87 datasets found
  1. ChatGPT User Reviews

    • kaggle.com
    zip
    Updated Jun 30, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bhavik Jikadara (2024). ChatGPT User Reviews [Dataset]. https://www.kaggle.com/datasets/bhavikjikadara/chatgpt-user-feedback
    Explore at:
    zip(5709734 bytes)Available download formats
    Dataset updated
    Jun 30, 2024
    Authors
    Bhavik Jikadara
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Dataset Description

    This dataset consists of daily-updated user reviews and ratings for the ChatGPT Android App. The dataset includes several key attributes that capture various aspects of the reviews, providing insights into user experiences and feedback over time.

    Columns Explanation

    • userName: The display name of the user who posted the review.
    • content: The text content of the review. This column contains the actual review text written by the user. It includes user opinions, feedback, and detailed descriptions of their experiences with the ChatGPT app.
    • score: The rating given by the user, typically ranging from 1 to 5. This column captures the numerical rating provided by the user. Higher scores indicate better experiences, while lower scores indicate dissatisfaction.
    • thumbsUpCount: The number of thumbs up (likes) the review received. This column shows how many other users found the review helpful or agreed with the sentiments expressed. It serves as a measure of the review's relevancy and impact.
    • at: The timestamp of when the review was posted. This column includes the date and time when the review was submitted. It is crucial for tracking the temporal distribution of reviews and analyzing trends over time.

    Collection Methods

    • Data Source: The data is collected from user reviews submitted through the ChatGPT Android App's review section on the Google Play Store.
    • Frequency: The dataset is updated daily to capture the most recent user feedback and ratings.
    • Automation: An automated script is used to scrape and compile the reviews, ensuring that the dataset is current and comprehensive.
    • Data Cleaning: Basic preprocessing is performed to ensure data quality, such as removing duplicates and handling missing values.
  2. ChatGPT Classification Dataset

    • kaggle.com
    zip
    Updated Sep 7, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mahdi (2023). ChatGPT Classification Dataset [Dataset]. https://www.kaggle.com/datasets/mahdimaktabdar/chatgpt-classification-dataset
    Explore at:
    zip(718710 bytes)Available download formats
    Dataset updated
    Sep 7, 2023
    Authors
    Mahdi
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    We have compiled a dataset that consists of textual articles including common terminology, concepts and definitions in the field of computer science, artificial intelligence, and cyber security. This dataset consists of both human-generated text and OpenAI’s ChatGPT-generated text. Human-generated answers were collected from different computer science dictionaries and encyclopedias including “The Encyclopedia of Computer Science and Technology” and "Encyclopedia of Human-Computer Interaction". AI-generated content in our dataset was produced by simply posting questions to OpenAI’s ChatGPT and manually documenting the resulting responses. A rigorous data-cleaning process has been performed to remove unwanted Unicode characters, styling and formatting tags. To structure our dataset for binary classification, we combined both AI-generated and Human-generated answers into a single column and assigned appropriate labels to each data point (Human-generated = 0 and AI-generated = 1).

    This creates our article-level dataset (article_level_data.csv) which consists of a total of 1018 articles, 509 AI-generated and 509 Human-generated. Additionally, we have divided each article into its sentences and labelled them accordingly. This is mainly to evaluate the performance of classification models and pipelines when it comes to shorter sentence-level data points. This constructs our sentence-level dataset (sentence_level_data.csv) which consists of a total of 7344 entries (4008 AI-generated and 3336 Human-generated).

    We appreciate it, if you cite the following article if you happen to use this dataset in any scientific publication:

    Maktab Dar Oghaz, M., Dhame, K., Singaram, G., & Babu Saheer, L. (2023). Detection and Classification of ChatGPT Generated Contents Using Deep Transformer Models. Frontiers in Artificial Intelligence.

    https://www.techrxiv.org/users/692552/articles/682641/master/file/data/ChatGPT_generated_Content_Detection/ChatGPT_generated_Content_Detection.pdf

  3. e

    ChatGPT Usage by Age Group – Survey Data

    • expresslegalfunding.com
    html
    Updated Sep 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Express Legal Funding (2025). ChatGPT Usage by Age Group – Survey Data [Dataset]. https://expresslegalfunding.com/chatgpt-study/
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Sep 10, 2025
    Dataset authored and provided by
    Express Legal Funding
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    60+, 18–29, 30–44, 45–60
    Description

    This dataset presents ChatGPT usage patterns across different age groups, showing the percentage of users who have followed its advice, used it without following advice, or have never used it, based on a 2025 U.S. survey.

  4. ChatGPT Users Reviews

    • kaggle.com
    zip
    Updated Dec 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anand Shaw (2024). ChatGPT Users Reviews [Dataset]. https://www.kaggle.com/datasets/anandshaw2001/chatgpt-users-reviews
    Explore at:
    zip(9587639 bytes)Available download formats
    Dataset updated
    Dec 26, 2024
    Authors
    Anand Shaw
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Don't forget to hit the UpVote🙏🙏

    The DataSet consists of user reviews of ChatGPT, including Textual Feedback, Ratings, and Review Dates. The Reviews Range from brief comments to more detailed feedback by covering a wide range of user sentiments. The ratings are on a scale of 1 to 5, representing varying levels of Satisfaction. The dataset spans multiple months, providing a temporal dimension for analysis. Each review is accompanied by a timestamp, allowing for Time-Series analysis of sentiment trends.

    1. Review Id:

    • Description: A unique identifier for each review.
    • Data Type: String (UUID format).

    2. Review:

    • Description: The text of the user review. This provides qualitative feedback about the app.
    • Data Type: String

    3. Ratings:

    • Description: User-provided ratings on a scale (likely 1-5) to indicate their level of satisfaction.
    • Data Type: Integer
    • Range: 1 (lowest) to 5 (highest)

    4. Review Date:

    • Description: The timestamp when the review was submitted.
    • Data Type: Date_Time
    • Format: MM/DD/YYYY HH:MM
  5. e

    Types of ChatGPT Advice Used – Survey Data

    • expresslegalfunding.com
    html
    Updated Sep 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Express Legal Funding (2025). Types of ChatGPT Advice Used – Survey Data [Dataset]. https://expresslegalfunding.com/chatgpt-study/
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Sep 10, 2025
    Dataset authored and provided by
    Express Legal Funding
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Legal Advice, Career Advice, Educational Help, Financial Advice, Medical Information, Relationship Advice, Mental Health Topics, News / Current Events, Product Recommendations
    Description

    This dataset shows the types of advice users sought from ChatGPT based on a 2025 U.S. survey, including education, financial, medical, and legal topics.

  6. s

    Data from: ChatGPT in education: A discourse analysis of worries and...

    • socialmediaarchive.org
    csv, json, txt
    Updated Sep 26, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). ChatGPT in education: A discourse analysis of worries and concerns on social media [Dataset]. https://socialmediaarchive.org/record/54
    Explore at:
    csv(6528597), json(248465998), txt(4908229)Available download formats
    Dataset updated
    Sep 26, 2023
    Description

    The rapid advancements in generative AI models present new opportunities in the education sector. However, it is imperative to acknowledge and address the potential risks and concerns that may arise with their use. We collected Twitter data to identify key concerns related to the use of ChatGPT in education. This dataset is used to support the study "ChatGPT in education: A discourse analysis of worries and concerns on social media."

    In this study, we particularly explored two research questions. RQ1 (Concerns): What are the key concerns that Twitter users perceive with using ChatGPT in education? RQ2 (Accounts): Which accounts are implicated in the discussion of these concerns? In summary, our study underscores the importance of responsible and ethical use of AI in education and highlights the need for collaboration among stakeholders to regulate AI policy.

  7. ChatGPT Usage and Critical Thinking Dataset

    • kaggle.com
    zip
    Updated Jun 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Manasi Bhangale (2025). ChatGPT Usage and Critical Thinking Dataset [Dataset]. https://www.kaggle.com/datasets/manasibhangale/chatgpt-usage-and-critical-thinking-dataset
    Explore at:
    zip(143831 bytes)Available download formats
    Dataset updated
    Jun 19, 2025
    Authors
    Manasi Bhangale
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    This dataset contains academic and behavioral information of computer science students, including their CGPA, ChatGPT usage patterns, and an evaluated aptitude score. It is designed to study the correlation between AI tool usage and critical thinking ability.

  8. e

    ChatGPT Usage by Gender – Survey Data

    • expresslegalfunding.com
    html
    Updated Sep 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Express Legal Funding (2025). ChatGPT Usage by Gender – Survey Data [Dataset]. https://expresslegalfunding.com/chatgpt-study/
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Sep 10, 2025
    Dataset authored and provided by
    Express Legal Funding
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Men, Women
    Description

    This dataset shows how men and women in the U.S. reported using ChatGPT in a 2025 survey, including whether they followed its advice or chose not to use it.

  9. 89k ChatGPT conversations

    • kaggle.com
    zip
    Updated May 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Noah Persaud (2023). 89k ChatGPT conversations [Dataset]. https://www.kaggle.com/datasets/noahpersaud/89k-chatgpt-conversations
    Explore at:
    zip(681600031 bytes)Available download formats
    Dataset updated
    May 4, 2023
    Authors
    Noah Persaud
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset contains all available conversations from chatlogs.net between users and ChatGPT. Version 1 contains all conversations available up to the cutoff date of April 4, 2023. Version 1 contains all conversations available up to the cutoff date of April 20, 2023.

  10. e

    ChatGPT Trust Levels by Advice Category – Survey Data

    • expresslegalfunding.com
    html
    Updated Sep 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Express Legal Funding (2025). ChatGPT Trust Levels by Advice Category – Survey Data [Dataset]. https://expresslegalfunding.com/chatgpt-study/
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Sep 10, 2025
    Dataset authored and provided by
    Express Legal Funding
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Legal Advice, Career Advice, Educational Help, Financial Advice, Medical Information, Relationship Advice, Mental Health Topics, News / Current Events, Product Recommendations
    Description

    This dataset presents how much users trust ChatGPT across different advice categories, including career, education, financial, legal, and medical advice, based on a 2025 U.S. survey.

  11. Datasets .csv

    • figshare.com
    txt
    Updated Jan 24, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yaser Alhasawi (2024). Datasets .csv [Dataset]. http://doi.org/10.6084/m9.figshare.25053146.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jan 24, 2024
    Dataset provided by
    Figsharehttp://figshare.com/
    figshare
    Authors
    Yaser Alhasawi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The dataset for this research project was meticulously constructed to investigate the adoption of ChatGPT among students in the United States. The primary objective was to gain insights into the technological barriers and resistances faced by students in integrating ChatGPT into their information systems. The dataset was designed to capture the diverse adoption patterns among students in various public and private schools and universities across the United States. By examining adoption rates, frequency of usage, and the contexts in which ChatGPT is employed, the research sought to provide a comprehensive understanding of how students are incorporating this technology into their information systems. Moreover, by including participants from diverse educational institutions, the research sought to ensure a comprehensive representation of the student population in the United States. This approach aimed to provide nuanced insights into how factors such as educational background, institution type, and technological familiarity influence ChatGPT adoption.

  12. e

    Outcome of ChatGPT Advice – Survey Data

    • expresslegalfunding.com
    html
    Updated Sep 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Express Legal Funding (2025). Outcome of ChatGPT Advice – Survey Data [Dataset]. https://expresslegalfunding.com/chatgpt-study/
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Sep 10, 2025
    Dataset authored and provided by
    Express Legal Funding
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Unsure – Not sure yet, Helpful – It led to a good result, Neutral – It made no real difference, Harmful – It caused problems or a bad result
    Description

    This dataset summarizes how ChatGPT users rated the outcomes of the advice they received, including whether it was helpful, harmful, neutral, or uncertain, based on a 2025 U.S. survey.

  13. chatGPT reviews from google play store

    • kaggle.com
    zip
    Updated Dec 13, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ahmad Selo Abadi (2024). chatGPT reviews from google play store [Dataset]. https://www.kaggle.com/datasets/ahmadseloabadi/chatgpt-reviews-from-google-play-store
    Explore at:
    zip(10517568 bytes)Available download formats
    Dataset updated
    Dec 13, 2024
    Authors
    Ahmad Selo Abadi
    Description

    Don't forget to upvote, comment, and follow if you are using this dataset. If you have any questions about the dataset I uploaded, feel free to leave them in the comments. Thank you! :)

    Jangan lupa untuk upvote, comment, follow jika anda menggunakan dataset ini, dan jika ada pertanyaan mengenai dataset yang saya upload, silahkan tinggalkan di comment. Terima kasih :)

    Column Descriptions (English) 1. reviewId: A unique ID for each user review. 2. userName: The name of the user who submitted the review. 3. userImage: The URL of the user's profile picture. 4. content: The text content of the review provided by the user. 5. score: The review score given by the user, typically on a scale of 1-5. 6. thumbsUpCount: The number of likes (thumbs up) received by the review. 7. reviewCreatedVersion: The app version used by the user when creating the review (not always available). 8. at: The date and time when the review was submitted. 9. replyContent: The developer's response to the review (no data available in this column). 10. repliedAt: The date and time when the developer's response was submitted (no data available in this column). 11. appVersion: The app version used by the user when submitting the review (not always available).

    Deskripsi Kolom (Bahasa Indonesia) 1. reviewId: ID unik untuk setiap ulasan yang diberikan pengguna. 2. userName: Nama pengguna yang memberikan ulasan. 3. userImage: URL gambar profil pengguna yang memberikan ulasan. 4. content: Isi teks ulasan yang diberikan oleh pengguna. 5. score: Skor ulasan yang diberikan pengguna, biasanya dalam skala 1-5. 6. thumbsUpCount: Jumlah suka (thumbs up) yang diterima oleh ulasan tersebut. 7. reviewCreatedVersion: Versi aplikasi yang digunakan pengguna saat membuat ulasan (tidak selalu tersedia). 8. at: Tanggal dan waktu saat ulasan dibuat. 9. replyContent: Isi balasan dari pengembang aplikasi terhadap ulasan (tidak ada data dalam kolom ini). 10. repliedAt: Tanggal dan waktu saat balasan dari pengembang diberikan (tidak ada data dalam kolom ini). 11. appVersion: Versi aplikasi yang digunakan pengguna saat memberikan ulasan (tidak selalu tersedia).

  14. ChatGPT📌

    • kaggle.com
    zip
    Updated Nov 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Omar Essa (2025). ChatGPT📌 [Dataset]. https://www.kaggle.com/datasets/jockeroika/chatgpt
    Explore at:
    zip(1874 bytes)Available download formats
    Dataset updated
    Nov 6, 2025
    Authors
    Omar Essa
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    Most Used Features and Usage Statistics By September 2025, ChatGPT boasts ~800 million weekly users and 355 million monthly active users, with 2.6 billion daily messages across 700 million users. It's the #1 AI tool globally (60.6% market share), especially among under-25s (45% of users). Daily usage: 9% of 18-24-year-olds. Top use cases (from OpenAI's 2025 user study):

    Everyday Productivity (52% of sessions): Email drafting, brainstorming, task lists. Content Creation/Writing (28%): Essays, social media, code snippets. Research & Learning (15%): Summaries, explanations, tutoring. Coding/Development (12%): Debugging, automation scripts. Creative Tools (e.g., Image Gen in GPT-4o/5, 10%): Art, voice chats.

    Enterprise adoption hit 80% of Fortune 500 companies by mid-2025, with mobile apps driving 40% of traffic. Efficiency Metrics Efficiency in ChatGPT refers to speed, cost, productivity gains, and resource use. GPT-5 processes queries 3x faster than GPT-4o (under 1s for simple tasks) while using 50% less compute. Key metrics:

  15. ChatGPT Tweets

    • kaggle.com
    zip
    Updated Aug 22, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Furqan Rustam (2023). ChatGPT Tweets [Dataset]. https://www.kaggle.com/datasets/furqanrustam118/chatgpt-tweets
    Explore at:
    zip(1543926 bytes)Available download formats
    Dataset updated
    Aug 22, 2023
    Authors
    Furqan Rustam
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Chatbots are AI-powered programs designed to replicate human conversation. They are capable of performing a wide range of tasks, including answering questions, offering directions, controlling smart home thermostats, and playing music, among other functions. ChatGPT is a popular AI-based chatbot that generates meaningful responses to queries, aiding people in learning. While some individuals support ChatGPT, others view it as a disruptive tool in the field of education. Discussions about this tool can be found across different social media platforms. Analyzing the sentiment of such social media data, which comprises people’s opinions, is crucial for assessing public sentiment regarding the success and shortcomings of such tools. This study performs a sentiment analysis and topic modeling on ChatGPT-based tweets. ChatGPT-based tweets are the author’s extracted tweets from Twitter using ChatGPT hashtags, where users share their reviews and opinions about ChatGPT, providing a reference to the thoughts expressed by users in their tweets. The Latent Dirichlet Allocation (LDA) approach is employed to identify the most frequently discussed topics in relation to ChatGPT tweets. For the sentiment analysis, a deep transformer-based Bidirectional Encoder Representations from Transformers (BERT) model with three dense layers of neural networks is proposed. Additionally, machine and deep learning models with fine-tuned parameters are utilized for a comparative analysis. Experimental results demonstrate the superior performance of the proposed BERT model, achieving an accuracy of 96.49%.

  16. e

    Beliefs About ChatGPT’s Impact on Humanity – Survey Data

    • expresslegalfunding.com
    html
    Updated Sep 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Express Legal Funding (2025). Beliefs About ChatGPT’s Impact on Humanity – Survey Data [Dataset]. https://expresslegalfunding.com/chatgpt-study/
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Sep 10, 2025
    Dataset authored and provided by
    Express Legal Funding
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Agree, Neutral, Disagree, Strongly disagree, Strongly agree – Will help humanity
    Description

    This dataset reflects how Americans perceive ChatGPT's broader societal impact, based on a 2025 survey that asked whether the AI will help or harm humanity.

  17. Global AI Tool Adoption Across Industries

    • kaggle.com
    zip
    Updated Jun 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rishi (2025). Global AI Tool Adoption Across Industries [Dataset]. https://www.kaggle.com/tfisthis/global-ai-tool-adoption-across-industries
    Explore at:
    zip(18481524 bytes)Available download formats
    Dataset updated
    Jun 3, 2025
    Authors
    Rishi
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    Global AI Tool Adoption Across Industries and Regions (2023–2025)

    A comprehensive, research-grade dataset capturing the adoption, usage, and impact of leading AI tools—such as ChatGPT, Midjourney, Stable Diffusion, Bard, and Claude—across multiple industries, countries, and user demographics. This dataset is designed for advanced analytics, machine learning, natural language processing, and business intelligence applications.

    Dataset Overview

    This dataset provides a panoramic view of how AI technologies are transforming business, industry, and society worldwide. Drawing inspiration from real-world adoption surveys, academic research, and industry reports, it enables users to:

    • Analyze adoption rates of popular AI tools across regions and sectors.
    • Study user demographics and company profiles influencing AI integration.
    • Explore textual user feedback for sentiment and topic modeling.
    • Perform time series analysis on AI adoption trends from 2023 to 2025.
    • Benchmark industries, countries, and company sizes for AI readiness.

    To add a column descriptor (column description) to your Kaggle dataset's Data Card, you should provide a clear and concise explanation for each column. This improves dataset usability and helps users understand your data structure, which is highly recommended for achieving a 10/10 usability score on Kaggle[2][9].

    Below is a ready-to-copy Column Descriptions table for your dataset. You can paste this into the "Column Descriptions" section of your Kaggle Data Card (after clicking the pencil/edit icon in the Data tab)[2][9]:

    Column Descriptions

    Column NameDescription
    countryCountry where the organization or user is located (e.g., USA, India, China, etc.)
    industryIndustry sector of the organization (e.g., Technology, Healthcare, Retail, etc.)
    ai_toolName of the AI tool used (e.g., ChatGPT, Midjourney, Bard, Stable Diffusion, Claude)
    adoption_ratePercentage representing the adoption rate of the AI tool within the sector or company (0–100)
    daily_active_usersEstimated number of daily active users for the AI tool in the given context
    yearYear in which the data was recorded (2023 or 2024)
    user_feedbackFree-text feedback from users about their experience with the AI tool (up to 150 characters)
    age_groupAge group of users (e.g., 18-24, 25-34, 35-44, 45-54, 55+)
    company_sizeSize category of the organization (Startup, SME, Enterprise)

    Example Data

    country,industry,ai_tool,adoption_rate,daily_active_users,year,user_feedback,age_group,company_size
    USA,Technology,ChatGPT,78.5,5423,2024,"Great productivity boost for our team!",25-34,Enterprise
    India,Healthcare,Midjourney,62.3,2345,2024,"Improved patient engagement and workflow.",35-44,SME
    Germany,Manufacturing,Stable Diffusion,45.1,1842,2023,"Enhanced our design process.",45-54,Enterprise
    Brazil,Retail,Bard,33.2,1200,2024,"Helped automate our customer support.",18-24,Startup
    UK,Finance,Claude,55.7,2100,2023,"Increased accuracy in financial forecasting.",25-34,SME
    

    How to Use This Dataset

    1. Load and Preview the Data

    import pandas as pd
    
    df = pd.read_csv('/path/to/ai_adoption_dataset.csv')
    print(df.head())
    print(df.info())
    

    2. Analyze Adoption Rates by Industry and Country

    industry_adoption = df.groupby(['industry', 'country'])['adoption_rate'].mean().reset_index()
    print(industry_adoption.sort_values(by='adoption_rate', ascending=False).head(10))
    

    3. Visualize AI Tool Popularity

    import matplotlib.pyplot as plt
    
    tool_counts = df['ai_tool'].value_counts()
    tool_counts.plot(kind='bar', title='AI Tool Usage Distribution')
    plt.xlabel('AI Tool')
    plt.ylabel('Number of Records')
    plt.show()
    

    4. Sentiment Analysis on User Feedback

    from textblob import TextBlob
    
    df['feedback_sentiment'] = df['user_feedback'].apply(lambda x: TextBlob(x).sentiment.polarity)
    print(df[['user_feedback', 'feedback_sentiment']].head())
    

    5. Time Series Analysis of Adoption Trends

    yearly_trends = df.groupby(['year', 'ai_tool'])['adoption_rate'].mean().unstack()
    yearly_trends.plot(marker='o', title='AI Tool Adoption Rate Over Time')
    plt.xlabel('Year')
    plt.ylabel('Average Adoption Rate (%)')
    plt.show()
    

    **6. Demographic Insights*...

  18. ICEIS 2025 - Support Documentation for Study Execution - "Exploring the Use...

    • figshare.com
    • datasetcatalog.nlm.nih.gov
    docx
    Updated Jul 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Felipe Sonntag Manzoni; Ana Carolina Oran; Rávella Thuany Carvalho Rodrigues (2025). ICEIS 2025 - Support Documentation for Study Execution - "Exploring the Use of ChatGPT for the Generation of User Story Based Test Cases: An Experimental Study" [Dataset]. http://doi.org/10.6084/m9.figshare.28053713.v2
    Explore at:
    docxAvailable download formats
    Dataset updated
    Jul 16, 2025
    Dataset provided by
    Figsharehttp://figshare.com/
    figshare
    Authors
    Felipe Sonntag Manzoni; Ana Carolina Oran; Rávella Thuany Carvalho Rodrigues
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This is the dataset and documents used for the study execution provided by the authors. In this raw data, you can find the scripts used by the evaluators and the TAM form submitted by them during the evaluation process.This raw data is part of the developed work published on ICEIS 2025 by the title of: "Exploring the Use of ChatGPT for the Generation of User Story Based Test Cases: An Experimental Study"All the data presented here is licensed under the CC BY 4.0 license and should be followed for any copyright matter.

  19. How User Language Affects Conflict Fatality Estimates in ChatGPT, Query...

    • zenodo.org
    • data.niaid.nih.gov
    text/x-python, zip
    Updated Jul 26, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kazenwadel Daniel*; Kazenwadel Daniel*; Steinert Christoph*; Steinert Christoph* (2023). How User Language Affects Conflict Fatality Estimates in ChatGPT, Query script and dataset [Dataset]. http://doi.org/10.5281/zenodo.8181226
    Explore at:
    zip, text/x-pythonAvailable download formats
    Dataset updated
    Jul 26, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Kazenwadel Daniel*; Kazenwadel Daniel*; Steinert Christoph*; Steinert Christoph*
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    *both authors contributed equally

    Automated query script for automated language bias studies in GPT 3-5

    Dataset of the paper "How User Language Affects Conflict Fatality Estimates in ChatGPT" preprint available on ArXiv

  20. h

    chats-data-2023-09-27

    • huggingface.co
    Updated Sep 27, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Collective Cognition (2023). chats-data-2023-09-27 [Dataset]. https://huggingface.co/datasets/CollectiveCognition/chats-data-2023-09-27
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 27, 2023
    Dataset authored and provided by
    Collective Cognition
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Dataset Card for "Collective Cognition ChatGPT Conversations"

      Dataset Description
    
    
    
    
    
      Dataset Summary
    

    The "Collective Cognition ChatGPT Conversations" dataset is a collection of chat logs between users and the ChatGPT model. These conversations have been shared by users on the "Collective Cognition" website. The dataset provides insights into user interactions with language models and can be utilized for multiple purposes, including training, research, and… See the full description on the dataset page: https://huggingface.co/datasets/CollectiveCognition/chats-data-2023-09-27.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Bhavik Jikadara (2024). ChatGPT User Reviews [Dataset]. https://www.kaggle.com/datasets/bhavikjikadara/chatgpt-user-feedback
Organization logo

ChatGPT User Reviews

Insights from Daily Reviews

Explore at:
4 scholarly articles cite this dataset (View in Google Scholar)
zip(5709734 bytes)Available download formats
Dataset updated
Jun 30, 2024
Authors
Bhavik Jikadara
License

MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically

Description

Dataset Description

This dataset consists of daily-updated user reviews and ratings for the ChatGPT Android App. The dataset includes several key attributes that capture various aspects of the reviews, providing insights into user experiences and feedback over time.

Columns Explanation

  • userName: The display name of the user who posted the review.
  • content: The text content of the review. This column contains the actual review text written by the user. It includes user opinions, feedback, and detailed descriptions of their experiences with the ChatGPT app.
  • score: The rating given by the user, typically ranging from 1 to 5. This column captures the numerical rating provided by the user. Higher scores indicate better experiences, while lower scores indicate dissatisfaction.
  • thumbsUpCount: The number of thumbs up (likes) the review received. This column shows how many other users found the review helpful or agreed with the sentiments expressed. It serves as a measure of the review's relevancy and impact.
  • at: The timestamp of when the review was posted. This column includes the date and time when the review was submitted. It is crucial for tracking the temporal distribution of reviews and analyzing trends over time.

Collection Methods

  • Data Source: The data is collected from user reviews submitted through the ChatGPT Android App's review section on the Google Play Store.
  • Frequency: The dataset is updated daily to capture the most recent user feedback and ratings.
  • Automation: An automated script is used to scrape and compile the reviews, ensuring that the dataset is current and comprehensive.
  • Data Cleaning: Basic preprocessing is performed to ensure data quality, such as removing duplicates and handling missing values.
Search
Clear search
Close search
Google apps
Main menu