100+ datasets found
  1. X/Twitter: number of worldwide users 2019-2024

    • statista.com
    Updated Dec 13, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2022). X/Twitter: number of worldwide users 2019-2024 [Dataset]. https://www.statista.com/statistics/303681/twitter-users-worldwide/
    Explore at:
    Dataset updated
    Dec 13, 2022
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Dec 2022
    Area covered
    Worldwide
    Description

    As of December 2022, X/Twitter's audience accounted for over *** million monthly active users worldwide. This figure was projected to ******** to approximately *** million by 2024, a ******* of around **** percent compared to 2022.

  2. s

    Data from: Twitter Users

    • searchlogistics.com
    Updated Apr 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Twitter Users [Dataset]. https://www.searchlogistics.com/learn/statistics/social-media-user-statistics/
    Explore at:
    Dataset updated
    Apr 1, 2025
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The average Twitter user spends 5.1 hours per month on the platform.

  3. s

    Twitter Revenue Growth

    • searchlogistics.com
    Updated Apr 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Twitter Revenue Growth [Dataset]. https://www.searchlogistics.com/learn/statistics/twitter-user-statistics/
    Explore at:
    Dataset updated
    Apr 1, 2025
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Advertising makes up 89% of its total revenue and data licensing makes up about 11%.

  4. g

    Just Another Day on Twitter: A Complete 24 Hours of Twitter Data

    • search.gesis.org
    Updated Oct 16, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pfeffer, Jürgen (2022). Just Another Day on Twitter: A Complete 24 Hours of Twitter Data [Dataset]. https://search.gesis.org/research_data/SDN-10.7802-2516
    Explore at:
    Dataset updated
    Oct 16, 2022
    Dataset provided by
    GESIS search
    GESIS, Köln
    Authors
    Pfeffer, Jürgen
    License

    https://www.gesis.org/en/institute/data-usage-termshttps://www.gesis.org/en/institute/data-usage-terms

    Description

    At the end of October 2022, Elon Musk concluded his acquisition of Twitter. In the weeks and months before that, several questions were publicly discussed that were not only of interest to the platform's future buyers, but also of high relevance to the Computational Social Science research community. For example, how many active users does the platform have? What percentage of accounts on the site are bots? And, what are the dominating topics and sub-topical spheres on the platform? In a globally coordinated effort of 80 scholars to shed light on these questions, and to offer a dataset that will equip other researchers to do the same, we have collected 375 million tweets published within a 24-hour time period starting on September 21, 2022. To the best of our knowledge, this is the first complete 24-hour Twitter dataset that is available for the research community. With it, the present work aims to accomplish two goals. First, we seek to answer the aforementioned questions and provide descriptive metrics about Twitter that can serve as references for other researchers. Second, we create a baseline dataset for future research that can be used to study the potential impact of the platform's ownership change.

  5. Twitter users in the United States 2019-2028

    • statista.com
    • ai-chatbox.pro
    Updated Jun 13, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2024). Twitter users in the United States 2019-2028 [Dataset]. https://www.statista.com/topics/3196/social-media-usage-in-the-united-states/
    Explore at:
    Dataset updated
    Jun 13, 2024
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Area covered
    United States
    Description

    The number of Twitter users in the United States was forecast to continuously increase between 2024 and 2028 by in total 4.3 million users (+5.32 percent). After the ninth consecutive increasing year, the Twitter user base is estimated to reach 85.08 million users and therefore a new peak in 2028. Notably, the number of Twitter users of was continuously increasing over the past years.User figures, shown here regarding the platform twitter, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of Twitter users in countries like Canada and Mexico.

  6. s

    Twitter Users Broken Down By Age

    • searchlogistics.com
    Updated Apr 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Twitter Users Broken Down By Age [Dataset]. https://www.searchlogistics.com/learn/statistics/twitter-user-statistics/
    Explore at:
    Dataset updated
    Apr 1, 2025
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This is the breakdown of Twitter users by age group.

  7. Twitter users in France 2019-2028

    • statista.com
    Updated Mar 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Twitter users in France 2019-2028 [Dataset]. https://www.statista.com/forecasts/1144232/twitter-users-in-france
    Explore at:
    Dataset updated
    Mar 3, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    France
    Description

    The number of Twitter users in France was forecast to continuously increase between 2024 and 2028 by in total 0.8 million users (+8.18 percent). After the ninth consecutive increasing year, the Twitter user base is estimated to reach 10.59 million users and therefore a new peak in 2028. Notably, the number of Twitter users of was continuously increasing over the past years.User figures, shown here regarding the platform twitter, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of Twitter users in countries like Luxembourg and Netherlands.

  8. Z

    IA Tweets Analysis Dataset (Spanish)

    • data.niaid.nih.gov
    • explore.openaire.eu
    • +2more
    Updated Aug 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Serrano-Fernández, Alejandro (2024). IA Tweets Analysis Dataset (Spanish) [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_10821484
    Explore at:
    Dataset updated
    Aug 3, 2024
    Dataset provided by
    Guerrero-Contreras, Gabriel
    Muñoz, Andrés
    Balderas-Díaz, Sara
    Serrano-Fernández, Alejandro
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    General Description

    This dataset comprises 4,038 tweets in Spanish, related to discussions about artificial intelligence (AI), and was created and utilized in the publication "Enhancing Sentiment Analysis on Social Media: Integrating Text and Metadata for Refined Insights," (10.1109/IE61493.2024.10599899) presented at the 20th International Conference on Intelligent Environments. It is designed to support research on public perception, sentiment, and engagement with AI topics on social media from a Spanish-speaking perspective. Each entry includes detailed annotations covering sentiment analysis, user engagement metrics, and user profile characteristics, among others.

    Data Collection Method

    Tweets were gathered through the Twitter API v1.1 by targeting keywords and hashtags associated with artificial intelligence, focusing specifically on content in Spanish. The dataset captures a wide array of discussions, offering a holistic view of the Spanish-speaking public's sentiment towards AI.

    Dataset Content

    ID: A unique identifier for each tweet.

    text: The textual content of the tweet. It is a string with a maximum allowed length of 280 characters.

    polarity: The tweet's sentiment polarity (e.g., Positive, Negative, Neutral).

    favorite_count: Indicates how many times the tweet has been liked by Twitter users. It is a non-negative integer.

    retweet_count: The number of times this tweet has been retweeted. It is a non-negative integer.

    user_verified: When true, indicates that the user has a verified account, which helps the public recognize the authenticity of accounts of public interest. It is a boolean data type with two allowed values: True or False.

    user_default_profile: When true, indicates that the user has not altered the theme or background of their user profile. It is a boolean data type with two allowed values: True or False.

    user_has_extended_profile: When true, indicates that the user has an extended profile. An extended profile on Twitter allows users to provide more detailed information about themselves, such as an extended biography, a header image, details about their location, website, and other additional data. It is a boolean data type with two allowed values: True or False.

    user_followers_count: The current number of followers the account has. It is a non-negative integer.

    user_friends_count: The number of users that the account is following. It is a non-negative integer.

    user_favourites_count: The number of tweets this user has liked since the account was created. It is a non-negative integer.

    user_statuses_count: The number of tweets (including retweets) posted by the user. It is a non-negative integer.

    user_protected: When true, indicates that this user has chosen to protect their tweets, meaning their tweets are not publicly visible without their permission. It is a boolean data type with two allowed values: True or False.

    user_is_translator: When true, indicates that the user posting the tweet is a verified translator on Twitter. This means they have been recognized and validated by the platform as translators of content in different languages. It is a boolean data type with two allowed values: True or False.

    Cite as

    Guerrero-Contreras, G., Balderas-Díaz, S., Serrano-Fernández, A., & Muñoz, A. (2024, June). Enhancing Sentiment Analysis on Social Media: Integrating Text and Metadata for Refined Insights. In 2024 International Conference on Intelligent Environments (IE) (pp. 62-69). IEEE.

    Potential Use Cases

    This dataset is aimed at academic researchers and practitioners with interests in:

    Sentiment analysis and natural language processing (NLP) with a focus on AI discussions in the Spanish language.

    Social media analysis on public engagement and perception of artificial intelligence among Spanish speakers.

    Exploring correlations between user engagement metrics and sentiment in discussions about AI.

    Data Format and File Type

    The dataset is provided in CSV format, ensuring compatibility with a wide range of data analysis tools and programming environments.

    License

    The dataset is available under the Creative Commons Attribution 4.0 International (CC BY 4.0) license, permitting sharing, copying, distribution, transmission, and adaptation of the work for any purpose, including commercial, provided proper attribution is given.

  9. Google Analytics & Twitter dataset from a movies, TV series and videogames...

    • figshare.com
    • portalcientificovalencia.univeuropea.com
    txt
    Updated Feb 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Víctor Yeste (2024). Google Analytics & Twitter dataset from a movies, TV series and videogames website [Dataset]. http://doi.org/10.6084/m9.figshare.16553061.v4
    Explore at:
    txtAvailable download formats
    Dataset updated
    Feb 7, 2024
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Víctor Yeste
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Author: Víctor Yeste. Universitat Politècnica de Valencia.The object of this study is the design of a cybermetric methodology whose objectives are to measure the success of the content published in online media and the possible prediction of the selected success variables.In this case, due to the need to integrate data from two separate areas, such as web publishing and the analysis of their shares and related topics on Twitter, has opted for programming as you access both the Google Analytics v4 reporting API and Twitter Standard API, always respecting the limits of these.The website analyzed is hellofriki.com. It is an online media whose primary intention is to solve the need for information on some topics that provide daily a vast number of news in the form of news, as well as the possibility of analysis, reports, interviews, and many other information formats. All these contents are under the scope of the sections of cinema, series, video games, literature, and comics.This dataset has contributed to the elaboration of the PhD Thesis:Yeste Moreno, VM. (2021). Diseño de una metodología cibermétrica de cálculo del éxito para la optimización de contenidos web [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/176009Data have been obtained from each last-minute news article published online according to the indicators described in the doctoral thesis. All related data are stored in a database, divided into the following tables:tesis_followers: User ID list of media account followers.tesis_hometimeline: data from tweets posted by the media account sharing breaking news from the web.status_id: Tweet IDcreated_at: date of publicationtext: content of the tweetpath: URL extracted after processing the shortened URL in textpost_shared: Article ID in WordPress that is being sharedretweet_count: number of retweetsfavorite_count: number of favoritestesis_hometimeline_other: data from tweets posted by the media account that do not share breaking news from the web. Other typologies, automatic Facebook shares, custom tweets without link to an article, etc. With the same fields as tesis_hometimeline.tesis_posts: data of articles published by the web and processed for some analysis.stats_id: Analysis IDpost_id: Article ID in WordPresspost_date: article publication date in WordPresspost_title: title of the articlepath: URL of the article in the middle webtags: Tags ID or WordPress tags related to the articleuniquepageviews: unique page viewsentrancerate: input ratioavgtimeonpage: average visit timeexitrate: output ratiopageviewspersession: page views per sessionadsense_adunitsviewed: number of ads viewed by usersadsense_viewableimpressionpercent: ad display ratioadsense_ctr: ad click ratioadsense_ecpm: estimated ad revenue per 1000 page viewstesis_stats: data from a particular analysis, performed at each published breaking news item. Fields with statistical values can be computed from the data in the other tables, but total and average calculations are saved for faster and easier further processing.id: ID of the analysisphase: phase of the thesis in which analysis has been carried out (right now all are 1)time: "0" if at the time of publication, "1" if 14 days laterstart_date: date and time of measurement on the day of publicationend_date: date and time when the measurement is made 14 days latermain_post_id: ID of the published article to be analysedmain_post_theme: Main section of the published article to analyzesuperheroes_theme: "1" if about superheroes, "0" if nottrailer_theme: "1" if trailer, "0" if notname: empty field, possibility to add a custom name manuallynotes: empty field, possibility to add personalized notes manually, as if some tag has been removed manually for being considered too generic, despite the fact that the editor put itnum_articles: number of articles analysednum_articles_with_traffic: number of articles analysed with traffic (which will be taken into account for traffic analysis)num_articles_with_tw_data: number of articles with data from when they were shared on the media’s Twitter accountnum_terms: number of terms analyzeduniquepageviews_total: total page viewsuniquepageviews_mean: average page viewsentrancerate_mean: average input ratioavgtimeonpage_mean: average duration of visitsexitrate_mean: average output ratiopageviewspersession_mean: average page views per sessiontotal: total of ads viewedadsense_adunitsviewed_mean: average of ads viewedadsense_viewableimpressionpercent_mean: average ad display ratioadsense_ctr_mean: average ad click ratioadsense_ecpm_mean: estimated ad revenue per 1000 page viewsTotal: total incomeretweet_count_mean: average incomefavorite_count_total: total of favoritesfavorite_count_mean: average of favoritesterms_ini_num_tweets: total tweets on the terms on the day of publicationterms_ini_retweet_count_total: total retweets on the terms on the day of publicationterms_ini_retweet_count_mean: average retweets on the terms on the day of publicationterms_ini_favorite_count_total: total of favorites on the terms on the day of publicationterms_ini_favorite_count_mean: average of favorites on the terms on the day of publicationterms_ini_followers_talking_rate: ratio of followers of the media Twitter account who have recently published a tweet talking about the terms on the day of publicationterms_ini_user_num_followers_mean: average followers of users who have spoken of the terms on the day of publicationterms_ini_user_num_tweets_mean: average number of tweets published by users who spoke about the terms on the day of publicationterms_ini_user_age_mean: average age in days of users who have spoken of the terms on the day of publicationterms_ini_ur_inclusion_rate: URL inclusion ratio of tweets talking about terms on the day of publicationterms_end_num_tweets: total tweets on terms 14 days after publicationterms_ini_retweet_count_total: total retweets on terms 14 days after publicationterms_ini_retweet_count_mean: average retweets on terms 14 days after publicationterms_ini_favorite_count_total: total bookmarks on terms 14 days after publicationterms_ini_favorite_count_mean: average of favorites on terms 14 days after publicationterms_ini_followers_talking_rate: ratio of media Twitter account followers who have recently posted a tweet talking about the terms 14 days after publicationterms_ini_user_num_followers_mean: average followers of users who have spoken of the terms 14 days after publicationterms_ini_user_num_tweets_mean: average number of tweets published by users who have spoken about the terms 14 days after publicationterms_ini_user_age_mean: the average age in days of users who have spoken of the terms 14 days after publicationterms_ini_ur_inclusion_rate: URL inclusion ratio of tweets talking about terms 14 days after publication.tesis_terms: data of the terms (tags) related to the processed articles.stats_id: Analysis IDtime: "0" if at the time of publication, "1" if 14 days laterterm_id: Term ID (tag) in WordPressname: Name of the termslug: URL of the termnum_tweets: number of tweetsretweet_count_total: total retweetsretweet_count_mean: average retweetsfavorite_count_total: total of favoritesfavorite_count_mean: average of favoritesfollowers_talking_rate: ratio of followers of the media Twitter account who have recently published a tweet talking about the termuser_num_followers_mean: average followers of users who were talking about the termuser_num_tweets_mean: average number of tweets published by users who were talking about the termuser_age_mean: average age in days of users who were talking about the termurl_inclusion_rate: URL inclusion ratio

  10. o

    Data from: Twitter Data

    • opendatabay.com
    • kaggle.com
    .undefined
    Updated Jun 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Datasimple (2025). Twitter Data [Dataset]. https://www.opendatabay.com/data/ai-ml/05c9578a-719d-4ab0-82cd-0aa99bfa2bbe
    Explore at:
    .undefinedAvailable download formats
    Dataset updated
    Jun 17, 2025
    Dataset authored and provided by
    Datasimple
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Social Media and Networking
    Description

    Context The following data-set consists of very simple twitter analytics data, including text, user information, confidence, profile dates etc.

    Content Basically the dataset is self explanatory and the objective is basically to classify which gender is more likely to commit typos on their tweets.

    Inspiration Since this dataset contains pretty simple and easy-to-deal-with features, I hope many emerging NLP enthusiasts who have been developing just basic linear/naive models until now, can explore how to apply these techniques to real word tweet data.

    License

    CC0

    Original Data Source: Twitter Data

  11. Twitter Dataset

    • brightdata.com
    .json, .csv, .xlsx
    Updated Dec 24, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bright Data, Twitter Dataset [Dataset]. https://brightdata.com/products/datasets/twitter
    Explore at:
    .json, .csv, .xlsxAvailable download formats
    Dataset updated
    Dec 24, 2024
    Dataset authored and provided by
    Bright Datahttps://brightdata.com/
    License

    https://brightdata.com/licensehttps://brightdata.com/license

    Area covered
    Worldwide
    Description

    Utilize our Twitter dataset for diverse applications to enrich business strategies and market insights. Analyzing this dataset provides a comprehensive understanding of social media trends, empowering organizations to refine their communication and marketing strategies. Access the entire dataset or customize a subset to fit your needs. Popular use cases include market research to identify trending topics and hashtags, AI training by reviewing factors such as tweet content, retweets, and user interactions for predictive analytics, and trend forecasting by examining correlations between specific themes and user engagement to uncover emerging social media preferences.

  12. s

    Twitter Users Broken down By Country

    • searchlogistics.com
    Updated Apr 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Twitter Users Broken down By Country [Dataset]. https://www.searchlogistics.com/learn/statistics/twitter-user-statistics/
    Explore at:
    Dataset updated
    Apr 1, 2025
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The US has historically been the target country for Twitter since its launch in 2006. This is the full breakdown of Twitter users by country.

  13. Data from: TWITTER DATA

    • kaggle.com
    Updated Mar 30, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    smmmmmmmmmmmm (2024). TWITTER DATA [Dataset]. https://www.kaggle.com/datasets/smmmmmmmmmmmm/twitter-data
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 30, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    smmmmmmmmmmmm
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    The dataset consists of various columns containing information related to tweets posted on Twitter. Each row in the dataset represents a single tweet. Here's an explanation of the columns in the dataset from a third-person perspective:

    Tweet: This column contains the actual text content of the tweet. It includes the message that the user posted on Twitter. Tweets can vary in length from a few characters to the maximum allowed by Twitter.

    Sentiment: This column indicates the sentiment or emotional tone of the tweet. Sentiment can be classified into categories such as positive, negative, or neutral. It reflects the overall opinion or attitude expressed in the tweet.

    Username: This column contains the username of the Twitter account that posted the tweet. Each Twitter user has a unique username that identifies their account.

    Timestamp: This column contains the timestamp indicating when the tweet was posted. It includes information about the date and time when the tweet was published on Twitter.

    Retweets: This column represents the number of times the tweet has been retweeted by other Twitter users. A retweet is when a user shares another user's tweet with their followers.

    Likes: This column indicates the number of likes or favorites received by the tweet. Users can express their appreciation for a tweet by liking it.

    Hashtags: This column contains any hashtags included in the tweet. Hashtags are keywords or phrases preceded by the "#" symbol, used to categorize or label tweets and make them more discoverable.

    Mentions: This column includes any Twitter usernames mentioned in the tweet. Mentions are when a user tags another user in their tweet by including their username preceded by the "@" symbol.

    Location: This column provides information about the location associated with the tweet. It may include details such as the city, state, country, or geographical coordinates from which the tweet was posted, if available.

    Source: This column specifies the source or platform used to post the tweet. It indicates whether the tweet was posted from the Twitter website, a mobile app, or a third-party application.

  14. X/Twitter users in the United Kingdom 2019-2028

    • statista.com
    Updated Jan 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2025). X/Twitter users in the United Kingdom 2019-2028 [Dataset]. https://www.statista.com/topics/11843/x-formerly-twitter-in-the-united-kingdom-uk/
    Explore at:
    Dataset updated
    Jan 13, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Area covered
    United Kingdom
    Description

    The number of Twitter users in the United Kingdom was forecast to continuously increase between 2024 and 2028 by in total 0.9 million users (+5.1 percent). After the ninth consecutive increasing year, the Twitter user base is estimated to reach 18.55 million users and therefore a new peak in 2028. Notably, the number of Twitter users of was continuously increasing over the past years.User figures, shown here regarding the platform twitter, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).

  15. s

    Twitter cascade dataset

    • researchdata.smu.edu.sg
    • figshare.com
    pdf
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Living Analytics Research Centre (2023). Twitter cascade dataset [Dataset]. http://doi.org/10.25440/smu.12062709.v1
    Explore at:
    pdfAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    SMU Research Data Repository (RDR)
    Authors
    Living Analytics Research Centre
    License

    http://rightsstatements.org/vocab/InC/1.0/http://rightsstatements.org/vocab/InC/1.0/

    Description

    This dataset comprises a set of information cascades generated by Singapore Twitter users. Here a cascade is defined as a set of tweets about the same topic. This dataset was collected via the Twitter REST and streaming APIs in the following way. Starting from popular seed users (i.e., users having many followers), we crawled their follow, retweet, and user mention links. We then added those followers/followees, retweet sources, and mentioned users who state Singapore in their profile location. With this, we have a total of 184,794 Twitter user accounts. Then tweets are crawled from these users from 1 April to 31 August 2012. In all, we got 32,479,134 tweets. To identify cascades, we extracted all the URL links and hashtags from the above tweets. And these URL links and hashtags are considered as the identities of cascades. In other words, all the tweets which contain the same URL link (or the same hashtag) represent a cascade. Mathematically, a cascade is represented as a set of user-timestamp pairs. Figure 1 provides an example, i.e. cascade C = {< u1, t1 >, < u2, t2 >, < u1, t3 >, < u3, t4 >, < u4, t5 >}. For evaluation, the dataset was split into two parts: four months data for training and the last one month data for testing. Table 1summarizes the basic (count) statistics of the dataset. Each line in each file represents a cascade. The first term in each line is a hashtag or URL, the second term is a list of user-timestamp pairs. Due to privacy concerns, all user identities are anonymized.

  16. X/Twitter: Countries with the largest audience 2025

    • statista.com
    Updated Jun 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). X/Twitter: Countries with the largest audience 2025 [Dataset]. https://www.statista.com/statistics/242606/number-of-active-twitter-users-in-selected-countries/
    Explore at:
    Dataset updated
    Jun 19, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Feb 2025
    Area covered
    Worldwide
    Description

    Social network X/Twitter is particularly popular in the United States, and as of February 2025, the microblogging service had an audience reach of 103.9 million users in the country. Japan and the India were ranked second and third with more than 70 million and 25 million users respectively. Global Twitter usage As of the second quarter of 2021, X/Twitter had 206 million monetizable daily active users worldwide. The most-followed Twitter accounts include figures such as Elon Musk, Justin Bieber and former U.S. president Barack Obama. X/Twitter and politics X/Twitter has become an increasingly relevant tool in domestic and international politics. The platform has become a way to promote policies and interact with citizens and other officials, and most world leaders and foreign ministries have an official Twitter account. Former U.S. president Donald Trump used to be a prolific Twitter user before the platform permanently suspended his account in January 2021. During an August 2018 survey, 61 percent of respondents stated that Trump's use of Twitter as President of the United States was inappropriate.

  17. Cashtag Piggybacking dataset - Twitter dataset enriched with financial data

    • zenodo.org
    • data.niaid.nih.gov
    Updated Jan 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stefano Cresci; Fabrizio Lillo; Daniele Regoli; Serena Tardelli; Serena Tardelli; Maurizio Tesconi; Stefano Cresci; Fabrizio Lillo; Daniele Regoli; Maurizio Tesconi (2020). Cashtag Piggybacking dataset - Twitter dataset enriched with financial data [Dataset]. http://doi.org/10.5281/zenodo.2686862
    Explore at:
    zip, application/x-troff-meAvailable download formats
    Dataset updated
    Jan 24, 2020
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Stefano Cresci; Fabrizio Lillo; Daniele Regoli; Serena Tardelli; Serena Tardelli; Maurizio Tesconi; Stefano Cresci; Fabrizio Lillo; Daniele Regoli; Maurizio Tesconi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset is composed of

    • Twitter dataset of ~9M tweets mentioning stocks (cashtags) traded on the most important US markets, shared between May and September 2017 (users data enriched with bot classification label)
    • Financial information about ~30k companies found in those tweets, retrieved from Google Finance

    Refer to the paper below for more details.

    Cresci, S., Lillo, F., Regoli, D., Tardelli, S., & Tesconi, M. (2019). Cashtag Piggybacking: Uncovering Spam and Bot Activity in Stock Microblogs on Twitter. ACM Transactions on the Web (TWEB), 13(2), 11.

  18. Sentiment Analysis on Financial Tweets

    • kaggle.com
    zip
    Updated Sep 5, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Vivek Rathi (2019). Sentiment Analysis on Financial Tweets [Dataset]. https://www.kaggle.com/datasets/vivekrathi055/sentiment-analysis-on-financial-tweets
    Explore at:
    zip(2538259 bytes)Available download formats
    Dataset updated
    Sep 5, 2019
    Authors
    Vivek Rathi
    License

    http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/

    Description

    Context

    The following information can also be found at https://www.kaggle.com/davidwallach/financial-tweets. Out of curosity, I just cleaned the .csv files to perform a sentiment analysis. So both the .csv files in this dataset are created by me.

    Anything you read in the description is written by David Wallach and using all this information, I happen to perform my first ever sentiment analysis.

    "I have been interested in using public sentiment and journalism to gather sentiment profiles on publicly traded companies. I first developed a Python package (https://github.com/dwallach1/Stocker) that scrapes the web for articles written about companies, and then noticed the abundance of overlap with Twitter. I then developed a NodeJS project that I have been running on my RaspberryPi to monitor Twitter for all tweets coming from those mentioned in the content section. If one of them tweeted about a company in the stocks_cleaned.csv file, then it would write the tweet to the database. Currently, the file is only from earlier today, but after about a month or two, I plan to update the tweets.csv file (hopefully closer to 50,000 entries.

    I am not quite sure how this dataset will be relevant, but I hope to use these tweets and try to generate some sense of public sentiment score."

    Content

    This dataset has all the publicly traded companies (tickers and company names) that were used as input to fill the tweets.csv. The influencers whose tweets were monitored were: ['MarketWatch', 'business', 'YahooFinance', 'TechCrunch', 'WSJ', 'Forbes', 'FT', 'TheEconomist', 'nytimes', 'Reuters', 'GerberKawasaki', 'jimcramer', 'TheStreet', 'TheStalwart', 'TruthGundlach', 'Carl_C_Icahn', 'ReformedBroker', 'benbernanke', 'bespokeinvest', 'BespokeCrypto', 'stlouisfed', 'federalreserve', 'GoldmanSachs', 'ianbremmer', 'MorganStanley', 'AswathDamodaran', 'mcuban', 'muddywatersre', 'StockTwits', 'SeanaNSmith'

    Acknowledgements

    The data used here is gathered from a project I developed : https://github.com/dwallach1/StockerBot

    Inspiration

    I hope to develop a financial sentiment text classifier that would be able to track Twitter's (and the entire public's) feelings about any publicly traded company (and cryptocurrency)

  19. (🌇Sunset) 🇺🇦 Ukraine Conflict Twitter Dataset

    • kaggle.com
    zip
    Updated Apr 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    BwandoWando (2024). (🌇Sunset) 🇺🇦 Ukraine Conflict Twitter Dataset [Dataset]. https://www.kaggle.com/datasets/bwandowando/ukraine-russian-crisis-twitter-dataset-1-2-m-rows
    Explore at:
    zip(18174367560 bytes)Available download formats
    Dataset updated
    Apr 2, 2024
    Authors
    BwandoWando
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    Ukraine
    Description

    IMPORTANT (02-Apr-2024)

    Kaggle has fixed the issue with gzip files and Version 510 should now reflect properly working files

    IMPORTANT (28-Mar-2024)

    Please use the version 508 of the dataset, as 509 is broken. See link below of the dataset that is properly working https://www.kaggle.com/datasets/bwandowando/ukraine-russian-crisis-twitter-dataset-1-2-m-rows/versions/508

    Context

    The context and history of the current ongoing conflict can be found https://en.wikipedia.org/wiki/2022_Russian_invasion_of_Ukraine.

    Announcement

    [Jun 16] (🌇Sunset) Twitter has finally pulled the plug on all of my remaining TWITTER API accounts as part of their efforts for developers to migrate to the new API. The last tweets that I pulled was dated last Jun 14, and no more data from Jun 15 onwards. It was fun til it lasted and I hope that this dataset was able and will continue to help a lot. I'll just leave the dataset here for future download and reference. Thank you all!

    [Apr 19] Two additional developer accounts have been permanently suspended, expect a lower throughtput in the next few weeks. I will pull data til they ban my last account.

    [Apr 08] I woke up this morning and saw that Twitter has banned/ permanently suspended 4 of my developer accounts, I have around a few more but it is just a matter of time till all my accounts will most likely get banned as well. This was a fun project that I maintained for as long as I can. I will pull data til my last account gets banned.

    [Feb 26] I've started to pull in RETWEETS again, so I am expecting a significant amount of throughput in tweets again on top of the dedicated processes that I have that gets NONRETWEETS. If you don't want RETWEETS, just filter them out.

    [Feb 24] It's been a year since I started getting tweets of this conflict and had no idea that a year later this is still ongoing. Almost everyone assumed that Ukraine will crumble in a matter of days, but it is not the case. To those who have been using my dataset, i hope that I am helping all of you in one way or another. Ill do my best to maintain updating this dataset as long as I can.

    [Feb 02] I seem to be getting less tweets as my crawlers are getting throttled, i used to get 2500 tweets per 15 mins but around 2-3 of my crawlers are getting throttling limit errors. There may be some kind of update that Twitter has done about rate limits or something similar. Will try to find ways to increase the throughput again.

    [Jan 02] For all new datasets, it will now be prefixed by a year, so for Jan 01, 2023, it will be 20230101_XXXX.

    [Dec 28] For those looking for a cleaned version of my dataset, with the retweets removed from before Aug 08, here is a dataset by @@vbmokin https://www.kaggle.com/datasets/vbmokin/russian-invasion-ukraine-without-retweets

    [Nov 19] I noticed that one of my developer accounts, which ISNT TWEETING ANYTHING and just pulling data out of twitter has been permanently banned by Twitter.com, thus the decrease of unique tweets. I will try to come up with a solution to increase my throughput and signup for a new developer account.

    [Oct 19] I just noticed that this dataset is finally "GOLD", after roughly seven months since I first uploaded my gzipped csv files.

    [Oct 11] Sudden spike in number of tweets revolving around most recent development(s) about the Kerch Bridge explosion and the response from Russia.

    [Aug 19- IMPORTANT] I raised the missing dataset issue to Kaggle team and they confirmed it was a bug brought by a ReactJs upgrade, the conversation and details can be seen here https://www.kaggle.com/discussions/product-feedback/345915 . It has been fixed already and I've reuploaded all the gzipped files that were lost PLUS the new files that were generated AFTER the issue was identified.

    [Aug 17] Seems the latest version of my dataset lost around 100+ files, good thing this dataset is versioned so one can just go back to the previous version(s) and download them. Version 188 HAS ALL THE LOST FILES, I wont be reuploading all datasets as it will be tedious and I've deleted them already in my local and I only store the latest 2-3 days.

    [Aug 10] 3/5 of my Python processes errored out and resulted to around 10-12 hours of NO data gathering for those processes thus the sharp decrease of tweets for Aug 09 dataset. I've applied an exception/ error checking to prevent this from happening.

    [Aug 09] Significant drop in tweets extracted, but I am now getting ORIGINAL/ NON-RETWEETS.

    [Aug 08] I've noticed that I had a spike of Tweets extracted, but they are literally thousands of retweets of a single original tweet. I also noticed that my crawlers seem to deviate because of this tactic being used by some Twitter users where they flood Twitter w...

  20. T

    Twitter Statistics

    • searchlogistics.com
    Updated Apr 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Search Logistics (2025). Twitter Statistics [Dataset]. https://www.searchlogistics.com/learn/statistics/twitter-user-statistics/
    Explore at:
    Dataset updated
    Apr 1, 2025
    Dataset authored and provided by
    Search Logistics
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    These Twitter user statistics will give you the complete story of where Twitter is at today and what the future looks like for the social media company.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2022). X/Twitter: number of worldwide users 2019-2024 [Dataset]. https://www.statista.com/statistics/303681/twitter-users-worldwide/
Organization logo

X/Twitter: number of worldwide users 2019-2024

Explore at:
208 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Dec 13, 2022
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
Dec 2022
Area covered
Worldwide
Description

As of December 2022, X/Twitter's audience accounted for over *** million monthly active users worldwide. This figure was projected to ******** to approximately *** million by 2024, a ******* of around **** percent compared to 2022.

Search
Clear search
Close search
Google apps
Main menu