from Spotify to enhance market research, content strategy, and audience engagement.
Dataset Features
Track Information: Access detailed data on songs, including track name, artist, album, genre, and release date. Streaming Popularity: Extract track popularity scores, listener engagement metrics, and ranking trends. Artist & Album Insights: Analyze artist performance, album releases, and genre trends over time. Related Searches & Recommendations: Track related search terms and suggested content for deeper audience insights. Historical & Real-Time Data: Retrieve historical streaming data or access continuously updated records for real-time trend analysis.
Customizable Subsets for Specific Needs Our Spotify Dataset is fully customizable, allowing you to filter data based on track popularity, artist, genre, release date, or listener engagement. Whether you need broad coverage for industry analysis or focused data for content optimization, we tailor the dataset to your needs.
Popular Use Cases
Market Analysis & Trend Forecasting: Identify emerging music trends, genre popularity, and listener preferences. Artist & Label Performance Tracking: Monitor artist rankings, album success, and audience engagement. Competitive Intelligence: Analyze competitor music strategies, playlist placements, and streaming performance. AI & Machine Learning Applications: Use structured music data to train AI models for recommendation engines, playlist curation, and predictive analytics. Advertising & Sponsorship Insights: Identify high-performing tracks and artists for targeted advertising and sponsorship opportunities.
Whether you're optimizing music marketing, analyzing streaming trends, or enhancing content strategies, our Spotify Dataset provides the structured data you need. Get started today and customize your dataset to fit your business objectives.
This dataset provides detailed metadata and audio analysis for a wide collection of Spotify music tracks across various genres. It includes track-level information such as popularity, tempo, energy, danceability, and other musical features that can be used for music recommendation systems, genre classification, or trend analysis. The dataset is a rich source for exploring music consumption patterns and user preferences based on song characteristics.
This dataset contains rows of individual music tracks, each described by both metadata (such as track name, artist, album, and genre) and quantitative audio features. These features reflect different musical attributes such as energy, acousticness, instrumentalness, valence, and more, making it ideal for audio machine learning projects and exploratory data analysis.
Column Name | Description |
---|---|
index | Unique index for each track (can be ignored for analysis) |
track_id | Spotify's unique identifier for the track |
artists | Name of the performing artist(s) |
album_name | Title of the album the track belongs to |
track_name | Title of the track |
popularity | Popularity score on Spotify (0–100 scale) |
duration_ms | Duration of the track in milliseconds |
explicit | Indicates whether the track contains explicit content |
danceability | How suitable the track is for dancing (0.0 to 1.0) |
energy | Intensity and activity level of the track (0.0 to 1.0) |
key | Musical key (0 = C, 1 = C♯/D♭, …, 11 = B) |
loudness | Overall loudness of the track in decibels (dB) |
mode | Modality (major = 1, minor = 0) |
speechiness | Presence of spoken words in the track (0.0 to 1.0) |
acousticness | Confidence measure of whether the track is acoustic (0.0 to 1.0) |
instrumentalness | Predicts whether the track contains no vocals (0.0 to 1.0) |
liveness | Presence of an audience in the recording (0.0 to 1.0) |
valence | Musical positivity conveyed (0.0 = sad, 1.0 = happy) |
tempo | Estimated tempo in beats per minute (BPM) |
time_signature | Time signature of the track (e.g., 4 = 4/4) |
track_genre | Assigned genre label for the track |
This dataset is valuable for:
key
, mode
, and explicit
may need to be mapped for better readability in visualization.https://cubig.ai/store/terms-of-servicehttps://cubig.ai/store/terms-of-service
1) Data Introduction • The Spotify Playlist-ORIGINS Dataset is a dataset of Spotify playlists called ORIGINS, which individuals have made with their favorite songs since 2014.
2) Data Utilization (1) Spotify Playlist-ORIGINS Dataset has characteristics that: • This dataset contains detailed music information for each playlist, including song name, artist, album, genre, release year, track ID, and structured metadata such as name, description, and song order for each playlist. (2) Spotify Playlist-ORIGINS Dataset can be used to: • Playlist-based music recommendation and user preference analysis: It can be used to develop a machine learning/deep learning-based music recommendation system or to study user preference analysis using playlist and song information. • Music Trend and Genre Popularity Analysis: It analyzes release year, genre, and artist data and can be used to study the music industry and culture, including music trends by period and genre, and changes in popular artists and songs.
https://choosealicense.com/licenses/bsd/https://choosealicense.com/licenses/bsd/
Content
This is a dataset of Spotify tracks over a range of 125 different genres. Each track has some audio features associated with it. The data is in CSV format which is tabular and can be loaded quickly.
Usage
The dataset can be used for:
Building a Recommendation System based on some user input or preference Classification purposes based on audio features and available genres Any other application that you can think of. Feel free to discuss!
Column… See the full description on the dataset page: https://huggingface.co/datasets/maharshipandya/spotify-tracks-dataset.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset is a processed version of a popular Spotify tracks dataset. It includes musical features such as energy, valence, danceability, acousticness, and instrumentalness for each track, along with a newly added user preference score. The user_preference column represents a continuous value indicating how much a user likes each track, making this dataset ideal for regression tasks. The original dataset contained over 100,000 tracks; this version contains 9,999 labeled entries with user preferences added. The goal of this dataset is to enable analysis of how musical features influence user tastes, support building predictive models, and demonstrate practical applications of linear regression and other regression-based machine learning techniques. This dataset is well-suited for educational purposes, music analytics, and building simple recommendation systems.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
A dataset comparing Spotify Premium plans including Individual, Duo, Family, and Student with pricing and user limits.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
MGD: Music Genre Dataset
Over recent years, the world has seen a dramatic change in the way people consume music, moving from physical records to streaming services. Since 2017, such services have become the main source of revenue within the global recorded music market. Therefore, this dataset is built by using data from Spotify. It provides a weekly chart of the 200 most streamed songs for each country and territory it is present, as well as an aggregated global chart.
Considering that countries behave differently when it comes to musical tastes, we use chart data from global and regional markets from January 2017 to December 2019, considering eight of the top 10 music markets according to IFPI: United States (1st), Japan (2nd), United Kingdom (3rd), Germany (4th), France (5th), Canada (8th), Australia (9th), and Brazil (10th).
We also provide information about the hit songs and artists present in the charts, such as all collaborating artists within a song (since the charts only provide the main ones) and their respective genres, which is the core of this work. MGD also provides data about musical collaboration, as we build collaboration networks based on artist partnerships in hit songs. Therefore, this dataset contains:
Genre Networks: Success-based genre collaboration networks
Genre Mapping: Genre mapping from Spotify genres to super-genres
Artist Networks: Success-based artist collaboration networks
Artists: Some artist data
Hit Songs: Hit Song data and features
Charts: Enhanced data from Spotify Weekly Top 200 Charts
This dataset was originally built for a conference paper at ISMIR 2020. If you make use of the dataset, please also cite the following paper:
Gabriel P. Oliveira, Mariana O. Silva, Danilo B. Seufitelli, Anisio Lacerda, and Mirella M. Moro. Detecting Collaboration Profiles in Success-based Music Genre Networks. In Proceedings of the 21st International Society for Music Information Retrieval Conference (ISMIR 2020), 2020.
@inproceedings{ismir/OliveiraSSLM20, title = {Detecting Collaboration Profiles in Success-based Music Genre Networks}, author = {Gabriel P. Oliveira and Mariana O. Silva and Danilo B. Seufitelli and Anisio Lacerda and Mirella M. Moro}, booktitle = {21st International Society for Music Information Retrieval Conference} pages = {726--732}, year = {2020} }
https://cubig.ai/store/terms-of-servicehttps://cubig.ai/store/terms-of-service
1) Data Introduction • The Spotify Tracks Dataset contains information on tracks from over 125 music genres, including both audio features (e.g., danceability, energy, valence) and metadata (e.g., title, artist, genre).
2) Data Utilization (1) Characteristics of the Spotify Tracks Dataset: • The data is structured in a tabular format at the track level, where each column represents numerical or categorical features based on musical properties. This makes it suitable for recommendation systems, genre classification, and emotion analysis. • It includes multi-dimensional attributes grounded in music theory such as track duration, time signature, energy, loudness, tempo, and speechiness—enabling its use in music classification and clustering tasks.
(2) Applications of the Spotify Tracks Dataset: • Design of Music Recommendation Systems: It can be used to build content-based filtering systems or hybrid recommendation algorithms based on user preferences.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Spotify Revenue, Expenses and Its Premium Users contains the number of premium users, number of Ad-supported users and total monthly active users (MAUs).
MAUs include number of premium users as well as number of Ad-supported users.
Note : Sum of Premium Users and Ad-supported users can have some difference from MAUs. Note : All money figures are in Euro millions except ARPU which is in Euro and as it is. **Note : All users figures are in millions. ** Note : Kindly Ignore the last row.
Following definitions: MAUs : It is defined as the total count of Ad-Supported Users and Premium Subscribers that have consumed content for greater than zero milliseconds in the last thirty days from the period-end indicated. Premium MAUs : It is defined as users that have completed registration with Spotify and have activated a payment method for Premium Service. Ad MAUs : It is defined as the total count of Ad-Supported Users that have consumed content for greater than zero milliseconds in the last thirty days from the period-end indicated. Premium ARPU : It is average revenue per user which is monthly measure defined as Premium subscription revenue recognized in the quarter indicated divided by the average daily Premium Subscribers in such quarter, which is then divided by three months. Cost of Revenue : It is expenses done by company.
Photo by Alexander Shatov on Unsplash
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset provides insights into user music listening behavior on the Spotify platform. It captures key information about individual music streaming sessions, including:
Track Information:
Playback Details:
Playback Behavior:
Potential Uses
This dataset can be valuable for various analyses
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Spotify Recommendation’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/bricevergnou/spotify-recommendation on 28 January 2022.
--- Dataset description provided by original source is as follows ---
( You can check how I used this dataset on my github repository )
I am basically a HUGE fan of music ( mostly French rap though with some exceptions but I love music ). And someday , while browsing stuff on Internet , I found the Spotify's API . I knew I had to use it when I found out you could get information like danceability about your favorite songs just with their id's.
https://user-images.githubusercontent.com/86613710/127216769-745ac143-7456-4464-bbe3-adc53872c133.png" alt="image">
Once I saw that , my machine learning instincts forced me to work on this project.
I collected 100 liked songs and 95 disliked songs
For those I like , I made a playlist of my favorite 100 songs. It is mainly French Rap , sometimes American rap , rock or electro music.
For those I dislike , I collected songs from various kind of music so the model will have a broader view of what I don't like
There is : - 25 metal songs ( Cannibal Corps ) - 20 " I don't like " rap songs ( PNL ) - 25 classical songs - 25 Disco songs
I didn't include any Pop song because I'm kinda neutral about it
From the Spotify's API "Get a playlist's Items" , I turned the playlists into json formatted data which cointains the ID and the name of each track ( ids/yes.py and ids/no.py ). NB : on the website , specify "items(track(id,name))" in the fields format , to avoid being overwhelmed by useless data.
With a script ( ids/ids_to_data.py ) , I turned the json data into a long string with each ID separated with a comma.
Now I just had to enter the strings into the Spotify API "Get Audio Features from several tracks" and get my data files ( data/good.json and data/dislike.json )
From Spotify's API documentation :
And the variable that has to be predicted :
--- Original source retains full ownership of the source dataset ---
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
These are the published date of music videos of every song in
https://www.kaggle.com/edumucelli/spotifys-worldwide-daily-song-ranking
Most of the time, music videos published dates are same as music themselves.
It would be valid to use the dates as release dates.
There are no other sources better than youtube to cover as much songs as possible.
The file contains no header
20 songs remained Nan (unavailable to find related videos)
This data was retrieved by Youtube API
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset was constructed based on the data found in Kaggle from Spotify.
The files here reported can be used to build a property graph in Neo4J:
This data was used as test dataset in the paper "MINE GRAPH RULE: A New GQL Operator for Mining Association Rules in Property Graph Databases".
Many people used musical media via music streaming service providers to cope with the limitations of the COVID-19 pandemic. Accounting for such behavior from the perspective of uses-and-gratifications theory and situated cognition yields reliable explanations regarding people’s active and goal-oriented use of musical media. We accessed Spotify’s daily top 200 charts and their audio features from the DACH countries for the period during the first lockdown in 2020 and a comparable non-pandemic period situation in 2019 to support those theoretical explanations quantitatively with open data. After exploratory data analyses, applying a k-means clustering algorithm across the DACH countries allowed us to reduce the dimensionality of selected audio features. Following these clustering results, we discuss how these clusters are explainable using the arousal-valence-circumplex model and possibly be understood as (gratification) potentials that listeners can interact with to modulate their moods and thus emotionally cope with the stress of the pandemic. Then, we modeled a cross-validated binary SVM classifier to classify the two periods based on the extracted clusters and the remaining manifest variables (e.g., chart position) as input variables. The final test scenario of the classification task yielded high overall accuracy in classifying the periods as distinguishable classes. We conclude that these demonstrated approaches are generally suitable to classify the two periods based on the extracted mood clusters and the other input variables, and furthermore to interpret, by considering the model-related caveats, everyday music listening via those proxy variables as an emotion-focused coping strategy during the COVID-19 pandemic in DACH countries. Dataset for: Kalustian, K., & Ruth, N. (2021). “Evacuate the Dancefloor”: Exploring and Classifying Spotify Music Listening Before and During the COVID-19 Pandemic in DACH Countries. In: T. Fischinger, & C. Louven, C. (Eds.), Musikpsychologie – Empirische Forschungen - Ästhetische Experimente, Band 30.
How many paid subscribers does Spotify have? As of the first quarter of 2025, Spotify had 268 million premium subscribers worldwide, up from 239 million in the corresponding quarter of 2024. Spotify’s subscriber base has increased dramatically in the last few years and has more than doubled since early 2019. Spotify and competitors Spotify is a music streaming service originally founded in 2006 in Sweden. The platform can be used from various devices and allows users to browse through a catalogue of music licensed through multiple record labels, as well as creating and sharing playlists with other users. Additionally, listeners are able to enjoy music for free with advertisements or are also given the option to purchase a subscription to allow for unlimited ad-free music streaming. Spotify’s largest competitors are Pandora, a company that offers a similar service and remains popular in the United States, and Apple Music, which was launched in 2015. While Pandora was once among the highest-grossing music apps in the Apple App Store, recent rankings show that global services like QQ Music, NetEase Cloud Music, and YouTube Music now generate higher monthly revenues.Users are also able to register Spotify accounts using Facebook directly through the website using an app. This enables them to connect with other Facebook friends and explore their music tastes and playlists. Spotify is a popular source for keeping up-to-date with music, and the ability to enjoy Spotify anywhere at any time allows consumers to shape their music consumption around their lifestyles and preferences.